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Outline

¢ Evolution in Finite Populations

=  Evolution via mutation without selection
=  Evolution via selection without mutation
=  Evolution with mutation and selection

\/

*» Evolutionary Games in Finite, well-mixed Populations

¢ Evolutionary Games in Structured Populations



Darwinian Evolution

** Mutation acts randomly to produce new variants

¢ Selection acts on those variants to preferentially select the ones with higher
fitness

Evolution is a stochastic process

Higher fitness individuals are not guaranteed to take over the population
but

more likely to do so than dictated by chance.



Quasi-Species Equation: Evolution with Mutation and selection
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Limiting Cases
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Mutation without selection: Z a5 — when f; =1 forall i
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Selection without mutation (Error-free replication): ( i = o i — E =X (f; —¢)

Useful in describing evolution of population of sequences where
+ Variations between sequences arise as a result of errors during replication

 Presence of replication errors shifts the equilibrium from a pure state (survival
of the fittest) to a mixed state where multiple quasi-species can coexist

% The equilibrium state does not necessarily maximize average fitness

P. Schuster
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Pictorial representation of evolution by mutation without selection
Bl Atype @ B-type

Time #A #B

Time=t Pick Random members /

Check type A or B Check if RN < ul, if true
mutate A to B. If False, Repeat process for other members of population
leave A unchanged

Time=t+1 HOOEOIEON nA

HEOOEOIOIEmNE nA nB

nB+1

1
[



Evolution via mutation without selection : Algorithm

Divide population of size N equally between two types of individuals A and B represented by the
numbers 0 & 1

Define mutation rates ul and u2
Start loop over generations (total =T)
Start loop over entire population (size=N)
Check if the individual chosen is of type 0 or type 1
If type 0, mutate individual from 0 to 1 with probability ul
Pick a random number r between 0 and 1
If r < ul, mutate individual from 0 to 1, else leave unchanged
If type 1, mutate individual from 1 to 0 with probability u2
Pick a random number r between 1 and 0
If r < u2, mutate individual from 1 to 0, else leave unchanged
Close loop over population
Calculate frequency of type 0 and type 1 in the population
Record generation versus frequency data

Close loop over generations

Practice Assignment
Run simulations using u1=0.003 and u2=0.001 for 3 different population sizes N=100, 1000, 10000

Verify if the equilibrium value for frequency of type 0 and type 1 matches with theoretical predictions



Genetic Drift: Neutral Evolution

What is the outcome of evolution of a population of 2 species having the same fitness?

Bl A-type @ B-type
Time #A #B
Time=t HEEOOEOOIOEmNm nA nB
MRandom members € [1,N]
Pick a member at random for Pick a member at random for

death l reproduction

Time=t+1 mOoOEOEONE nA-1 nB+1
Two Absorbing States: A only or B only Genbirit-globalnlogo

How does the final state of the population depend on the initial fraction of Aand B ?



Moran Process

Assume two types of individuals A and B in the population of N individuals, both types having the

same fitness.

In every generation, one individual is picked at random for reproduction and another individual is

picked at random for death.

Question: What is the fixation probability of B ?

—

Fixation Probability of B: Probability that the frequency of B increases from an initial value of i/N
to a final value of 1 i.e. the final population consists entirely of B

Time=t

N\

A picked for reproduction & B for death

Time=t+1

Probability = p ;;,,

Bl A-type @ B-type

Time=t

7‘-.‘-/!

B picked for reproduction & A for death

Time=t+1

Probability = p ; ;.4

PiiatPiitPiia=1

Time=t
?-Q-QQT-
A picked for reproduction & A for death

Time=t+1

Probability = p ;;



Difference between Invasion and Fixation

Invasion is a special case of Fixation

In deterministic simulations involving the replicator equation,
Invasion by type A = frequency of A increases from a very small fraction x=¢ << 1 =2 x=1

Fixation of A = frequency of A increases from any x = x=1

In stochastic simulations like evolution by Moran process
Invasion by type A = frequency of A increases from x=1/N = x=1

Fixation of A = frequency of A increases from any x (such that 0 < x=#A/N < 1) = x=1

NOTE

The inability of A to /invade a population of B does not mean that A cannot get fixed in the
population if its initial frequency is sufficiently large.



