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George Boole 

(1815-1864)

The laws of thought

“…to investigate the fundamental laws 

of those operations of the mind by 

which reasoning is performed; 

to give expression to them in the 

symbolical language of a Calculus, and 

upon this foundation to establish the 

science of Logic and construct its 

method … 

… and, finally, to collect from the 

various elements of truth brought to 

view in the course of these inquiries 

some probable intimations concerning 

the nature and constitution of the 
human mind.”

An Investigation of the Laws of Thought (1854)



The Laws of Thought 

In1937 a 21-year-old Claude Shannon wrote his Master’s 

thesis at MIT demonstrating that electrical applications of 

boolean algebra could construct and resolve any logical, 

numerical relationship 

 design of digital circuits, digital computers. Claude Shannon

(1916-2001) 

Automated reasoning ?



Bertrand Russell 

(1872-1970)

Alfred North Whitehead 

(1861-1947)

Logical calculus: 
The automation of thought

Principia Mathematica (1910-1913)
of Whitehead and Russell provided a model by 

attempting to derive the entire body of 

mathematical knowledge by using logical 

operations such as 

• Conjunction (AND)

• Disjunction (OR)

• Negation (NOT)
on a set of simple propositions 

(either TRUE or FALSE) 

Image: flickr.comImage: pinterest.co.uk
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The logical calculus of nervous activity

Warren S. McCulloch (1898-1969) Walter H Pitts (1923-1969)

“[They recognized that] the laws governing the embodiment of mind should be sought 

among the laws governing information rather than energy or matter.” 

Seymour Papert
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The McCulloch-Pitts neuron
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Soma AxonDendrites

Inputs Output

A neuron fires when signals received from neighboring cells 

exceed a threshold, else it is at rest  binary state 

(ON/OFF  TRUE/FALSE)

• Signal: proposition

• Neurons: logic gates (e.g.,  AND)

• Varying threshold: Different logic gates

Bulletin of Mathematical Biophysics 5 (1943) 115-133



The McCulloch-Pitts network
Circuits implementing computational logic
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Each unit is activated iff its total excitation  0. 

Positive weights: “excitatory’” synapses, negative weights: “inhibitory” synapses 

open circles: excitatory neurons; filled circles: inhibitory neurons

Connection weights
Connection weights

Connection weight

J = H and (not I)

C = A or B
G = E and F

Both E and F blocks have 

to fall to make G fall

Blocks analogy from Warren S. McCulloch, Finality and Form in Nervous Activity,1952

Either A or B blocks 

falling will make C fall

J will be fell by H falling 

only if I does not fall



Perceptron
The first neural network

Learning  modifying 

the connection weights

Frank Rosenblatt (1928 –1971)
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From: F Rosenblatt, The Design of an Intelligent Automaton (1958) 
Image: Cornell University

McCulloch-Pitts network + 

Learning to adapt the link weights 

→ A binary classifier for patterns

decision 

boundary



Single-layer Perceptron

performs hetero-association between input and 

output that are dissimilar – e.g., as in decision or 

classification problems

Output

Any classification problem that is linearly separable 

can be solved by the single-layer perceptron

Example: Learning the AND function

Desired output

Inputs

g: nonlinear function
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Teaching the single-layer perceptron

Scheme: 
For each input pattern , check if each output unit 

Oi
 =  i

 (desired output)

• If yes, do nothing

• else, correct weight by quantity proportional to 

product of input & desired output

Output

Desirable!

