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Some basics of quantum mechanics

1. Particles can be in one of many states. Each state is described
by a wave function or amplitude ψ which is a function of space and
time. Wave functions are complex numbers whose magnitude
squared, |ψ|2, gives the probability or probability density of finding
the particle at that space-time point

If the states form a continuous set, like the position x of a particle
moving in one dimension, then |ψ|2 describes the probability
density, i.e., |ψ(x , t)|2 dx is the probability of finding the particle in
the interval [x , x + dx ] at time t . We must have

∫
dx |ψ(x , t)|2 = 1

If the states form a discrete set, like a particle in a finite-size box
or in a simple harmonic potential or the hydrogen atom or the spin
states of a particle (more on this latter), |ψj |2 is the probability of
finding the particle in a state j

Wave functions can be superposed; in general, one has to add up
or integrate over many wave functions before calculating |ψ|2



Some basics of quantum mechanics

2. Quantum mechanics is a probabilistic theory unlike classical
mechanics where one can, in principle, measure any property (like
position and momentum) of any particle with infinite accuracy,
and one would always get the same values every time

In quantum mechanics, given a state, we only know the probabilities
of getting different values of an observable. Every time we measure
the value of an observable, say, R, we may get a different value,
say, rj . If we make the measurement a very large number of times,
we find that the values rj are found with a probability Pj which can
be found from the wave function ψ. The expectation value of the
observable is then denoted by ⟨ψ|R|ψ⟩, and is given by

E(R) =
∑

j

rj Pj

where the sum runs over all the possible values of rj



Some basics of quantum mechanics

3. An electron has a spin angular momentum. Its magnitude
has a fixed value given by ℏ/2 ≃ 0.527 × 10−34 Joule-sec.
(ℏ is called Planck’s constant). The value of the component
of the spin along any direction is quantized and can only take
the values ± ℏ/2.
This is unlike in classical mechanics where the component in
any direction of a rotating object can take a continuous
range of values (think of a rotating top)

Spin is a purely quantum property of the electron and it has no
classical counterpart. For instance, the spin of an electron does
not change with time. Also, as far as we know, an electron is
a point particle (has no substructure), and a classical point
particle cannot have a spin angular momentum

We call an electron a spin-1/2 particle. So the spin part has
two possible states



Some basics of quantum mechanics

4. Photons (quanta of electromagnetic radiation) have spin-1.
The component of the spin of a photon along the direction of its
motion can only be + ℏ or − ℏ. In terms of electromagnetic waves,
these two possibilities correspond to left circularly polarized or right
circularly polarized, respectively

So the polarization has two possible states



Some basics of quantum mechanics

5. The wave function ψ of a particle (or a system of particles)
changes in time according to a first-order differential equation
called the Schrödinger equation

iℏ
∂ψ

∂t
= H ψ

where H is called the Hamiltonian

For a particle with a continuous set of states, such as states
labeled by its position x , H is a differential operator, such as

H = − ℏ2

2m
∂2

∂x2

where m is the mass of the particle



Some basics of quantum mechanics

iℏ
∂ψ

∂t
= H ψ

For a particle with a discrete set of states, say, only two states 1
and 2, the wave function is a column with two entries

ψ =

(
α
β

)

where α, β denote the amplitudes for the particle to be in the states
1 and 2 respectively. We must have |α|2 + |β|2 = 1 so that the
probability of the particle to be in one of the two states is equal to 1

Then the Hamiltonian will be a 2 × 2 Hermitian matrix whose
eigenvalues are real and correspond to the allowed energies
of the particle, ϵ1 and ϵ2



Solving the Schrödinger equation

iℏ
∂ψ

∂t
= H ψ

If ψj is an eigenvector of H with eigenvalue Ej , a particular
solution of the Schrödinger equation is

ψj(t) = e−iEj t/ℏ ψj

Then the general solution of the Schrödinger equation is given by
the superposition

ψ(t) =
∑

j

cj e−iEj t/ℏ ψj

where the cj can be arbitrary complex numbers. Their values
can be found if the initial wave function ψ(0) is given



Combining continuous and discrete states

An electron can move in space (with a coordinate x) in one
dimension and they also carry spin-1/2. To combine the continuous
label x and the discrete label for spin, we write the wave function
for an electron as

ψ =

(
α(x , t)
β(x , t)

)

Here |α|2 is the probability density to find the electron at x with the
component of its spin along the ẑ direction being equal to + ℏ/2,
and |β|2 is the probability density to find the electron at x with the
component of its spin along the ẑ direction being equal to − ℏ/2.
The choice of the ẑ direction is arbitrary