Neutral Evolution via Moran Process in Finite Populations

No. of A players = i; No. of B players = N-i. Also assume A and B has the same fitness

Prob. of choosing A for both death and reproduction = (i/N)"2

Prob. of choosing B for both death and reproduction = ((N-i)/N)"2

Prob. of choosing A for reproduction and B for death = {i/N}{(N-i)/N}= P ;i+1
Prob. of choosing B for reproduction and A for death = {(N-i)/(N)}{i/N}= P ;.1

. pi,i—l_ﬁi — _
Define: %:R_a yi Xi Xi—l

If X; is the fixation probability of A's starting from a state with #A=i
X =XiPii X Pijiat X Pij ey Y, =70
N
Z i =Xy X% =1

i=1

N
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i-1 |
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Pictorial algorithm for the Simulation of Moran Process: Neutral Evolution Case

Bl A-type @ B-type

Time=t Pick Random members . HOOEN
Suppose RN1=6 ; RN2=4 R

A picked for reproduction & B for

death l

Time=t+1 EEONONE NN nA+1 nB-1

|

Repeat above steps as many times until #A=N or #B=N

|

Repeat simulation with same initial condition NT times to determine ,0 A and P B

=
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N-1
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. aga . EX —__ " . . . p El_XN—]_: - :—’
Invasion probability of A: ,OA 17N Invasion probability of B: B N-1 j N
1+ I |7/k
j=1 k=1

For the Neutral Evolution Case, invasion probability of a single mutant is inversely proportional to population size



Time

Neutral Evolution: A simple model without mutation
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Evolution with selection via Moran Process

Reproduction: Occurs with probability proportional to the fithess of the agent

Death: Occurs at random, independent of the fitness of the agent

) ri N —i o = (N-i) |
il | : iic1 = | - : —
ri+1(N —1i) N r+1(N—-1) JUN
Prob. of picking A for reproduction Prob. of picking B for reproduction
Prob. of picking B for death Prob. of picking A for death
(1_ i) Invasion Probabilities for N=100
LLTER 1 X — r'
L P B F L 1 r | X = pPa
" (- r_N) 2 0.5 r % = Pa
0.99 0.0058
1 1.01 0.016
Forr>1;asN>» o 2 =pp=1-— 1 001 0.9 | 0.000003

=> Invasion by a selectively advantageous mutant is not guaranteed even for large population sizes



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

Evolution by Moran Process

Time Bl Atype @ B-type
Time=1 Pick a Random member EEeoEOOOEm Parent pop. Array (P)
Suppose RN=3 l
Not OK | B picked for reproduction A picked for death at random
Compare with <fitness> for reproduction: Pick RN between 0&1. If RN < normalized_fitness of B, then OK
oK l B becomes the seventh member of the Offspring pop. at t=2
Time=1 EEOEOOO = Offspring pop. Array (O)
B becomes the seventh member of the Offspring pop. at t=1
Offspring population at t=1 becomes the parent population t=2
Time=2 HEOEHOOO N Parent pop. Array (P)

Repeat above steps to generate the parent population t=3 and so on

Note: If fitness of A is r1 and fitness of B is r2,

normalized_fitness_of A=r1/(r1+r2); normalized_fitness_of B=r2/(r1+r2)



Different possible outcomes of Evolution

No mutation
Selection with probability proportional to Fitness

Fitness of ﬁ > Fitness ofﬁ > Fitness ofﬁ

e

R A

=

>
—abe

A W ) )
ﬁ@iﬁ%ﬁ% S (3
IS

h
?ﬁ

= o

)
A
)