Inputs

g: nonlinear function
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 Perceptron Learning Rule

where

 : step function

requires that the argument h of g( ) be larger than some margin  which scales with N

Parameter  : learning rate

As sum over k scales with N

Implementing this criterion gives  





in single-output vector notation where



… and the problem of XOR classification

Marvin Minsky (1927 –2016) & Seymour Papert (1928-2016)
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In 1969, Minsky & Papert showed that the perceptron 

cannot be trained to function as a XOR gate

Perceptron Learning Rule 

decision 

boundary ?

https://dev.to/swyx/supervised-learning-neural-networks-mpo

Only solved once a learning algorithm for multi-layer 

perceptrons (back-propagation algorithm) was developed 

in the 1980s
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OnOff

highlow
low

high

Off

On

On

On

On
Off

Off

Off

OffA

A

A

B

B

B

highlow
low

high

highlow
low

high

highlow
low

high
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What’s hidden in the hidden layers?

Graphic by Jen Christiansen; Scientific American

The activity pattern in the hidden layer(s) represent (encode) significant features of the 

input space – i.e., they extract features that can be useful for generating correct output

Hidden layers further away 

from the input layer detect (or 

act as filters for) progressively 

more complex features

Edges

Corners and contours

Object models



Orientation selective cells in 
Primary Visual Cortex
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David Hubel and Torsten Wiesel

(1926-2013)        (1924- )

Image:braintour.harvard.edu
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Neurons responding to bright stripes against 
dark background or dark stripes against bright 

background oriented at specific angles 

Physiology 

1981



medial temporal lobe

The “Grandmother cell” hypothesis 

& the “Jennifer Aniston neuron”

Purves et al, Principles of Cognitive Neuroscience, Sinauer (2008)
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A neuron in left 

posterior 

hippocampus is seen 

to be activated 

exclusively by images 

of Jennifer Aniston

For each picture, the

corresponding raster 

plots (the order of trial 

number is from top to 

bottom) and post-

stimulus time 

histograms are shown



http://thebrain.mcgill.ca

Hebb’s Theory of Learning

Neurons that fire together, 

wire together

“When an axon of cell A is near enough to excite 

a cell B and repeatedly or persistently takes place 

in firing it, some growth process or metabolic 

change takes place in one or both cells such that 

A’s efficiency, as one of the cells firing B, is 

increased.”

1949

Donald Hebb’s neuropsychological theory 

involves the ideas of the Hebbian synapse, cell 

assembly and the proposal that thinking is the 

sequential activation of neural assemblies

Now, let’s backtrack a bit… once again to the 1940s



Bi & Poo, J Neurosci (1998)

Pre-synaptic j

Post-synaptic i

Spike-timing dependent plasticity
spike-based formulation of Hebb rule
(Markram, 1995)  

synapse strengthened 

if  presynaptic neuron 

“repeatedly or 

persistently takes part 

in firing” the 

postsynaptic one 

(Hebb 1949) 

LTP

Hebb Rule and Biology
Long-term potentiation

First empirical observation (Lomo, 1966)  

supporting Hebb’s hypothesis

Persistent increase in synaptic strength after 

brief high-freq stimulation of synapse
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Computers vs Human Memory

Associative or

Content Addressable Memory

Most commonly used method of storing 

information in computers is the 

random-access memory (RAM)
The process of locating a datum within the 

storage array involves giving its address. 

The time needed to retrieve the word 

remains the same irrespective of the 

physical location of the word in the array.

The value of the bit stored in a core is 0 or 1 

according to direction (clockwise or counter-

clockwise) of the core's magnetization

Image: Ivall (Ed), Electronic Computers. Iliffe London 1956

Magnetic-core memory: early type of RAM 

hysteresis → each core "remembers” its state

In contrast, humans typically access a 

memory by partial recall of its content →



…when from a long distant past 

nothing subsists, after the people are 

dead, after the things are broken and 

scattered, still, alone, more fragile, but 

with more vitality, more unsubstantial, 

more persistent, more faithful, the 

smell and taste of things remain 

poised a long time…
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Human memory is 

associative

Marcel Proust,  

À la recherche du temps perdu (1913-1927)



Associative Memory as Attractor Network

1s

3s

2s

4s

as attractors 

When presented with a novel 
input, the network converges 
to the stored pattern “closest” 
to it (i.e., the pattern in whose 
basin of attraction it lies).
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❑ Symmetric connection weights wij = wji

