

Optimising dormancy vs. virulence decisions in bacteriophage

Sandeep Krishna Simons Centre for the Study of Living Machines National Centre for Biological Sciences TIFR, Bangalore (Collaborators: Akshit Goyal, Aswin Seshasayee, Ian Dodd, Kim Sneppen, Mikkel Avlund, Sine Svenningsen, Szabolcs Semsey, Vaibhhav Sinha; Funding: NCBS, Niels Bohr Institute, Simons Foundation)

IMSc Chennai Workshop on Spins, Games & Networks, Dec 2024

Bacteriophage: an unusual predator-prey system

Escherichia coli (top) and $\hat{\lambda}$ phage particles. [Courtesy of E. Boy de la Tour, F. Eiserling, and E. Kellenberger.]

Ref: http://viromag.wordpress.com/2009/03/13/ bacteriophages-viruses-of-bacteria/

Ref: http://www.absoluteastronomy.com /topics/Bacteriophage

Copyright: CIMC

Temperate bacteriophage: Lysis-lysogeny decisions

Population/Ecosystem level

What are good lysis-lysogeny strategies for a phage when, say, it is competing with other phage species for a bacterial host?

How are the population (and evolutionary) dynamics of phagebacteria ecosystems influenced by different bacterial defences against phage?

Cellular level

Why is only a narrow 5-15% lysogeny percentage observed in laboratory phage infections?

What conditions make a phage-infected bacterium go preferentially lytic, or lysogenic?

What aspects of the bacterial cell state bias the decision?

Subcellular level

How is the lysis-lysogeny decision regulated? What produces bistability? What makes the network robust to noise?

How does the phage network integrate information about the environment (e.g. does it use bacterial quorum sensing)?

Temperate bacteriophage: Lysis-lysogeny decisions

Two very stable states: probability of exiting $\sim O(10^{-5}-10^{-6})$ per cell per generation Stable even with a single copy of the genome left

"Standard model" of λ

Ptashne, A Genetic Switch: Phage Lambda Revisited

Ptashne & Gann, Genes and Signals

•Simple bistable switch (A represses B; B represses A)

•Two states:

- 1. Lytic (CI low, Cro high)
- 2. Lysogenic (CI high, Cro low)

Temperate bacteriophage: Lysis-lysogeny decisions

Genome of phage λ

Image courtesy Keith Shearwin, Adelaide Univ.

Population/Ecosystem level

What are good lysis-lysogeny strategies for a phage when, say, it is competing with other phage species for a bacterial host?

How are the population (and evolutionary) dynamics of phagebacteria ecosystems influenced by different bacterial defences against phage?

Cellular level

Why is only a narrow 5-15% lysogeny percentage observed in laboratory phage infections?

What conditions make a phage-infected bacterium go preferentially lytic, or lysogenic?

What aspects of the bacterial cell state bias the decision?

Subcellular level

How is the lysis-lysogeny decision regulated? What produces bistability? What makes the network robust to noise?

How does the phage network integrate information about the environment (e.g. does it use bacterial quorum sensing)?

Observed lysogeny propensity lies in a narrow range

In bulk experiments, lysogeny percentage is observed to be 5-15% for a wide variety of temperate phage

Ikeuchi, Kurahashi. 1978. J Bacteriol 134(2):440 – 445; Kourilsky. 1973. Mol Gen Genet 195; Maynard et al. 2010. PLoS Genet 6(7):e1001017; Broussard et al. 2013. Mol Cell 49(2):237–248; Schubert et al. 2007. Genes Dev 21:2461–2472; Hong et al. 1971. PNAS 68(9):2258-2262.

Bet hedging in an uncertain environment

Environmental conditions that are dangerous for free phage

Environmental conditions that are dangerous for bacteria

Optimal bet hedging: lysogeny % is set by the relative frequencies and intensities of the different types of environmental catastrophes

Kelly, J. L., Jr. A new interpretation of information rate. Bell Syst. Tech. J. 35, 917–926 (1956); Avlund, Dodd, Semsey, Sneppen, Krishna (2009) Why do phage play dice? J. Virology 83, 11416; Maslov, Sneppen (2015) Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5:10523.

An alternative: Phage competition

A game-theory perspective

Keeping strategy of phage 2 fixed, find best strategy for phage 1 Repeat for each possible strategy for phage 2

Of these pick the one with the lowest payoff

1 0.5 Payoff for P1 0 Minimax strategy -0.5 -1 1 Lysogenic fraction 2 0.8 0.8 0.6 Lysogenic fraction 1 0.2 0.2 0 0

1

2-player symmetric zero-sum game

P. Kourilsky: Molec. gen, Genet. 122, 183-195 (1973); Biochimie 56, 1517-1523 (1974).

Heterogeneity due to multiple infections

What is the most competitive strategy if lysogeny % is allowed to be different for different MOI?

