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CHAPTER 7

Some Applications of the Ising Model
to Biology

7-1 Introduction
7-2 Myoglobin and Classical Enzymes
7-3 Hemoglobin
7-4 Monod-Wyman—Changeux Mode! for Hemoglobin and Allosteric Enzymes
7-5 Decorated Ising Models for Allosteric Enzymes
7-6 Ising Models for DNA
PROBLEMS

7-1 Introduction

The Ising and related models have been applied with some success to a number
of biological systems. We shall discuss three examples here: hemoglobin,
allosteric enzymes, and deoxyribonucleic acid (DNA). These examples are
by no means eihaustive, but they illustrate how general lattice combinatoric
problems and their methods of solution may be applied to biological problems.

The common feature in the examples we shall consider here is * coopera-
tivity,”” which is playing a role of increasing importance in biology these days.
Hemoglobin, for example, which is the oxygen carrier in red blood cells, has
four distinct binding sites for oxygen with apparent interactions between the
sites. In other words, if a molecule of oxygen is bound to a hemoglobin
molecule, it will be more likely than not to bind other oxygen molecules.
This cooperative interaction between the binding sites reflects itself in the
saturation curve shown in Figure 7.1, where the percentage of oxygenated
hemoglobin is plotted as a function of the partial pressure of oxygen (or
equivalently the concentration of oxygen).

It is clear from the S, or sigmoid, shape of the hemoglobin saturation curve
that binding of a few molecules of oxygen favors the binding of more and
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FiGuUure 7.1. Percentage of oxygenated hemoglobin and myoblogin
as a function of the partial pressure of oxygen.

that binding occurs best at high oxygen concentrations. This naturally makes
the hemoglobin molecule a very efficient little machine, since in the lungs
where the oxygen concentration is high binding is easy, and, as hemoglobin
travels through the body to places with low oxygen concentration, the oxygen
leaves the molecule rather easily.

In Figure 7.1 the saturation curve for hemoglobin is compared with the
corresponding curve for myoglobin, the oxygen-bearing molecule found in
muscle tissue, which has only one binding site for oxygen and hence no chance
of displaying any cooperative effects.

A similar situation holds for enzymes, which are catalysts for biochemical
reactions. The agent undergoing a particular reaction is usually referred to as
the substrate, and the reaction of the substrate, catalyzed by an enzyme, pro-
ceeds by substrate molecules occupying distinct binding sites on the enzyme.
For a ““classical enzyme,”” the initial reaction rate, which is assumed to be
proportional to the number of occupied sites on the enzyme, as a function of
substrate concentration, has the same form as the myoglobin saturation
curve, showing that there is no apparent interaction between the (possibly
many) distinct binding sites. A number of enzymes, the * allosteric enzymes,”
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were recently found, however, to have an S-shaped initial reaction-rate
curve reflecting some degree of cooperativity among the binding sites.

Finally, DNA also has an S-shaped denaturation or melting curve; i.e.,
the fraction of broken bonds as a function of temperature has the same form
as the hemoglobin saturation curve. If one accepts the Watson—-Crick model
for DNA, which pictures the molecule as a double helix with hydrogen bonds
connecting the two strands, denaturation occurs through the breaking of the
hydrogen bonds as the temperature is increased. The denaturation process is
then often referred to as the helix-coil transition, and the fraction of broken
bonds as a function of temperature gives the “ melting curve.” The S shape
of the melting curves presumably means that the bond-breaking process is
cooperative rather than random.

To set the stage for a discussion of the cooperative processes described
above we present in the next section a model for the myoglobin and classical
enzyme noncooperative processes. In the following sections we shall discuss
the structure and function of hemoglobin, allosteric enzymes, and DNA
in more detail and show how the random or independent model in Section
7-2 can be modified to take cooperativity into account.

For some background, the interested reader is referred to Perutz (1964) for
hemoglobin, Changeux (1965) for enzymes, and Watson (B1968) for DNA.

7-2 Myoglobin and Classical Enzymes

Consider an enzyme with # noninteracting or independent binding sites for
substrate (n = 1 corresponds to myoglobin and in this case the *substrate ™
is oxygen). We number the sites by an index i= 1,2, ..., n and associate
with each site a parameter u; which takes two values, +1 if the ith site is
occupied by substrate and —1 if the ith site is unoccupied by substrate. (It
would perhaps be better to consider lattice gas variables ¢; = 1 or 0 instead
of u; = +1 or —1, respectively, but we will see in the following sections that
the relation to the Ising model is made easier by starting with the Ising
magnet variables y; = +1.)

A configuration of the molecule is specified by the values of u,, u,, ..., i,-
In other words, a particular configuration specifies which sites are occupied
and which sites are unoccupied. Since there are two states for each site, there
are 2" possible configurations. Henceforth we shall denote a configuration by

{ﬂ} = (ﬂls Hzs.-es .un)' (2.1)
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The quantity we wish to calculate is the average number of occupied sites
on the enzyme. In a particular configuration {u}, the number N{u} of occupied
sites is given by

N = 3 30+ ) 22

since by definition 1(1 + u;) is 1 when the ith site is occupied and zero when

the ith site is unoccupied. The average number of occupied sites N is then
defined by

N = {Zﬂ} N{u}P{u}, (2.3)

where the sum is over all (2") configurations u, = +1, ..., u, = +1and P{u}
is the probability of the configuration {u}.

So far the discussion has been completely general. To proceed further we
must specify the probability distribution P{u}. In the case of independent
binding sites we define p(+ 1) to be the probability that a site is occupied and
p(—1) to be the probability that a site is unoccupied. Since a site is either
occupied or unoccupied we must have

p(+1) +p(—=1)= 1. (2.4)
To simplify the algebra we now define quantities C and J by

p(+)=Ce, p(=1)=Ce™’, (2.5)
where, from Equation 2.4,

C=(2coshJ)™". (2.6)
Equation 2.5 can then be written simply as

p(u) = 2 cosh J)™ " exp(Juy), 2.7)

which gives the probability distribution for the ith site.