❑ wii=0 (No self connections)

John J Hopfield

Si

Sj
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Hopfield Model
Attractor Network Model for Associative Memory

“A brilliant step backwards” (Amit)

Globally connected system of  “neurons” (spins)

State Si = 
–1 Resting

+1 Firing

Time-evolution  Si = sgn(j wij Sj )

▪ sgn (q) = −1, if q < 0; 

▪ sgn (q) = +1 otherwise

T=0 or deterministic dynamics 



Learning in Hopfield Network

Implementing Hebb rule in synaptic weight determination


=

=
M

p

p

j

p

iij
N

w
1

1


： state of ith neuron in the pth pattern
p

i

“” ith neuron is ON   i = +1

“·  ” ith neuron is OFF   i = –1

Four stored patterns in simulation

“One-shot” learning



Convergence to stored pattern

The strings (1,–1,1) and (–1,1, – 1) are the stored patterns

have to be made attractors of the network dynamics


=

=
M

p

p

j

p

iij
N

w
1

1





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







−

−−

−

=

022

202

220

3

1
W

0=iiw

(–1,1,1) 

(–1,1, – 1) 

(1,1,1) 

(–1, –1,1) (1,–1,1) 

(1,–1, – 1) 

(1,1, – 1) 

(–1,–1, – 1) 

y

z

x

Example: Hopfield Model with N=3, p=2



One pattern (p=1)

i : pattern memorized

For the pattern to be stable,  sgn(j wij j ) = i for all i

This is true if  wij  i j as i
2 = 1 

(the proportionality constant being 1/N)

If M out of N components of the initial state Si are wrong (opposite to i)

the input    hi  sgn(j wij Sj ) = sgn(kwik k – mwim m ) 

Same sign as  Opposite sign to 

will converge to output same as the stored pattern  if M < N/2

 Network will correct errors in the initial pattern and 

converge to , the attractor of the recall dynamics

 – 
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Lenz-Ising spin model
Identical (under a gauge transformation) to the mean-field 

Configurations

Configurations

All spins up All spins down



•Spin orientation: mutually exclusive choices

Ising model with Ferromagnetic interactions: each 

agent can be in one of 2 states (Yes/No , +/-)

Spin models as a paradigm for 

Complex Systems

•Choice dynamics: decision based on 

information about choice of majority in 

local neighborhood

Simplest case: 2 possible choices



The McCulloch-Pitts neuron

Im
ag

e
: 
C

u
rr

e
n
t 

B
io

lo
gy

Im
ag

e
: 

ch
at

b
o

ts
lif

e.
co

m
/k

er
as

-i
n

-a
-s

in
gl

e-
m

cc
u

llo
ch

-p
it

ts
-n

eu
ro

n
-3

1
7

3
9

7
cc

cd
4

5

Soma AxonDendrites

Inputs Output

Spin models as a paradigm 

for Complex Systems
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–1 Resting

+1 Firing



H =  – ij Jij i j – i h i

interaction environment

external field

spin-orientation 

coupling

Free energy F  =  U – T . S

Once we introduce thermal fluctuations (at finite temperature T>0) 

system behavior is governed by 

The Ising model is described by
Spin orientation i

or

+ 1 – 1

For spontaneous ordering in a ferromagnet, Jij = J > 0 and h =0



Ising model and Maximum Entropy Distribution

For a large system of coupled binary elements (equivalent to spins), impossible to measure 

the probability distribution of all the network states, P()

However, by individually recording the values of every element (spin) i , one can measure 

the mean order parameter (e.g., system activity), the expectation value i

One can also simultaneously record from a pair of elements (spins), to obtain the 

correlations Cij = i j – i j

Question: what do these measurements say about the system distribution P() ?

Problem! In general, there are infinitely many distributions (over the 2N states 

of N elements) consistent with the N(N + 1)/2 measurements.