T e e e
N

h
4

= S
e

o

—

—abe

ERES
= SR




Algorithm for Moran Process

Create an array for the population of size N. The array P should initially contain 1 type 0 and N-1 type 1
Start loop over trials (Nt)

Generate a uniformly distributed random number RN1 lying between 1 and N
The corresponding member in the population array i.e. P[RN1] is marked for death

Generate another uniformly distributed random number RN2 lying between 1 and N
Generate a random number z between 0 and 1
If PIRN2]=0and z < r/(r+1) replace P[RN1] by O
If PIRN2]=1and z < 1/(r+1) replace P[RN1] by 1
Else Generate new RN2 by picking a random no. between 1 and N
Repeat last 3 steps till a suitable individual is found for reproduction
Calculate frequency of type 0 and type 1 in the population.
Repeat above steps for next generation; Continue iterations until freq. of type 0 is either 0 or 1
Write frequencies of type 0 and type 1 vs time in a file for any one trial

Close loop over trials

Calculate fixation probability of type0 by counting how many times type 0 gets fixed in the population.



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

Wright- Fischer process: Evolution by updating whole population every generation

Time Bl A-type @ B-type

Time=1 Pick a Random member - I K KN E § | Parent pop. Array (P)

Not OK \

Suppose RN=3
B picked for reproduction

Compare with <fitness> for reproduction: Pick RN between 0&1. If RN<normalized_fitness of B, then OK

oK l B becomes the second member of the Offspring pop. at t=2
Time=2 me____ _ _ _ __ Offspring pop. Array (O)

B becomes the second member of the Offspring pop. at t=2

Repeat above steps to fill up the offspringpop.att=2 I O @G H EH® @

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

HOOEEEOO Offspring pop. Array (O) at t=2
Copy

K oOEEEOO Parent pop. Array (P) at t=3



Quasi-Species Equation: Evolution with Mutation and selection
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Limiting Cases

N
Mutation without selection: Z a5 — when f; =1 forall i

j=1
: , : L dx;
Selection without mutation (Error-free replication): ( i = o i — E =X (f; —¢)

Useful in describing evolution of population of sequences where
+ Variations between sequences arise as a result of errors during replication

 Presence of replication errors shifts the equilibrium from a pure state (survival
of the fittest) to a mixed state where multiple quasi-species can coexist

% The equilibrium state does not necessarily maximize average fitness

P. Schuster

Competition between 2 types
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Adaptation: Generic case

Sequence Space

Well adapted population
clustered around the peak

Eq. freq. of

/ Type 0

A A
Fitness ‘ Fitness
‘ ® ‘ Evolution
>
Sequence Space
Initial population distribution
Size of the circles represent the frequency of the corresponding sequence in the population
Below Error Threshold : Adaptive evolution
? ) ]
Fitness ’ ‘ ‘ Fitness
® Evolution
u<li/L
>
Sequence Space

Sequence Space



Above Error Threshold : Non-adaptive evolution

A
FitnessA ‘ ‘ ‘ Fitness ‘ ‘ ‘ ‘
e @

Evolution

—>

u>1/L

>

Sequence Space Sequence Space

Fittest Sequence Type (Type 0) lost from the population

Eigen’s Paradox

+ For a replicating molecule to be viable and not be subject to mutational degradation (i.e. evade the
error threshold problem), /ts sequence length should be small.

4+ For a replicating molecule to encode enzymes (i.e. to be functional), its sequence length should be
substantially large.

How can functional molecules with long sequences survive in the population?



How does Mutation Rate per site () across organisms compare with the Error Threshold (/L) ?