Now in the case of independent binding sites the probability distribution for
the whole molecule P{u} is simply the product of the probability distributions
for each site, i.c.,

P{u} =jIj1p0:,-}. (2.8)
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We are now in a position to calculate the average number N of occupied
sites. From Equations 2.2, 2.3, 2.7, and 2.8 we have

N=33 (1 +w o), 29)

and from the normalization condition 2.4,

n

Z 11—’(#;): Z p(uy) Z plus) - ;MP(#“)

() j= pi=t1 p2= 11 (2.10)
= 1,
Also, after summing over y;, j # i, in Equation 2.9, we obtain
{% ﬂs‘jljlp(ﬁj) =m=zi 1:“: p(u)
=p(+1) - p(-1) (2.11)

= tanh J,

where in the last step we have used Equations 2.5 and 2.6. Combining
Equations 2.9, 2.10, and 2.11 we then have

N=§(l + tanh J). 2.12)
Defining o by
o = exp(2J) (2.13)
we can write Equation 2.12 in the form
N o
f(a)-—-;—l_*_a, 2.14)

which is the classical Michaelis-Henri equation for enzyme Kkinetics if « is
interpreted as the concentration of substrate. From Equations 2.5 and 2.13,
« is the ratio of the probability that a site is occupied to the probability that a
site is unoccupied, so it seems reasonable to interpret a as a measure of the
concentration of substrate.

The Michaelis~Henri equation (2.14) fits the myoglobin saturation curve
(Figure 7.1) and the initial reaction-rate curve for classical enzymes extremely
well. Note that the “ units” in Equation 2.14 are chosen so that half-satura-
tion occurs at concentration unity.
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Figure 7.2. Schematic illustration of the hemoglobin molecule
showing the four hemes (hatched) and the associated « (white) and 8
(black) amino acid chains.

7-3 Hemoglobin

The hemoglobin molecule is huge, with a molecular weight of about 64,500. It
is composed of about 10,000 atoms of hydrogen, carbon, nitrogen, oxygen,
sulfur, and four atoms of iron which lie at the center of a group of atoms
that form the pigment heme. The heme gives blood its red color, and each
heme constitutes a binding site for an oxygen molecule.

The structure of hemoglobin, shown schematically in Figure 7.2, was first
unraveled by Perutz et al. (1960) after 23 years or so of painstaking work.
Their primary tool was X-ray diffraction, which came into its own in the
1950s as a means for studying the structure of large molecules. Using X-ray
diffraction techniques, for example, Kendrew found the structure of myo-
globin [see Perutz (1964)] and Wilkins’s X-ray pictures of DNA lead to the
discovery of the Watson—Crick double-helix model for DNA [see Watson
(B1968)]. All these remarkable events occurred in London and Cambridge
(England) in the 1950s.
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As shown in Figure 7.2, hemoglobin consists of four (hatched) binding
sites, or hemes, and, in normal form, two types of amino acid chains, the
o and B chains, shown as white and black, respectively, in Figure 7.2. The
unlike chains are rather strongly coupled to one another, whereas the like
chains have virtually no contacts with one another. To a good approximation
the hemes are at the vertices of a regular tetrahedron, shown schematically
in Figure 7.3 with the associated amino acid chains. The slight asymmetry of
the real molecule reflects itself in the different number of contacts the §
chains have with the « chains; in one case 34 residues participate and in the
other case 19 residues participate. We shall assume for simplicity that the
degree of cooperativity or interaction among hemes coupled by different
chains is symmetric. (The nonsymmetric case can also be handled with the
present formalism.) We shall also assume that interactions ainong the hemes
are transmitted solely through the «-f contacts. In other words, from Figure
7.3, heme 1 interacts with hemes 2 and 4 but not with 3, heme 2 interacts with
hemes 1 and 3 but not with 4, and so forth. This means that we can represent
the hemoglobin molecule by a ring of four sites with nearest-neighbor sites only
interacting. To be a little more general, let us consider now a ring of »n sites
as shown in Figure 7.4. The problem is to calculate the average number of

Ficure 7.3. Simplified model for hemoglobin. The four hemes are

approximately situated on the vertices of a regular tetrahedron. Unlike

chains ara rather strongly coupled, whereas like chains have virtually
no contacts with one another.
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FIGure 7.4. Nearest-neighbor interaction model for a molecule con-
sisting of » binding sites.

occupied sites defined by Equation 2.3. Assuming that only nearest-neighbor
sites interact, we can take the probability distribution P{u} to be of the form

P{uy =21 iI__Il exp(Ju)exp(Un; f; +41), (3.1
where Z is such that P{u} is properly normalized (3 ., P{u} = 1), i.e.,

Z=Y ] expUm)exp(Up e 1) (3.2)

{u}i=1

and pu,.; =y, The first factor in the product (Equation 3.1), exp(Ju,),
represents the independent binding term (see Equations 2.7 and 2.8) and the
second term, exp(Uy; i;+1), Tepresents interactions or correlations between
nearest-neighbor sites, which is attractive when U > 0 and repulsive when
U <0 (so U > 0 for hemoglobin). Z (Equation 3.2) will be recognized imme-
diately as the partition function of a one-dimensional Ising magnet in an
external magnetic field k7J, with nearest-neighbor coupling constant equal
to —kTU. In magnetic language, N defined by Equations 2.2 and 2.3 is equal
to n(1 + m)/2, where m is the magnetization per spin.