However, of all these possible distributions, one reproduces the measurements 

but otherwise describes a system that is as random as possible (i.e., having the 

fewest additional assumptions) → the maximum entropy distribution



Knowing the expectation values of some functions on the state, f () = f  (), 

how to obtain the probability distribution P() ?

Maximize the entropy of the distribution subject to the constraints imposed by 

the observations using Lagrange multipliers  

 Maximize F = –  P() ln P() 

–   [ P() f () – f () ]

–  [ P() – 1] Normalization constraint

Entropy

Observations

 The optimum is given by   F
 P()

= 0 = – [ ln P() + 1 ] –   f () – 

 ln P() = –   f () – (+1)

 P() = 1 exp [–   f ()]  where Z = exp [– (+1)]

Z
 determined by matching the expectation values in the distribution to observed ones



1 exp [ i = 1, …, N hi i +  1  i  j = 1, …, N Jij i j ]
Z 2

P() = 
magnetic fields exchange couplings

The fields {hi} and interactions { Jij } are chosen so as to reproduce the 

measured values of the order parameter {i} and correlations {Cij} ~ {i j}

→ Ising model with pairwise interactions among spins emerges not as a hypothesis but as 

the least-structured model that is consistent with the measured expectation values 

 The mapping to the Ising model is a mathematical equivalence, not an analogy, 

with the details of the model specified by empirical data

In general hard to solve. 

Special case: If the expectation values that are measured are i and I j, 

the maximum entropy distribution yields the…. Ising model

 ln Z ({  })

  

f () =  –

 need to solve the equations
 ln Z ({  })

  

– = f  ()

Derivatives of ln Z (the free energy) give the various averages to be matched to observation



Many pattern (p>1)

i
 (=1, …, p): patterns memorized

A natural extension: make wij a superposition of terms – one for each pattern 

 wij  =1,p i
j



For a particular pattern i
 to be stable,  sgn(j wij j

 ) = i
 for all i

the input hi  j wij j
 = j i

j
j

 = i
+j i

j
j



Desired pattern Crosstalk term

will converge to output same as the stored pattern if the magnitude of the 

crosstalk term < 1 (true for small p)

 Network will correct errors in any initial pattern sufficiently 

close to any of the stored patterns  (multiple attractors)



Frustration
A basic characterization of relationships between 

mutual acquaintances proposed by Fritz Heider

(1) Om and Xena are friends  OX:  +ve interaction (link)

(2) Pradeep and Xena are friends  PX:   +ve interaction (link)   

(3) Om and Pradeep are enemies  OP:  –ve interaction (link)
Tension

am
in

o
ap

p
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m

Om

Xena

Pradeep Balance

No Balance

As number of patterns to be stored increases, the resulting rise in crosstalk leads to



Frustration

+ve

+ve

+ve –ve

–ve

–ve

Frustration results in a rugged energy 

landscape, with the system trapped in any 

one of a large number of local minima (spin 

glass states)

Spins in binary states (+1/ − 1) having +/ – interactions at random

+ve +ve

Conflicting Constraints in Disordered Systems

?



Memory Recall in Hopfield Network

❑ Start from arbitrary initial configuration of {x}

❑ What final state does the network converge ?

❑ Evaluate an ‘energy’ value associated with the network 

state: 

❑ System converges to an attractor 

a local/global minimum of E



=

−=
j

N

ji
i

jiij xxwE
1

,  
2

1

Image: Tank & Hopfield, Scientific American (1987)

Local Minimum
Global Minimum

Local Minimum



T>0 or Stochastic dynamics

In neurons, fluctuations in the release of neurotransmitters in discrete vesicles 

 neurons may fire even when weighted input < threshold or not fire when 

input > threshold

Noise → Stochasticity in neuronal firing

Amount of noise quantified by “pseudo temperature” T

T=0 → deterministic dynamics

For T>0

Prob (Si = +1) = fT( j wij Sj ) 