We must have
∫

dx (|α|2 + |β|2) = 1 to have the total probability
of finding the electron somewhere and with some spin equal to 1



Spin wave function of an electron

We now ignore the motion of the electron in space and also ignore
the time-evolution of its wave function. We then just have a spin-1/2
particle with the general wave function

ψ =

(
α
β

)

As remarked earlier, α and β are the amplitudes to find the
electron with the component of its spin along the ẑ direction
being equal to + ℏ/2 and − ℏ/2 respectively

Namely, ψ is the superposition

ψ = α

(
1
0

)
+ β

(
0
1

)
of two states in which the electron spin points in the + ẑ and
− ẑ directions respectively



Spin wave function of an electron

To find the amplitudes for the electron with wave function
(
α
β

)
to have its spin components along an arbitrary direction,
we have to do a unitary transformation

For instance, the amplitudes to find the electron with the
component of its spin along the x̂ direction being equal
to + ℏ/2 and − ℏ/2 is given by the upper and lower
components respectively of the column

1√
2

(
1 1
1 −1

) (
α
β

)
=

1√
2

(
α + β
α − β

)
where

U =
1√
2

(
1 1
1 −1

)
is the unitary matrix which transforms from the spin ẑ basis to

the spin x̂ basis. Where does this unitary matrix come from?



The mathematics of spin-1/2

The quantum mechanical description of a spin- 1/2 electron requires
us to define three 2× 2 Hermitian matrices called the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
The spin operators for a spin- 1/2 electron are given by

S⃗ =
ℏ
2
σ⃗, i.e., Sx =

ℏ
2
σx , Sy =

ℏ
2
σy , Sz =

ℏ
2
σz

Note that

Sz

(
1
0

)
=

ℏ
2

(
1
0

)
and Sz

(
0
1

)
= − ℏ

2

(
0
1

)

This is why
(

1
0

)
and

(
0
1

)
are called the wave functions

of an electron with the ẑ component of its spin being equal
to + ℏ/2 and − ℏ/2 respectively



The mathematics of spin-1/2
Similarly,

Sx =
ℏ
2

(
0 1
1 0

)
and we see that

Sx
1√
2

(
1
1

)
=

ℏ
2

1√
2

(
1
1

)
Sx

1√
2

(
1
−1

)
= − ℏ

2
1√
2

(
1
−1

)

Hence 1√
2

(
1
1

)
and 1√

2

(
1
−1

)
are the wave functions

of an electron with the x̂ component of its spin being equal
to + ℏ/2 and − ℏ/2 respectively

We now see that these wave functions are exactly the columns
of the unitary matrix which transforms from spin ẑ basis to the
spin x̂ basis



Electron spin pointing in a general direction
Consider a general direction n̂ in three dimensions which is
parametrized by the polar coordinates (θ, ϕ). Thus the three
Cartesian coordinates of the unit vector n̂ are given by
(nx ,ny ,nz) = (sin θ cosϕ, sin θ sinϕ, cos θ). We can then define
the quantity n⃗ · S⃗ = nxSx + ny Sy + nzSz

Then the wave function of an electron whose spin component in the
direction n̂ is equal to + ℏ/2 is given by the eigenvalue equation

n⃗ · S⃗ ψ =
ℏ
2
ψ

We find that

ψ =

(
cos(θ/2)

sin(θ/2) eiϕ

)

Hence the probabilities that this state has its spin component
in the ẑ direction equal to + ℏ/2 and − ℏ/2 are given
by cos2(θ/2) and sin2(θ/2) respectively



Some remarks about unitary transformations

Unitary transformations play a very useful role in quantum
mechanics. Many transformations (such as the change of spin basis
from one direction to another or, in general, rotating the coordinate
axis of an arbitrary system, or evolving a wave function in time, or
moving a particle from one position to another) can be described
by unitary operators acting on the wave functions of the system

Unitary transformations preserve the total probability. If ψ is a
wave function which has probability 1, then U ψ will also have
probability 1 if U is a unitary operator

Unitary transformations acting on operators do not change their
eigenvalues. For instance, if H is the Hamiltonian of a system
and its eigenvalues are the possible energies, then the unitary
transformation gives a new Hamiltonian U H U−1 which has the
same eigenvalues and therefore the same energies



Qubit

A qubit (quantum bit) is a two-state quantum mechanical system.
Denote the two basis states as(

1
0

)
and

(
0
1

)

The most general possible state of the system is a superposition(
α
β

)
where we always fix |α|2 + |β|2 = 1 so that the total probability

to find the system in one of the two states is 1

Examples: a spin-1/2 object, where the two basis states
correspond to the object having the component of its spin in
the z direction being equal to ℏ/2 and − ℏ/2 respectively.
Another example of a qubit is a photon which can have two possible
spin states or polarizations