One point which should be stressed is that P{u} (Fquation 3.1) is the most
general probability distribution describing nearest-neighbor correlations. [Since
p? =1and (u;p;4,)° = 1, the most general functions of yu; and of y; y,,, are
linear functions, and as was shown in Section 6-1, linear functions of a given
product of u’s can always be expressed as exponentials, and vice versa.]
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To evaluate the average number of occupied sites N (Equation 2.3), we note
first of all from Equations 2.2, 3.1, and 3.2 that

=3 [3 5+ w|p

fu}

n

=4z AP 3.3
535 () 3
n 120

=3%35; 089

Now, in Section 5-3 it was shown that
Z=21+413  (Equation 3.12 of Chapter 5) (3.4)

where 4, and A, are the eigenvalues of the transfer matrix (Equation 3.10 of
Chapter 5)

exp(U+ J) exp(-U)
L- ( i , (3.5)
exp(—U) exp(U-J)
i.e. (Equation 3.14 of Chapter 5),
j } =eY cosh J + (e~2Y + €?Ysinh? J)!/2, (3.6)
2
Equations 3.3 and 3.4 then give
n oA , 94
— n n 43." i Sl } n~1 2)] )
N 2[1+(A1+22) ( 7 + A3 = 3.7

and it is straightforward, but rather tedious, to show from Equation 3.6 that
in terms of the interaction parameter U and the concentration a = exp(2J)
(Equation 2.13) the average fraction of occupied sites is given by

N
f@) = "
of(1 + & + 8 '[1 + (2e7*Y + a — 1)/0] (3.8)
= + (L +a =971 — e + o - /5]
B (I+a+6)+1+a-20) ’
where

8 = (@ — 1? + 4o exp(—4UN}2. (3.9)
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It is to be noted that in the limit U = 0, Equation 3.8 reduces to the classical
Michaelis—-Henri equation (2.14). In the limit U— o0, § = {a — 1|, and
Equation 3.8 reduces to the Hill equation

a!‘!

1+ o

fl@) = (3.10)

after Hill, who first attempted to fit hemoglobin saturation curves to this
form (the fit is actually reasonably good for n ~ 2.6).
For hemoglobin, n = 4 and Equation 3.8 takes the simple form

a[K + QK + KHa + 3Ka? + o]

- s 3.11
/@) 1 + 4Ko + (4K + 2K*)o? + 4K + o* (3.11)
where
K = exp(—4U). (3.12)

Apart from trivial changes in the scale of concentration, Equation 3.11 is
identical with Pauling’s model [Pauling (1935)] and is a special case of the
square model of Koshland et al. (1966).

In Equation 3.11 there is only one adjustable parameter, K, which is
determined by fitting to one experimental point. The resulting theoretical
curve for the choice K = 0.11 (i.e., from Equation 3.12, U = 0.55), is compared
with experiment in Figure 7.5. The agreement is reasonably good, but there
appears to be a slight systematic deviation from the theoretical curve at high
oxygen concentrations. This is probably due to the asymmetric nature of the
molecule. As mentioned above, this can be taken into account, specifically in
the model, by taking two coupling constants U, and U, for the two different
contacts between unlike chains. With one extra parameter, however, a perfect
fit to experiment is almost assured. In fact, a number of two-parameter
models, particularly the Monod-Wyman—Changeux model discussed in the
following section, give remarkably good results. What is perhaps surprising is
the fit obtained using only a one-parameter model.

One interesting feature of hemoglobin saturation curves is that the degree
of cooperativity appears to be independent of pH and temperature. In other
words, identical saturation curves are obtained over a range of pH and tem-
perature if the concentration scale is chosen (for example) so that half-
saturation always occurs at concentration unity. This means in particular that
our model parameter U = 0.55 is independent of pH and temperature (J, of
course, does depend on pH and temperature).
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FiGureg 7.5. Fraction of oxygenated hemoglobin f(«) as a function

of oxygen concentration « in units such that half-saturation occurs at

concentration unity. The solid curve is obtained from Equation 3.11

with U=0.55 and the circles are experimental values taken from
Changeux (1965).

7-4 Monod-Wyman-Changeux Model for Hemoglobin and Allosteric
Enzymes

Hemoglobin is considered as a prototype for the recently discovered allosteric
enzymes, which are characterized by sigmoid-shaped initial reaction-rate (or
saturation) curves, rather than by curves of the Michaelis-Henri type for
classical enzymes (Figure 7.1). Hemoglobin is, of course, not an enzyme,
but it does have an S-shaped saturation curve, and its does have distinct
binding sites for * substrate (i.e., oxygen). Unfortunately, almost nothing is
known about the structure of allosteric enzymes except that they have distinct
binding sites for substrate.

Typically, allosteric enzymes are also regulatory enzymes. The enzyme
aspartate transcarbamylase (ATCase), for example, with aspartate as substrate
catalyses a reaction with citosine triphosphate (CTP) as an end product. With
CTP present, the initial aspartate reaction is inhibited. In other words, CTP
controls or regulates the rate of its own production. Such regulatory or
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feed-back behavior appears to be extremely important in body chemistry
and is thought to be caused by cooperative interactions (or * allosteric
effects”’) among the binding sites on the enzyme [Changeux (1965)].

A model for such behavior was proposed in 1965 by Monod, Wyman, and
Changeux (1965). We shall discuss this (MWC) model here before discussing
some generalizations of the Ising model as models for allosteric enzymes in
the following section.

The MWC model assumes first of all that the whole molecule can exist in
one of two conformational states (i.e., states with different * shapes’’) denoted
by R (for relaxed) and T (for tense), respectively, independently of whether
substrate is bound to the enzyme or not. X-ray data for hemoglobin show that
the molecule does undergo conformational changes when oxygen binds to the
molecule, but not otherwise; so it would seem that the first assumption in
the MWC model is rather unrealistic. The second assumption is that binding in
each of the two conformational states is an independent process. That is, there
are no interactions or correlations between the binding sites. This also appears
to be a little unrealistic in view of our discussion in the previous section.

