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Interactive decision problems 



Iterated games

• Will repeating the stage game change the equilibrium?



Iterated Prisoner’s Dilemma:
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• Assume: Simultaneous decision 
making at each stage game, no 
communication, players know 
the payoff table.

• Finite repetitions: The backward-
induction argument



• Interactions are often sequential.

• E.g. Chess, business proposals…

Sequential Games (Dynamic, Extensive)



• A business proposal to dissolve a $10,0000 company between Players 1 and 2.
• Litigation costs $20,000. 
• If litigation, typical verdict is Player 1 gets 60%.

From “Game Theory” by Giacomo Bonanno



• Representation using decision 
trees.

• Strategy for a player: A complete 
list of what to do at each decision 
node.

• Solution by backward-induction

2
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*The payoff structure here is different from 
the previous one. Hence solution is different.



• Can convert the sequential game 
to strategic form (payoff matrix).

• Every backward induction 
solution is a Nash equilibrium of 
the associated strategic form.

Solving sequential Games



• Not all Nash equilibria correspond 
to backward-induction solution.

• Strategy “Fight” is an Incredible 
threat.
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Ultimatum Game

• The Proposer is provisionally given Rs. 100. 

• The Proposer decides how much money, x, 
   to offer to the Responder; x can be anything from 0 to Rs. 100.

• The Responder can either accept or reject the offer. 

• If the offer is rejected, both players get nothing. 

• Otherwise, the Responder receives x and the Proposer gets 100 – x. 



Lets solve chess



Making outcomes probabilistic

• O1: Player 1 wins Rs. 100

• O2: Player 2 wins Rs. 100

• O3: Player 2 wins Rs. 100

• O4: Player 1 wins Rs. 100

• O5: Player 1 wins Rs. 200

• O6: Player 2 wins Rs. 200
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Which one do you prefer?

• L1 =   
𝟓𝟎 𝑳𝒂𝒌𝒉 𝟎

𝟏/𝟐 𝟏/𝟐
 

• L2 =       
𝟐𝟓 𝑳𝒂𝒌𝒉

𝟏

• Risk Averse: A person who prefers 
getting E(L1) for certain than playing L1.

• Risk Loving: A person who prefers 
playing L1 than getting E(L1) for sure.

• Risk Neutral: Considers getting E(L1) for 
certain and playing L1 equal.



Allais paradox – 1953 the choices A>B & D>C can be shown to be 
inconsistent preferences.

• A = 
5 𝐿𝑎𝑘ℎ 0
89/100 11/100

           B = 
1 𝐿𝑎𝑘ℎ 0
90/100 10/100

• Usual survey answer is A > B

• C = 
5 𝐿𝑎𝑘ℎ 1 𝐿𝑎𝑘ℎ 0
89/100 10/100 1/100

   D = 
1 𝐿𝑎𝑘ℎ

1

• Usual survey answer D > C (Most of the participants chose C !!)

E(A) = 4.45
E(B) = .9
A>B

E(C) = 5.35
E(D) = 1
C>D
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A risk neutral Player1 will have the preference order: O3 > O4 ~ O2 ~ O1.



Making Strategies probabilistic
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• Person 1 can play the Pure 
strategy “Heads” with a 
probability say p.

• Payoffs -> Expected payoff.

• Players interested in maximizing 
expected payoff.











Games with mixed strategies

Image by Christopher X Jon Jensen & Greg Riestenberg, CC BY-SA 3.0
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Nash equilibrium

• A strategy profile such that no player 
can increase her payoff if others stick 
on to their equilibrium strategies.

• Nash 1951: Every reduced game in 
strategic form with cardinal payoffs 
and each agent having a finite set of 
pure strategies has at least one Nash 
equilibrium in mixed strategies.

John Nash (1928-2015)
Image from The Encyclopaedia Britannica



Finding Nash equilibrium in mixed strategies
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First apply IDSDS
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1) Matching Pennies



2) Stag hunt
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Principle of indifference:

• At a mixed strategy Nash equilibrium, an individual player will get the 
same payoff if she uses any of the pure strategies (played with 
positive probability at equilibrium) assuming others continue their 
equilibrium strategies. (Only a necessary condition)



3) Hawk – Dove 
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0 1qq*=1/3
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Payoff of Player 1 when playing C, = 4q
Payoff of Player 1 when playing D,  = q+1
Assume mixed strategy Nash equilibrium is σ* = ((p*,1-p*),(q*,1-q*)) 



Hawk-dove 
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C > V > 0
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From “Game Theory” by Giacomo Bonanno



Nash equilibrium

• A central robust idea to analyse interactive decision problems – 
Equilibrium is guaranteed to exist.

• Gives an analytical handle to ‘solve’ strategic interactions.

• A benchmark for comparison.



• Too many equilibria for a game.

• Require very high cognitive abilities.

• Dilemmas as in PD.

• Often at  variance with observations/experiments.

Nash equilibrium



• Mixed strategy equilibrium – hard to 
interpret.

• Observing action can’t tell about agent 
mixing.

• Very unstable.

• Payoffs often inferior.
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σ* = ((1/3,2/3),(1/3,2/3))

Mixed strategy payoffs, W1=W2=4/3

Nash equilibrium



“Different game theorists proposed so many different rationality definitions that the 
available set of refinements of Nash equilibrium became embarrassingly large. 
Eventually, almost any Nash equilibrium could be justified in terms of someone or 
other's refinement. As a consequence, a new period of disillusionment with game 
theory seemed inevitable by the late 1980s.” 

                                          Ken Binmore in Forward to “Evolutionary Game Theory” by Jorgen W Weibull
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