Genome length Mutation rate Mutation rate

Organism in bases per base per genome
RNA viruses

Lytic viruses

QB 4.2 x 10° 1.5 % 107° 6.5
[ Polio 7.4 x 10° LIx 10 ° 0.84 |

VSV 1.1 x 104 32x107¢ 3.5

FluA 1.4 x 10* 7.3x10°® 0.99

Retroviruses )

SNV 7.8 x 10° 2.0x 107 0.16

MulLV 8.3 x 10° 35x%x107° 0.029

RSV 9.3 x 10° 4.6 x 10°° 0.43
Bacteriophages

M13 6.4 x 10° 7.2x 1077 0.0046

A 4.9 x 10* 7.7 x 10°8 0.0038

T2 and T4 1.7 x 10° 24x 1078 0.0040
E. coli 4.6 x 10° 54 x 10710 0.0025
Yeast (S. cerevisiae) 1.2 x 107 2.2x 10719 0.0027
Drosophila 1.7 x 108 3.4x 107" 0.058
Mouse 2.7 x 10° 1.8 x 10°'° 0.49
Human (H. sapiens) 3.5 x 10° 5.0 x 107" 0.16

Sources: Drake (1991, 1993) and Drake et al. (1998).
Note: Most organisms have a mutation rate per genome which is less than one, as predicted by the
error threshold theory. Why QB and VSV have such a high mutation rate is at present unexplained.

Note: Organisms remain viable only if uL<1
For polio virus: uL=0.814



RNA virus Error Catastrophe

4+ Anti-viral effect manifest by enhanced mutagenesis of the Polio virus genome

Table 2. The antiviral effects of ribavirin can be directly

High mutation rates =» loss of viability of the Polio virus genome attributed to lothal mutaganasis

100 M 400 pM 1,000 uM
Mormal ribavirin  ribavirin  ribawvirin

RMNA-specific infectivity loss — 33 18 140
Loss of total viral RNA — — 6 16
Total predicted titer

reduction 1 33 100 2,200
Actual titer reduction®* 1 3.2 71 2,000

*Untreated {"normal”) poliovirus titer in this experiment was 1.2 = 10" PFU
per plate of Hela cells (6 x 10% cells). Data are the average of three
axperiments.

+ Polio viruses reside near the edge of the Error Threshold
Modest (less than 2-fold) increase in mutation rate = 50% of the viral population becomes unviable

4-fold increase in mutation rate = 95% of the viral population becomes unviable.

. . B.
Table 3. Mutation frequency in ribavirin-treated RNA
virus populations z
G—A C—T Total mutation frequency® §§
Normal population 0.5 1.2 21 ;E"g
100 puM ribavirin — 1.3 2.5 =2 [
400 pM ribavirin 4.4 5.0 9.3 £ o Untreated
1,000 pM ribavirin 6.8 12.0 20.8 . @ 100
*Mutations per 10,000 nt sequenced. ° ;mu{;nﬁih;m:z e A 400
400007 "
w ¢ 1000
4+ High mutation rate produces Polio-virus mutants having low infectivity
The amount of infectious virus genomes in the population is reduced several fold
as concentration of Ribavarin increases. -

0 5 10 15 20 25

viral RNA (ng)

Ref.: Crotty, Cameron, Andino; PNAS 98, 6895-6900 (2001) PFU: plaque forming unit



1'st lecture: Key Results
P,=% :%' Neutral Fixation probability of A starting from an initial configuration with a single A
Competition between two types A and B with different fitness
Higher fitness type is not guaranteed to take over the population

but
more likely to do so than dictated by chance.

i-1

1 1+ 2.1 17k ) |
Xl = IOC = NT ] X _ j=1 k.=l 7/i _ p|,|—1 _ ﬂ,
1 | T pi o A
+ZH7/k l-l—zhhyk '
j=1 k=1 j=1 k=1
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Evolution with Freqguency-dependent Fitness

Individuals have fixed strategies that are known to other individuals in the population.