Let us consider first an enzyme in the presence of substrate only. In the
present language the MWC is then very simple. We introduce an additional
parameter o which takes values + 1 if the molecule is in an R state and —1 if
the molecule is in a T state. A configuration is then specified by

{o; 1} =(0; s Has v Ha)s @.1)

the o to tell which state the molecule is in and the y; = +1,i=1,2,...,n,
as before, to tell which sites are occupied and which sites are unoccupied.
Since binding is assumed to occur independently in each state (R or T) the
probability distribution is 2 sum of two independent distributions (Equation
2.8), ie.,

Plo, =21 [&(1 + ff)iH1 el1tte) 4 % (1 ~0) ﬁ e"’““"")] , (4.2
= i=1
where for normalization
1 n L n
Z= [5 (1 +a [ + 20— o) [] e""“““*’]
{o; u} i=1 i=1
=y ﬁ Frtm L fI FA+un 4.3)

{n} i=1 u} i=1

=(1+4a)+ L(1 + ca)".
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a = exp(2J,) (4.4)

is the ratio of the probability that a site is occupied to the probability that
a site is unoccupied in the R state and

ca = exp(2J,) 4.5)
is the ratio of the probability that a site is occupied to the probability that a
site is unoccupied in the T state. «, as before, is assumed to be a measure of
the concentration of substrate, and L in Equation 4.2 is the “allosteric
constant,” i.e., the ratio of the probability of the T state to the probability
of the R state in the absence of substrate (i.e., all y; = —1).

The average number of occupied sites N is easily found to be given by (see
Problem 1)

N 12

—= LZ}(l + w)P{o; ,u}J

n 2n i< o p

ol + )" ! + Lea(l + ca)* ™! (4.6)

1+ )"+ L1 + cx)"

The similarity in form of Equations 4.6 and 3.8 should be noted.

In the MWC model an S-shaped saturation curve is obtained, for example,
by taking L small and ¢ large, which is to say that the number of T molecules
is small compared with the number of R molecules, but the probability of
binding to a T molecule is large compared with the probability of binding to
an R molecule. It is this competitive effect that produces in a somewhat
artificial way the characteristic S-shaped saturation curve.

Equation 4.6 fits hemoglobin and allosteric enzyme data rather well
[Monod et al. (1965)], which is perhaps not surprising in view of the fact
that there are two adjustable parameters (L and c¢). As we have remarked, the
basic assumptions of the model seem to be rather unrealistic since it is likely
that there are interactions between binding sites, and that conformational
changes of the molecule and binding of substrate to the molecule are not
independent of one another. Notice also that the model takes no account of
structure. For hemoglobin this is a definite defect in the model, but for
allosteric enzymes, where almost nothing is known about structure, it may
be an advantage. By considering more sophisticated models, however, it may
be possible to deduce some structural information (but probably not a great
deal) from the saturation curves. Some work along these lines is discussed in
the following section.
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In conclusion we remark that the MWC model above can be generalized
to take various modifiers (e.g., CTP for ATCase) into account (see Problem
2). These generalized models also fit the experimental data rather well.

7-5 Decorated Ising Models for Allosteric Enzymes

There are 30 or so known allosteric enzymes, but unfortunately almost
nothing is known about their structure, even their quaternary structure, i.e.,
the number of subunits or binding sites. The most studied allosteric enzyme
has been aspartate transcarbamylase (ATCase). Early experiments on ATCase
[Gerhart and Pardee (1963) and Gerhart and Schachman (1965)] demonstrated
that there were separate distinct binding sites for substrate and for modifiers
(e.g., the inhibitor CTP). This appears to be still the case. The number of
binding sites in each case, however, is a little in doubt at the moment. The
original experiments suggested that there were eight binding sites for sub-
strate (catalytic sites) and eight binding sites for modifiers (regulatory sites).
More recent experiments by the original group [Changeux and Schachman
(1968a), Changeux and Rubin (1968b) and Gerhart and Schachman (1968)]
suggest four regulatory and four catalytic sites, whereas an independent
group [Weber (1968)] suggests six catalytic sites and six regulatory sites. Let
us suppose then that there are n(4 < n < 8) catalytic sites and m(4 < m < 8)
regulatory sites on the enzyme.

A possible model for ATCase in the absence of modifiers is the model
discussed in Section 7-3 with probability distribution given by Equation 3.1
and average number of occupied (catalytic) sites given by Equation 3.8.

For the model to be reasonably close to the truth we need the molecule to
have a one-dimensional interaction structure. By this we mean that contacts
between subunits can be traced along a one-dimensional path, as for hemo-
globin. The molecule will, of course, have a three-dimensional shape, as
hemoglobin does, if for no other reason than the molecule will want to occupy
the minimum volume.

On general grounds one might argue that all biological molecules have
essentially a one-dimensional interaction structure. If this were not so, it
would be virtually impossible to make such molecules either naturally or
artificially by stringing together components in a definite sequence, which is
the way it is done artificially and is probably the way nature does it as well.

If the one-dimensional interaction structure is granted, and if it is assumed
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that only nearest-neighbor subunits interact, the probability distribution
(3.1) for configurations of the molecule is the only possibility.

The fact that the number of subunits is not known precisely is of little
concern, since for the model the fraction of occupied sites given by Equation
3.8 is rather insensitive to n for n > 4 or so. Thus in Equation 3.8 if we
divide fop and bottom by (1 + a + §)" and allow n to approach infinity we
obtain, since

oo L+ 0 +0
i N_a(5+a~—1+23""’v) G
o nT T dl+ate)

The error committed in approximating Equation 3.8 by Equation 5.1 for finite
n is then exponentially small in » and hence constitutes a negligible error for
n larger than about 4.