= 1/[1– exp(2 j wij Sj /T)]



= p / N
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Storage capacity of “noisy” Hopfield Model

Recall : stored patterns are lowest minima

Metastable : stored patterns are minima 

but not the lowest

Paramagnetic: the state fluctuates all the time

Spin glass: spurious attractors; 

stored patterns are not minima

Noise



Attractor networks in the neocortex

“the membrane potential of cortical 

neurons fluctuates spontaneously between a 

resting (DOWN) and a depolarized (UP) 

state which may also be coordinated. The 

elevated firing rate in the UP state follows 

sensory stimulation and provides a 

substrate for persistent activity … that 

might mediate working memory.”

“network UP states are circuit attractors 

…that could implement memory states 

or solutions to computational problems.”

Using two-photon calcium imaging reconstructed dynamics of 

spontaneous activity of ~1400 neurons in mouse visual cortex slices



Hopfield network assumes that every neuron is connected to all other neurons 

(Clique) – but in reality neuronal network connectivity is sparse

How would the performance of attractor networks alter for sparse connections?

In particular, 

Does modular structure provide advantage in 

dynamics of an attractor network ?

when the network has an 

optimal modular structure (r  rc )
for storing multiple patterns in a network with N nodes and L links,

The Global Stability of Attractor Networks is maximum

at an optimal modularity

The basins of attraction of the stored patterns – a measure of global 

stability in attractor networks – cover largest fraction of phase space
Neeraj Pradhan



Modular

r   rc

Homogeneous

r = 1

Low-basin 

entropy

High-basin 

entropy

Isolated Modules

r << rc

High-basin 

entropy

The attractor landscape of the network changes 

with modularity



But wait….

The Brain has a hierarchical arrangement!

interneuronssensory

neurons

motor

neurons

action

stimulus

Image: G. Zaharchuk et al, Am J Neuroradiol 39 (2018) 1776

Input layer  sensory neurons

Hidden layers  interneurons

Output layer  motor neurons

Neural networks used in deep learning are inspired by the layered network organization 

of the brain



Boltzmann Machine

Sejnowski and Hinton came up with a solution

Why not have Hopfield model with hidden nodes that 

are not directly subject to observation or stimulation ?

Now one can introduce higher order correlations that are not trivially linked to 

the mean Si and pairwise correlations  Si Sj

This is just the problem of implementing XOR in Perceptron is disguise!

Visible nodes

Hidden nodes

Visible nodes

As in the Hopfield model, 

• every pair of nodes 

are connected, and

• Wij = Wji (symmetry)

But, a subset of nodes are 

not accessible to stimuli



Restricted Boltzmann Machine (RBM)

But training the Boltzmann Machine is computationally 

expensive

So as a compromise, allow only connections between different 

node types (bipartite network of visible and hidden nodes)

In practice, RBMs are arranged in a chain – and sequentially used one after the other

The first RBM in the sequence is trained using a given stimulus and then the resulting 

hidden nodes is used to train the next RBM in the sequence, and so on down the chain…

Visible nodes

Hidden nodes

Visible nodes

• Now every pair of 

nodes are not 

connected, but

• Wij = Wji (symmetry)



Modular hierarchy 

an intriguing interplay 

between the mesoscopic 

organizational principles of 

hierarchy & modularity

Functionally, modular hierarchies provide a basis for systematic integration of 

information  allow for distributive processing in a network that otherwise has a 

markedly modular organization and hence would have appeared to support a segregated 

(specialized) mode of processing

Modularity  necessity of performing multiple independent tasks in parallel, with 

relatively low requirement for coordination between them→ sub-networks, each 

characterized by high intra-connection density facilitating recurrent communication 

Hierarchy  if the function typically requires performing several steps in sequence (such 

that each step needs to be finished before initiating the next), possibly coordinating

across multiple input streams → efficient serial processing, often in conjunction with feed-

back and feed-forward connection across the levels
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