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Bacteriophage: an unusual predator-prey system

' Ref: http://www.absoluteastronomy.com
e ics/Bacteriophage
8o /topics/
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Ref: http://viromag.wordpress.com/2009/03/13/
bacteriophages-viruses-of-bacteria/

Escherichia coli (top) and 7 phage particles. Copyright: CIMC — »
[Courtesy of E. Boy de la Tour, F. Eiserling, and E. Kellenberger.]
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| Population/Ecosystem level
bacteria

What are good lysis-lysogeny strategies for a phage when, say,
it is competing with other phage species for a bacterial host?

Phage-infected

How are the population (and evolutionary) dynamics of phage-
| bacteria ecosystems influenced by different bacterial defences
~ against phage?

Cellular level

Why is only a narrow 5-15% lysogeny percentage
observed in laboratory phage infections?

What conditions make a phage-infected bacterium go
preferentially lytic, or lysogenic?

What aspects of the bacterial cell state bias the decision?

Subcellular level
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s,:;:'::;, How does the phage network integrate information about the
environment (e.g. does it use bacterial quorum sensing)?

i genome

How is the lysis-lysogeny decision regulated?
What produces bistability?
What makes the network robust to noise?
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Two very stable states: probability of exiting ~O(10~-10°) per cell per generation
Stable even with a single copy of the genome left




“Standard model” of A

Ptashne, A Genetic Switch: Phage Lambda Revisited
Ptashne & Gann, Genes and Signals
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*Simple bistable switch (A represses B; B represses A)
*Two states:

1. Lytic (Cl low, high)

2. Lysogenic (CI high, low)
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Genome of phage A
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it is competing with other phage species for a bacterial host?

Phage-infected

How are the population (and evolutionary) dynamics of phage-
| bacteria ecosystems influenced by different bacterial defences
~ against phage?

Cellular level

Why is only a narrow 5-15% lysogeny percentage
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What conditions make a phage-infected bacterium go
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environment (e.g. does it use bacterial quorum sensing)?

i genome

How is the lysis-lysogeny decision regulated?
What produces bistability?
What makes the network robust to noise?




Observed lysogeny propensity lies in a narrow range
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In bulk experiments, lysogeny percentage is observed to be 5-15% for a
wide variety of temperate phage

Ikeuchi, Kurahashi. 1978. J Bacteriol 134(2):440 — 445; Kourilsky. 1973. Mol Gen Genet 195; Maynard et al. 2010. PLoS Genet 6(7):e1001017;
Broussard et al. 2013. Mol Cell 49(2):237—-248; Schubert et al. 2007. Genes Dev 21:2461-2472; Hong et al. 1971. PNAS 68(9):2258-2262.



Bet hedging in an uncertain environment

Environmental conditions that Environmental conditions that
are dangerous for free phage are dangerous for bacteria

Optimal bet hedging: lysogeny % is set by the relative frequencies and intensities of

the different types of environmental catastrophes

Kelly, J. L., Jr. A new interpretation of information rate. Bell Syst. Tech. J. 35, 917-926 (1956); Avlund, Dodd, Semsey,
Sneppen, Krishna (2009) Why do phage play dice? J. Virology 83, 11416; Maslov, Sneppen (2015) Well-temperate
phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5:10523.



An alternative: Phage competition
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10% lysogeny

A game-theory perspective

Minimax strategy: (no incentive for either player to deviate

on their own from this strategy)

~
a 0.9/-0.1f-0.4-0.2| 0
i 1-0.7/-0. 0|02
o
-0.1-0. 0 o405
0.9 01/0.3|p.6|0.1 .1| -«¢—Best strategy
for ph 1
0 0.4 0.1J0.7|-0.9 . . or phage
07509
+ Best strategy
for phage 2
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2-player symmetric zero-sum game
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Burst size (§)
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Kourilsky's experiment
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average phage input
(API: ratio of total phage to total bacteria)

P. Kourilsky: Molec. gen, Genet. 122, 183-195 (1973); Biochimie 56, 1517-1523 (1974).



Kourilsky's experiment
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MOI: Multiplicity of Infection

= number of phage DNA in one bacterium
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Kourilsky's experiment
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Poissonian assumption:

MOI: Multiplicity of Infection

= number of phage DNA in one bacterium

Pps(a Z p(m) x g(m, a)

Prob. of getting MOI m
if APl is a q(m a, e_a Each phage randomly & independently
m! finds a bacterium to infect



Kourilsky's experiment
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M. Aviund, I. B. Dodd, S. Semsey, K. Sneppen, S. Krishna
Why do phage play dice? J. Virology 83, 11416 (2009).
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Heterogeneity due to multiple infections
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Heterogeneity due to multiple infections
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Optimal dormancy under competition is extremely robust to parameter
variation, and matches experimental observations of 5-15%

1,2, ..
We also predict that phage should learn to count!