In Figure 7.6 we have compared a theoretical curve obtained from Equa-
tion 3.8 with n = 8, with experimental values obtained for ATCase in the

f(oe)1

T e e
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Fi1GURE 7.6. Saturation curve for ATCase in the absence of modifiers.

The solid curve is obtained from Equation 3.8 with n =8 and U =0.55

and the circles are experimental values taken from Gerhart and Pardee
(1963).
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presence of substrate only [Gerhart and Pardee (1963)]. The value of U that
best fits the data is 0.55, which is surprisingly the same value obtained for
hemoglobin.

We consider now a modification of the model 3.1 to take occupation of
regulatory sites into account.

In the presence of CTP, as we have noted, the initial reaction rate is inhibited
as shown in Figure 7.7; i.e., the saturation curve moves off to the right in
the presence of CTP, making the initial reaction rate smaller for a fixed sub-
strate concentration in the presence of CTP.

The precise number m of regularity sites is unfortunately not known
(4 < m < 8) and the arrangement of the regulatory subunits with respect to
the catalytic subunits is also not known. We consider here only one possible

fe)
O e e
W
/
/
/,
‘s
// +2x 107*M CTP
C x
ontrol
0.5
i
(]
o/
A
X
I i |

1.0 2.0 3.0 a

Ficure 7.7. Saturation curves for ATCase. Black circles are experi-
mental values for control (no CTP) and white circles are experimental
values for ATCase in the presence of 2 X 10~* M CTP. The solid curve
for control is obtained from Equation 3.8 with » =8 and exp(—4U) =
0.11; the solid CTP curve is obtained from Equation 3.8 with « and U
replaced by & and U (Equations 5.9 and 5.10) and n = 8 and exp(—40) =
0.10. The dashed curve is the CTP curve rescaled so that half-saturation
occurs at concentration unity. The crosses are the rescaled experimental
values.
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U

1+1

Ficure 7.8. ATCase model. The white subunits bind substrate and
the black subunits bind modifiers (CTP). Neighboring white subunits
and neighboring black and white subunits only are assumed to interact.

model, based on the original experiments, which assumes eight catalytic and
eight regulatory subunits, as shown in Figure 7.8. As discussed above,
assuming four, six, or eight of each will not make any appreciable difference
to the saturation curves (the error in any case is probably significantly less
than the experimental error).

To take account of CTP in the model shown in Figure 7.8 we introduce a
set of additional parameters v;,i=1,2,...,n with values +1 if the ith
regulatory site [between the ith and (i + 1)th catalytic sites] is occupied by
CTP and -1 if the ith regulatory site is unoccupied by CTP. The parameters
wi,i=1,2,...,n, as before, specify the states of the catalytic sites and a
configuration of the molecule is specified in the presence of CTP by

{#; v}=(ﬂls Bas ooy s Vis vz,...,v,,). (5.2)
We take the probability distribution for such a configuration to be

Plu;vy=2Z" 1 ﬁ (elmevmmu)[eltl ) o= V/A(1 )it s 1)]’ (5.3)
i=1
where for normalization

7 = Z ﬁ (elmevmmn)[el(l+w)e"Vf4(1+vi)(m*ﬂ‘“)]. (54

{nsv}i=1
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When all v, = —1, i.e., all regulatory sites are unoccupied, Equation 5.3
reduces, as it should, to the previous model Equation 3.1. The factor
exp[I(v; + 1)] in Equation 5.3 represents independent binding on the regula-
tory sites and the last factor, exp[—(V/4)(1 + v )(u; + p;4,)] with V>0,
represents repulsive interactions between nearest-neighbor regulatory and
catalytic sites. We have not included any interactions between neighboring
regulatory sites since it is found experimentally that ATCase, in the presence
of CTP only, fits the classical Michaelis—Henri equation; i.e., there are no
apparent interactions among regulatory sites.
Note that the “ interaction term” in Equation 5.3,

V
Ubitiy — 2 A+v)u + ) =U-V (5.5)

when u; = y;,, =v; = +1, i.e.,, when the ith regulatory site and its two
neighboring catalytic sites are all occupied. This means that when U=V,
which, in fact, turns out to be the choice that best fits the data, the repulsive
interaction between occupied neighboring regulatory and catalytic sites,
completely annihilates the attractive interaction between occupied neighboring
catalytic sites. In other words, U = V for the present model corresponds to
complete inhibition.

The evaluation of Z (Equation 5.4), which in magnetic language is the par-
tition function for a “ decorated Ising model ”’ (or an Ising magnet with spin
impurities), is accomplished in much the same way as before with the aid of
the transfer-matrix method. Thus, if we first sum over the v variables in
Equation 5.4 we obtain

Z=Y T1LG e, (5.6)

{n} i=1
where
Ly i) = elmil2gUmmis (1 4 oo~V 20t nis)]ghie1/2)
or, in matrix form,
Bivy = +1 Bivg = —1
W= +1(eU+J(1 +ﬁe—lv') e-—U(I +ﬁ) )
e V(1 + p) eV=I(1 + pe*)

L4

—

w=-1

eU-(-J e«U
— U-u
=1+ Ble L4 ewJ’ 5.7
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where

B=e* (5.8

is a measure of the CTP concentration, a = e*’ (as before) is a measure of
the substrate concentration, and U and J are defined by

&=e¥
1+ pe”” (5.9
(Y e —
1+ Be”
and
45 Vv
4 _ L4v Y4
etV=¢ [1 + a1 7 sinh (2)] (5.10)

Apart from the factor C = (1 + Blexp(U — U), which is independent of the
substrate concentration o, the matrix L’ is identical with the matrix L (Equation
3.5) with J and U replaced by J and U, respectively. It follows that the (two)
eigenvalues of L’ are, apart from the constant C, given by Equation 3.6 with
J and U replaced by J and U, respectively. The argument leading to Equation
3.7 for the average number of occupied catalytic sites can now be repeated.
Since C is independent of J it cancels in Equation 3.7 and we find that the
fraction of occupied catalytic sites f(«) is given by Equation 3.8 with « and
U replaced by & and U defined by Equations 5.9 and 5.10, respectively.