Two qubits

We now consider a system with two qubits (spin-1/2’s).
The wave functions of this given by a direct product of the states
of two separate qubits. We will work in the spin ẑ basis as usual.
We will simplify the notation to(

1
0

)
= | ↑⟩ and

(
0
1

)
= | ↓⟩

to emphasize that these two states have components of the spin
in the ẑ direction being up and down respectively

The most general wave function of two qubits will be a linear
superposition of the four states

| ↑↑⟩, | ↑↓⟩, | ↓↑⟩ and | ↓↓⟩

There will be two sets of spin operators S⃗1 and S⃗2 which act
only on the states of the first and second qubit respectively



A spin-singlet state

A particularly interesting state of two qubits is the state

|S⟩ =
1√
2
( | ↑↓⟩ − | ↓↑⟩ )

This is called a spin-singlet state since all the components of the
total spin operator S⃗1 + S⃗2 give zero when they act on this state.
Hence this state has total spin-0, and it is the unique state of two
qubits which has this property

There are three other states of two qubits which have total spin-1.
They are called spin-triplet states, and their wave functions are
given by

|T1⟩ = | ↑↑⟩, |T0⟩ =
1√
2
( | ↑↓⟩ + | ↓↑⟩ ) and |T−1⟩ = | ↓↓⟩



Entanglement

|S⟩ =
1√
2
( | ↑↓⟩ − | ↓↑⟩ )

The spin-singlet state is an example of an entangled state

Suppose that there are two observers, A and B, who can only
measure the ẑ spin components, S1z and S2z , of qubits 1 and 2
respectively. If they are told that the two-qubit system is in a
spin-singlet state, they would not be able to say with certainty what
the spin state of their own qubit is. The best that observer A would
be able to say is that their qubit has a probability of 1/2 of having spin
↑ and a probability of 1/2 of having spin ↓. And similarly for B.

However, suppose that observer A makes the measurement of S1z
and finds that it is in an ↑ state. Then they would immediately be
able to say, without communicating in any way with B, that
B’s qubit will be in a ↓ state



Entanglement

|S⟩ =
1√
2
( | ↑↓⟩ − | ↓↑⟩ )

So we have the strange situation that initially the observers don’t
know the states of their qubits, but as soon as one of them
makes a measurement and finds the state of their qubit, they
instantaneously know the state of the other qubit. This holds
even if the two qubits and their respective observers are very
far apart and cannot communicate with each other

This strange feature which a quantum system consisting of more
than particle can have is called entanglement. This has no
classical counterpart at all

A single quantum mechanical particle with a continuous set of states,
like position, has wave functions which are mathematically similar
to waves in classical mechanics. But entanglement is a feature of
multi-particle quantum mechanics alone, and it has no analogs
in classical theories



An unentangled state

All two-qubit states are not necessarily entangled. An example
of an unentangled state is one of the spin-triplet states

|T1⟩ = | ↑↑⟩

If the observers are told that this is the state of their two qubits,
each observer would immediately know the state of the qubit of
the other observer even without making a measurement of their
own qubit

An unentangled state like the one above is called a product state:
the state of the two states is simply a direct product of the states
of the two qubits separately. This is a classical kind of state

There is a quantitative way of defining the entanglement of an
arbitrary state of two objects. This is called entanglement entropy



Entanglement entropy

A general two-qubit state can be written in the form

ψ =
∑

S1z=↑,↓

∑
S2z=↑,↓

CS1z ,S2z |S1zS2z⟩

where Cjk are complex numbers which denote the amplitudes
of the spin states j and k of qubits 1 and 2 respectively

We then define a reduced density matrix of qubit 1 by summing
over the possible states of qubit 2 as

ρjj′ =
∑

k

C∗
jk Cj′k

One can show that ρ is a Hermitian matrix, its eigenvalues must
lie in the range [0,1], and the sum of its eigenvalues is equal to 1



Entanglement entropy

If λ1, λ2 are the two eigenvalues of the reduced density matrix ρ,
the entanglement entropy is defined as

s = − λ1 log λ1 − λ2 log λ2

where the base of the logarithm is often taken to be 2 in the
quantum information community.

For an unentangled state, one finds that s = 0, while in an
entangled state, we find that s > 0

For the spin-singlet state |S⟩, we find that s = 1. This is, in fact,
the largest possible value of the entanglement entropy that one can
have for a two-qubit state. So the spin-singlet state is maximally
entangled



Hidden-variable theories

We turn to another feature of quantum mechanics which is also
motivated by the idea of entangled states. Given the singlet state

|S⟩ =
1√
2
( | ↑↓⟩ − | ↓↑⟩ )

we know that before making any measurements, neither observer
can say with certainty what state of their own qubit is

But is it possible that there can be a hidden variable which leads
to results similar to what observers A and B would find by
making measurements on the above state?