(Sinha V, Goyal A, Svenningsen SL, Semsey S and Krishna S (2017) Front. Microbiol. 8:1386.)

What other information is useful for a phage to make a “good” death vs dormancy decision? Density
of bacteria? Bacterial growth rate? The microscopic state of an individual bacterium?

A phage can only receive information from inside a bacterium. So what bacterial information sensing
systems does it hijack? Do bacteria actively manipulate the information a phage receives?

How do inevitable noise and uncertainty in information constrain the space of strategies for a phage?
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An alternate approach

Choose the building blocks

2

Build a class of dynamical systems

Subject them to some functional task

2

What range of behaviour is possible?
How would one construct a given behaviour?

Are there many ways of doing so?



1-protein motifs /->
e.g. self-activator .

2-protein motifs

. . e.g. mutual repressors or

mutual activators

(2

3-protein motifs .
®



MOI=2

Initially all

Time passes:
proteins are
produced

phage proteins

are at zero

3 min
Phage
genomes
replicate

) State 2

Task: find motifs that
are bistable and can
count genomes.




Motifs Parameter sets
.  Protein stabilities

X Production rates
Network = A Repression, activatio
strengths and
( . cooperativities

100 million ~ 100 X 1 million

Example motif |
' One self-activating protein / Degradation rate
of protein
d(CI CI)"
( >N[ (1) ]_,},m
d A
Number of phage

A [(CDY + K"
genomes Concentration of
protein
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*Is state 1 sufficiently distinct from state 27

*Are states 1 and 2 stable when N is brought down to 1?
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There are many ways to make a
bistable circuit that can also
count.

Motifs without positive
feedback don’t work

1 protein motifs don’t
work

2 protein mutual
activators don’t work

2 protein mutual
repressors do work

Avlund, Dodd, Sneppen, Krishna (2009) J. Mol. Biol. 394, 681
Avlund, Krishna, Semsey, Dodd, Sneppen (2010) PLoS ONE 5(12): e15037



Motif Determ. Stochastic
a (0 o) 112 0
b (& " 1054 2
c (@ x®) 563 1
—
d o o) 462 0
e (0 o) 127 0
i e e 447 0
g ® ® 753 0
h (@ o 295 0
e/
i (o o) 71 0
Total 5142 3

Two-protein motifs are
very sensitive to noise
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Stochastic

Motif Determ. Stochastic Motif Determ. p.lys.cll p.lys/p.cll cll shut-off
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Why are three protein motifs more robust
than two protein motifs?
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Tasks: Short half-lives  Long half-lives

1. Do N=1 and N=2 go to two \/ X

distinct states?

2. Are the two states stable? X \/



Why are three protein motifs more robust
than two protein motifs?

Maintaining ¢ 3 Making the decision

the decision Short half-lives help to rapidly
Longer half-lives trigger the positive feedback loop

provide more stability ~ 100; C. .D
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Why are three protein motifs more robust
than two protein motifs?

Making the

. decision
Two proteins with
short half-lives

< B

Maintaining
the decision

Third protein with
a long half-life



Why are three protein motifs more robust
than two protein motifs?

Cll .
(~10min half-life) Making the

. decision
Two proteins with
short half-lives
( . . Cro

v (~10min half-life)
Cl

ery stable)

Maintaining
the decision

Third protein with
a long half-life



Summary

-~ Ny cro Standard model of lambda
c:|. . needs revision

A
Cll Separating decision-making
. from decision-maintenance

In phage lambda:
« unstable CIl and Cro may make the

( . . - lysis-lysogeny decision
ro : intai
 while the stable Cl maintains the

decision later

In other kinds of developmental
decisions? The immune system?