Half-saturation occurs when & = 1 [since f(1) = 1], i.e., from Equation 5.9,
when

1+ Be¥

(5.11)

Since V is assumed to be positive, a,,, is an increasing function of CTP con-
centration § with the limiting value
lim Oy = ezy. (5.12)
[l
The increase of o, ,, with increasing CTP concentration is observed experimen-
tally [Figure 7.7, Gerhart and Pardee (1963)] and so is the limiting behavior
described by Equation 5.12. Notice that in our model the limiting value of

&y, is directly related to the interaction parameter V" between regulatory and
catalytic sites.
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It is clear from Equation 5.10 that U > U; i.e., in the presence of CTP the
* effective interaction’” between catalytic sites is increased. Notice, however,
from Equation 5.10, that U as a function of § achieves a maximum value Uy,
given by

2

when § = 1, and that lim,., , U = U. In other words, according to the model,
cooperativity should at first increase with increasing CTP concentration until
it reaches a maximum at a certain concentration (=1 in our units), and for
B > B cooperativity should decrease until in the limit f — co, U = U, which is
also the case when § = 0. This effect should be clearly visible if the saturation
curves for different CTP concentrations are plotted on a scale so that half-
saturation always occurs at concentration unity (see Figure 7.7). Unfor-
tunately, the data necessary to test this prediction do not seem to exist. The
only published data for ATCase of the desired type [Gerhart and Pardee
(1963)] give two saturation curves (shown in Figure 7.7), one for ATCase in
the absence of modifiers (*‘ control’) and one in the presence of 2 x 10™* M
CTP. These two curves are sufficient, however, to determine all the parameters
in the model (U, V¥, and the scale of concentration f).

With the control a;,, =1 we have found that the choice U =0.55 best
fits the control data. In the presence of 2 x 107* M CTP, «;,, = 1.7 (from
Figure 7.7), so from Equation 5.11 we obtain

1+ Be¥
— 1.7, .
e = (5.14)

Furthermore, if we rescale the CTP curve as described above (shown as a
dashed curve in Figure 7.7) and fit the resulting curve to Equation 3.8 we
obtain exp(—4U) = 0.10. Since exp(—4U) = 0.11 we find from Equation
5.10 that

e*0M = e4”[1 + sinh? (K)] (5.13)

48 . ., V)
—_— —} = 0.10. .
a+p7 sinh (2 0.10 (5.15)
Solving Equations 5.14 and 5.15 for § and V we obtain
=093 (5.16)

and
exp(2¥) = 3.0. G.17
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The values of f and V are unfortunately very sensitive to the values of U and
U, so Equations 5.16 and 5.17 could conceivably be in error by as much as
20 percent or so (if U and U are in error by a few percent).

Nevertheless, from Equations 5.17 and 5.12 we conclude that the ratio of
;2 in the limit of infinite CTP concentration, to «,,, for no CTP, should be
approximately 3. Also, from Equation 5.16 and the above discussion, we
conclude that maximum cooperativity should be achieved at a CTP concentra-
tion of about 2 x 10™* M. Unfortunately, the data to test either of these
predictions do not seem to exist.

One interesting result, which emerges from Equation 5.17, is that V =
U =~ 0.55, which means, as remarked above, that in the model, at least, we
have complete inhibition.

The model described above can be generalized in any number of ways, for
example, to take activators, which shift the curve to the left, as well as in-
hibitors into account on ATCase. Models can also be formulated for allosteric
enzymes that do not have distinct subunits for substrate and modifiers (e.g.,
DPN-isocitrate dehydrogenase). Some discussion of these cases can be found
in Thompson (1968b) (see Problem 3).

7-6 Ising Models for DNA

Deoxyribonucleic acid (DNA for short) is the blueprint for life, the carrier
of the genetic code. Naturally occurring DNA is a large molecule, typically
30,000 A long and 20 A thick, composed of some 1 million atoms. It contains
four essential components, called bases: adenine (A), thymine (T), cytosine
(C), and guanine (G); and sections of the molecule from a given organism,
consisting of sequences of A’s, T’s, C’s, and G’s, are claimed to determine the
set of proteins that the organism can make.

According to the Watson~Crick model [Watson (B1968)] DNA is com-
posed of two strands wrapped around one another to form a double helix,
as shown in Figure 7.9. There are sequences of the four bases on each strand
which are connected to one another by (relatively weak) hydrogen bonds,
also shown in Figure 7.9. An important feature of the model is that A can only
be coupled to T, and C can only be coupled to G, so AT and CG are the
only possible base pairs. In the model this is necessary to obtain a compact
structure. The occurrence of equal amounts of A and T and of C and G was,
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Ficure 7.9. Watson-Crick model for DNA.

however, discovered by Chargaff (1950) before the invention of the Watson—
Crick model and is known as Chargaff’s rule.

Because of Chargaff’s rule and the two-stranded structure, the sequence of
bases on one strand completely determines the complementary sequence of
bases on the other strand. This has very important genetic implications.
Replication of DNA, for example, can be achieved in the model by unwinding
the molecule and making two new complementary strands from free bases.
The sequence of bases on one strand (or its complementary sequence) is also
claimed to be the blueprint for the production of proteins.