$$\frac{dB_{0}}{dt} = \gamma B_{0}(1 - B_{tot}/K) - \eta P_{tot}B_{0}$$

$$\frac{dB_{0}}{dt} = \gamma B_{i}(1 - B_{tot}/K) + \eta P_{i}B_{0} - \delta B_{i}$$

$$\frac{dB_{0}}{dt} = \gamma B_{i}(1 - B_{tot}/K) + \eta P_{i}B_{0} - \delta B_{i}$$

$$\frac{dB_{i,1}}{dt} = \eta P_{i}B_{0} - \eta P_{i}B_{i,1} - \delta B_{i,1}$$

$$\frac{dB_{i,m}}{dt} = \eta P_{i}B_{i,m-1} - \eta P_{i}B_{i,m} - \delta B_{i,m}$$

$$\frac{dP_{i}}{dt} = \beta(1 - f_{i})\delta B_{i} - \eta P_{i}B_{tot}$$

$$\frac{dP_{i}}{dt} = \beta\delta \sum_{m=1}^{\infty} ((1 - f_{i}(m))B_{i,m}) - \eta P_{i}B_{tot}.$$

Heterogeneity due to multiple infections

Summary

Phage competition puts an evolutionary pressure on the dormancy vs death decision

Optimal dormancy under competition is extremely robust to parameter variation, and matches experimental observations of 5-15%

We also predict that phage should learn to count!

(Sinha V, Goyal A, Svenningsen SL, Semsey S and Krishna S (2017) Front. Microbiol. 8:1386.)

What other information is useful for a phage to make a "good" death vs dormancy decision? Density of bacteria? Bacterial growth rate? The microscopic state of an individual bacterium?

A phage can only receive information from inside a bacterium. So what bacterial information sensing systems does it hijack? Do bacteria actively manipulate the information a phage receives?

How do inevitable noise and uncertainty in information constrain the space of strategies for a phage?

Population/Ecosystem level

What are good lysis-lysogeny strategies for a phage when, say, it is competing with other phage species for a bacterial host?

How are the population (and evolutionary) dynamics of phagebacteria ecosystems influenced by different bacterial defences against phage?

Cellular level

Why is only a narrow 5-15% lysogeny percentage observed in laboratory phage infections?

What conditions make a phage-infected bacterium go preferentially lytic, or lysogenic?

What aspects of the bacterial cell state bias the decision?

Subcellular level

How is the lysis-lysogeny decision regulated? What produces bistability? What makes the network robust to noise?

How does the phage network integrate information about the environment (e.g. does it use bacterial quorum sensing)?

An alternate approach

Choose the building blocks

Build a class of dynamical systems

Subject them to some functional task

What range of behaviour is possible?

How would one construct a given behaviour?

Are there many ways of doing so?

1-protein motifs e.g. self-activator

2-protein motifs e.g. mutual repressors or mutual activators

MOI=2

$$\frac{d(CI)}{dt} = N \left[\frac{(CI)^h}{(CI)^h + K^h} \right] - \gamma(CI)$$
 Number of phage genomes

Is state 1 sufficiently distinct from state 2?

•Are states 1 and 2 stable when N is brought down to 1?

There are many ways to make a bistable circuit that can also count.

Motifs without positive feedback don't work

1 protein motifs don't work

2 protein mutual activators don't work

2 protein mutual repressors do work

B

Avlund, Dodd, Sneppen, Krishna (2009) J. Mol. Biol. 394, 681 Avlund, Krishna, Semsey, Dodd, Sneppen (2010) PLoS ONE 5(12): e15037

	Motif	Determ.	Stochastic			
а		1112	0			
b		1054	2			
с	$(\mathbf{A}, \mathbf{A}, \mathbf{A})$	563	1			
d	••)	462	0			
е		127	0			
f	•	447	0			
g	••	753	0			
h		295	0			
i		171	0			
Тс	otal	5142	3			

Two-protein motifs are very sensitive to noise

							Stochastic			
	Motif	Determ.	Stochastic		Motif	Determ.	p.lys.cll	p.lys/p.cll	cll shut-off	
а		1112	0	A		273	2	0	6	
b		1054	2	в		397	37	13	80	
с	$\left(\begin{array}{c} \lambda \end{array} \right)$	563	1	С		326	29	Three motif	e-protein s are	
d		462	0	D		78	1	more	more robust to noise than two- protein networks	
е		127	0	Е		33	1	prote		
f	•	447	0	F		186	12	3	16	
g		753	0	G		267	21	7	36	
h		295	0	н		89	8	2	13	
i		171	0	1		67	4	3	6	
Total		5142	3	Total		1808	117	39	211	

Making the decision

Two proteins with short half-lives

Maintaining the decision

Third protein with a long half-life

Summary

Standard model of lambda needs revision

Separating decision-making from decision-maintenance

In phage lambda:

- unstable CII and Cro may make the lysis-lysogeny decision
- while the stable CI maintains the decision later

In other kinds of developmental decisions? The immune system?