For example, there may be a hidden person who decides randomly
to either give a spin ↑ to A and a spin ↓ to B with probability
1/2, or a spin ↓ to A and a spin ↑ to B with probability 1/2

In each case, the state of the two qubits would be a product state



Hidden-variable theories

John Bell showed that such hidden-variable theories
(which are essentially classical) would give results which
are different from what quantum mechanics predicts

Consider again a two-qubit state ψ. Now suppose that each
of the two observers A and B can make one of two possible
measurements. We will call these measurements a1 and a2
for observer A, and b1 and b2 for observer B

So four possible joint measurements are possible, and the
expectation values for the four possibilities are given by the
expressions E(a1,b1) = ⟨ψ|a1b1|ψ⟩, and similarly for
E(a1,b2), E(a2,b1) and E(a2,b2)

A hidden-variable theory would predict that
E(a1,b1) = E(a1) E(b1), E(a1,b2) = E(a1) E(b2), etc.
since the measurements are being made on a product state
which is a classical state with no entanglement



Bell inequality

Now suppose that each of the four quantities a1, a2, b1 and b2
can only take values in the range [−1,1]. This means that the
expectation values of each of these four quantities also lie in the
range [−1,1]

Using the properties that E(a1,b1) = E(a1) E(b1), etc. and
−1 ≤ E(ai), E(bj) ≤ 1, we can show that

E(a1,b1) + E(a1,b2) + E(a2,b1) − E(a2,b2)

= E(a1) (E(b1) + E(b2)) + E(a2) (E(b1)− E(b2))

has a magnitude which is less than or equal to 2



Bell inequality

Now suppose that the properties that the observers A and B
are measuring are given by

a1 = a⃗1 · σ⃗A, a2 = a⃗2 · σ⃗A

and b1 = b⃗1 · σ⃗B, b2 = b⃗2 · σ⃗B

respectively, where σ⃗A, σ⃗B are the Pauli spin operators for A
and B, and a⃗1, a⃗2, b⃗1 and b⃗2 are some unit vectors

We then discover that if ψ is the spin-singlet state, we get
E(a⃗i , b⃗j) = ⟨ψ| a⃗i · σ⃗A b⃗j · σ⃗B |ψ⟩ = − a⃗i · b⃗j

This is clearly different from E(a⃗i) and E(b⃗j) which are
both equal to zero in the spin-singlet state



Violation of Bell inequality

In the spin-singlet state, we have

E(a⃗i , b⃗j) = ⟨ψ| a⃗i · σ⃗A b⃗j · σ⃗B |ψ⟩ = − a⃗i · b⃗j

This gives

E(a1,b1) + E(a1,b2) + E(a2,b1) − E(a2,b2)

= − a⃗1 · (b⃗1 + b⃗2) − a⃗2 · (b⃗1 − b⃗2)

Depending on the choices of a⃗1, a⃗2, b⃗1 and b⃗2, the magnitude
of the quantity E(a1,b1) + E(a1,b2) + E(a2,b1) − E(a2,b2)
can exceed 2 which violates the Bell inequality

The violation of the Bell inequality has been confirmed in
numerous experiments over the years, using photons, electrons
and other two-state systems. This proves that quantum mechanics
is not compatible with hidden-variable theories



Violation of Bell inequality

E(a1,b1) + E(a1,b2) + E(a2,b1) − E(a2,b2)

= − a⃗1 · (b⃗1 + b⃗2) − a⃗2 · (b⃗1 − b⃗2)

To see that the magnitude of this can exceed 2, we choose
a⃗1, b⃗1, a⃗2, b⃗2 to lie in a plane and rotated successively by 450

a⃗1 = (1,0,0), b⃗1 = (
1√
2
,

1√
2
,0)

a⃗2 = (0,1,0), b⃗2 = (− 1√
2
,

1√
2
,0)

Then E(a1,b1) + E(a1,b2) + E(a2,b1) − E(a2,b2) = − 2
√

2
whose magnitude is clearly larger than 2

Interestingly, we can show that 2
√

2 is the upper bound of the
magnitude of the above quantity for any choice of the four vectors.
This is called the Tsirelson bound



Summary

• Wave function and its interpretation

• The spin-1/2 nature of the electron which leads to a qubit

• Two-qubit wave functions and entanglement

• Bell inequality
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