Since the model is so simple and explains almost everything that needs to
be explained, it has been almost universally accepted. Its inventors, Crick and
Watson, and also Wilkins, who provided the X-ray pictures that suggested a
double-helix structure, were justly rewarded with the Nobel prize for medicine
in 1962—the same year, in fact, that Perutz and Kendrew were awarded the
chemistry prize for the structure of hemoglobin and myoglobin. Some very
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recent work, however, suggests that the structure of DNA may not be quite
as simple as that proposed by Watson and Crick. Wu (1969), in particular,
has made a very careful reevaluation of the X-ray pictures (at high humidity)
and finds that the data fit a four-strand model much better than a two-strand
model. The final word on the subject, however, will have to wait until more
detailed X-ray pictures become available.

The considerable amount of theoretical work that has been done on the
Watson—Crick model has been mainly concerned with the denaturation pro-
cess, i.e., the breaking of the hydrogen bonds connecting the two strands
under treatment by heat or other things, such as pH. As the temperature is
increased, for example, bonds break until finally one is left with two separate
strands or coils. The denaturation process, or helix-coil transition, produces
melting curves (the fraction of broken bonds as a function of temperature)
with the characteristic sigmoid shape shown in Figure 7.10, reflecting some
degree of cooperativity or interaction among the hydrogen bonds connecting
the two strands. The temperature 7; where one half of the bonds are broken is
called the melting point, and around this point the bonds break rather easily.

The first theoretical treatment of the denaturation process was given by

1oy

]

05

1
T T

Figure 7.10. Fraction of broken bonds f(T) as a function of tem-
perature T. One half of the bonds are broken at the melting point 7.
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Zimm and Bragg (1959), who assumed that all bonds are identical. This is
surely not the case in naturally occurring DNA, since AT pairs are connected
by two hydrogen bonds, while CG pairs are connected by three hydrogen
bonds. Synthetic one-component DNA’s consisting of all AT or all CG

pairs can be made, however, and the Zimm-Bragg model should be applicable
to such molecules. We begin, therefore, with a discussion of one-component
DNA. The presentation given by Montroll and Goel (1966) and Goel and
Montroll (1968) will be followed throughout, since they use Ising-model
language exclusively. Various periodic synthetic two-component (i.e., AT and
CG pairs) DNA molecules are also discussed by Montroll and Goel, and we
shall have a little to say about these at the end of this section. The interested
reader is referred to Montroll and Goel (1966) and Goel and Montroll (1968)
for lists of references and relations between previous work and the models to
be discussed here.

For all intents and purposes we can consider the Watson—Crick model as
the ladder shown in Figure 7.11, the sides of the ladder corresponding to the
two strands and the rungs of the ladder to the complexes joining the base
pairs. By complexes we mean the two hydrogen bonds connecting an AT

A T
A T
C G
T A
G C
A T
C G
C G
T A

Ficure 7.11. Ladder version of the Watson-Crick model (Figure
7.9).
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pair and the three hydrogen bonds connecting a CG pair. We number the
complexes by an index i=1,2,...,n and assume for simplicity that a
complex is either broken or intact. We then assign a parameter y; to the ith
complex with values

+1 if the ith complex is broken
ﬂi e . . L. (6. 1)
-1 if the ith complex is intact.

In a given configuration of broken and intact complexes {u} = (y,, ..., ),
the number of broken complexes is given by

N{u} = ;5(1 + 1), 6.2)

and if P{u} is the probability distribution for the configuration {u}, the
average number of broken complexes N is given by

N= {“Z} N{u}P{u}, (6.3)

where the sum is over all (2") possible configurations g, = +1, y, = +1,...,
U, = *1 of the molecule.

The formulation given so far is completely general and is equivalent to the
formulation given in previous sections for hemoglobin and (allosteric)
enzymes. The problem, as before, is to specify the probability distribution
P{u}.

Consider first the random one-component case, i.e., with probability dis-
tribution P{u} given by Equations 2.7 and 2.8,

P{u} zilip(ﬂs), (6.9)
p(ug) = (2 cosh J)~* exp(Juy), (6.5)

where now p(+ 1) is the probability that a complex is broken and p(—1) is
the probability that a complex is intact. In this case the fraction of broken
complexes f is given by Equation 2.12, i.e.,

N
I=% (6.6)
= 3(1 + tanh J).
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To determine the temperature dependence of f we must determine the tem-
perature dependence of J. The obvious statistical-mechanical choice, from
Equation 6.5, is J = E/kT, where E is the energy difference between bonded
and unbonded states. In the limit of infinite temperature (J = 0), however,
Equation 6.6 then gives /= }, which is certainly incorrect since we know from
experiment that all bonds are broken at sufficienily high temperatures. E,
defined above, must then be temperature dependent if we wish to imitate
Figure 7.10 with Equation 6.6. We therefore make the empirical choice

J=a( - T)). 6.7)

S =f(T) is then one half at the melting point 7, and Equation 6.6 gives the
curve shown in Figure 7.12.

The slope of the curve at T = T, from Equations 6.6 and 6.7 is obviously
af2, so the melting curve can be made more ““ cooperative” or less ““ cooper-
ative > by increasing or decreasing a.

For pure synthetic AT-DNA, Equations 6.6 and 6.7 give a reasonably
good fit to experiment with the choice a = 1 and T, = 65°C.

The random model, however, is a little unrealistic and does not in general
give a good fit to experiment. A more reasonable choice for the probability

A

1O —— o

0.5

i
T, T

Figurg 7.12. Melting curve obtained from the random model
Equations 6.6 and 6.7.
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distribution P{u}, which takes nearest-neighbor complex interactions into
account, is (Equation 3.1)

Plup =271 Hl gl gUmitiv s (6.8)
where
7 = ﬁ Juy gUnipi+s (6.9)

{m} i=1
is again the Ising-model partition function, and for simplicity we have taken
Hn+1 = Hy, 1€, “circular DNA” (since n is large, boundary, or free end,

terms are unimportant).
The fraction of broken complexes from Equations 3.6 and 3.7 is given

by

1 . ne1 OAr | a1 04y
f___§[ + (A% + 23 (A = + 43 aj)] (6.10)
where
ji} =eY cosh J + (e"w + €2V sinh? N2, (6.11)
2

In the limit # — co only the largest eigenvalue A; contributes to Equation 6.10,
giving

. N 1 sinh J

In the limit U = 0 (i.e., no interactions) Equation 6.12 reduces to the ran-
dom model equation (6.6) and in the limit U — co, the “zipper limit,” f
becomes a step function; i.e., f=1 when J >0 and f=0 when J <0, as
shown in Figure 7.13 for the choice J = a(T — T;) (Equation 6.7).

In general the model gives a reasonably good fit to experiment, but it has
one serious deficiency—it does not take long sequences of broken bonds into
account in a realistic way. As bonds break, rings or loops are formed by the
separated strands. Such rings can exist in a number of possible geometrical
configurations, giving rise, in statistical-mechanical language, to a ring
entropy. Also it is reasonable to suppose that bonds will break more easily
in the neighborhood of a loop. Neither of these effects is taken into account in
Equation 6.8 for the probability distribution P{u}.
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n
10

05k -~ mmm e =] Slope =4 exp (2U)

le——— Zipper limit (U = o)

i

T, T

Ficure 7.13. Melting curves obtained from Equation 6.12,

Various models have been proposed to take account of the ring entropy
[see Goel and Montroll (1968) and references therein], but none is entirely
satisfactory. It should be noted, however, that the above model is probably a
reasonably good model for temperatures below the melting point, where large
rings or loops are not yet formed.

The Ising model can in principle be modified to take loops and different
complexes (AT and CG) into account, but the mathematical manipulation
required then becomes extremely unwieldy. One interesting question, which has
not been satisfactorily answered, is: Can one deduce any (statistical) informa-
tion about the distribution of base pairs in naturally occurring DNA from the
melting curves? In an attempt to answer this question Goel and Montroll
considered various synthetic DNA’s with known periodic distribution of
AT’s and CG’s. One obtains a variety of melting curves for such molecules
(some examples are shown in Figure 7.14) and the hope is that by considering
simple models for such molecules, model parameters will be found to fit more
complicated DNA forms.

One interesting fact that appears to emerge from these studies is that the
coupling constant U is temperature independent and is essentially the same
for nearest-neighbor AT-AT, AT-GC, or GC-GC complexes. Assuming that
U is, in fact, independent of temperature and complex, a probability dis-
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n

(b)

(a)

FiGURE 7.14. Melting curves for DNA:
@ARLASELS
s ‘ ons
TTT TCC C
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tribution P{u} appropriate for the sequence of AT’s and CG’s shown in
Figure 7.15 is

n
Plu} =271 (iI-_I1 eUFwa)eh(m et a o s ot b e m)

% e-’x(ﬂwmﬁ'*'““!'m-rmm} vee,

(6.13)

T T T T 66 G G T T T T G
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FiGure 7.15. Periodic two-component DNA.



206 Some Applications of the Ising Model to Biology Ch. 7

where J, refers to AT complexes and J, to CG complexes. The evaluation of
the fraction of broken bonds for such a distribution can be carried out with
the aid of transfer-matrix methods (see Problem 4 for some special cases)
and, if one wishes, loops can be included as well.

PROBLEMS

1. Derive Equation 4.6 for the fraction of occupied sites in the Monod-
Wyman-Changeux model.

2. Construct a probability distribution for the following generalized Monod-
Wyman-Changeux model:

(a) The whole molecule can exist in either an R state or a T state;

(b) Substrate (S) binds exclusively to molecules in the R state;

(c) Inhibitor (1) binds exclusively to molecules in the T state;

(d) Activator (A) binds exclusively to molecules in the R state. Assuming
that there are » binding sites for S, I, and A, show that the fraction of sites
occupied by substrate is given by

afl + )"~ (1 +y)
A +0"1+p"+ LA + gy’

where L is the allosteric constant (Equation 4.2) and «, f, and y are the con-
centrations of substrate, inhibitor, and activator, respectively.

3. Consider a molecule composed of » subunits with one binding site for
substrate and one binding site for inhibitor on each subunit. Assuming that
only nearest-neighbor substrate sites interact and that occupation of a sub-
unit by inhibitor affects only the substrate occupation of that subunit, show
that the probability distribution given by (see Equation 5.3)

-t |4
Plu,vi=2 ! H exPl}f’ﬁi + Uity + I(1 +v) — 3‘(1 + Vi):ui]
i=1

leads to the fraction of occupied substrate sites /(&) given by Equation 3.8
with & defined by Equation 5.9 (and U unchanged). (This is a possible model
for DPN-isocitrate dehydrogenase [Thompson (1968b)].)
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4. The probability distribution for periodic AT, CG, AT, CG,... DNA,
excluding loop effects and assuming only nearest-neighbor complex inter-
actions, is given by (Equation 6.13)

2n
Upatize1 ) pJ1{pa+pa+ ot pop-1) SJa(pa+uat o+ a2a)
e e e ,

i=1

Pl =27

where J, refers to AT complexes and J, to CG complexes. Use the transfer-
matrix method to calculate the average number of broken bonds, assuming
that J;, = a(T — Ty) and J, = a(T - T5,).

Do the same for AT-AT-AT --- AT-CG-CG -+ CG DNA, assuming only
one interaction parameter U for nearest-neighbor complexes.