Random interactions occur with other individuals (including those belonging to the same type)
In the Biological Context
strategy 4mmm) phenotype and payoff 4mmm) fitness

Fitness is a measure of reproductive success

A component of Fitness of an individual is determined by the cumulative payoff to that individual
resulting from the encounter with other individuals of the same type as well as different types.

The population is updated every generation when individuals reproduce with
Probability proportional to fitness




George Price John Maynard-Smith

Competition between different types of individuals with frequency-dependent fitness can be thought
of as a game in which each type employs a distinct strategy and gets a certain payoff in an encounter
with another individual.

Fitness is a measure of reproductive success and strategies that yield higher cumulative payoff,
reproduce at a faster rate.

Consider a population with two types of individuals A and B whose fitness are f, and f respectively.

Assuming Jinear dependence of fithess on frequencies X, ,Xg ;
fa=ax,+b V7

et 5 f(X)=MoX.

fB =C XA + d XB I IJ J

Can be written in matrix notation as f = Mx, f=[f, ,fg 1, X=[x, ,Xg ]

where M is the payoff matrix.

E(A,A)=a : Payoff to A when it interacts with another A
E(A,B)=b : Payoff to A when it interacts with B

M= E(B,A)=c : Payoff to B when it interacts with A
E(B,B)=d : Payoff to B when it interacts with another B



Harmony game:

PD game:

Stag-Hunt game/

Coordination game:

Chicken game/
Snowdrift game:

Replicator Dynamics

%4 =x,(1-x)[(@a=b—c+d)x,+b—d] A
M= A a
Case 1: a>c; b >d =» Payoff to A > Payoff to B : A dominated B i.e. A is a Nash B C
Only one stable equilibrium solution exists. E :<1 XO
Case 2: a<c; b<d =» Payoff to B > Payoff to A : B dominates A i.e B is a Nash
Only one stable equilibrium solution exists. )(():1 >X'=

Case 3:a>c;b<d 2 x =0,1, (d=b)/{(a—c)+(d—b)}

3 equilibrium solution exists; A and B are bistable, mixed-state solution is unstable.

Both A and B are Nash E o< ® >0

x=1 x=(d-b)/{(a—c)+(d—b)} x=0

Case 4: a<c; b>d = x =0,1, (d—b)/{(a—c)+(d—b)}
Only one stable equilibrium solution exists. A & B stably co-exist. Neither A nor B is a Nash

-
x=0, 1 are unstable equilibrium solutions. @O % O
Xx=1  x=(@-b)/@-o+@d-b} *X=0




‘_? ®  Cooperation and Conflict

TR

©Bill Watterson

A fundamental problem in evolution

Altruistic behaviour comes at a cost

but

Selfish behaviour does not entail a cost

How do we explain the survival of altruistic agents?



Behaviour affecting Evolution of Cooperation & Conflict

How does individual “behaviour” evolve during a social conflict?

How is evolution of our “behaviour” affected by

+* Size and underlying structure of the social network in which we are embedded
%* The nature and behaviour of connected neighbours

»* The economic and social environment

% Individual aspiration levels

Big Questions

1 How do individuals incorporate these factors into their learning strategies?

(J How do these factors shape collective (population-level) outcomes ?

(d Can we socially engineer situations where cooperation thrives?




Evolution of Cooperation

What Don’t We Know?

t Science, we tend to petexcited about new discoveries that lift the veil alittle on how things work, from cells
to the universe. That puts our focus firmly on what has been added to our stock of knowledge. For this
anniversary issue, we decided to shift our frame of reference, to look instead at what we don ¥ know: the
scientific puzzles that are driving basic scientific research
We began by asking Science’s Senior Editorial Board, our Board of Reviewing Editors, and our own
editors and writers to suggest questions that point to critical knowledge gaps. The ground rules: Scientists
should have a good shot at answering the questions over the next 25 years, or they should at least know how to go about
answering them. We intended simply to choose 25 of these suggestions and turn them into a survey of the big questions
facing science. But when a group of editors and writers sat down to select those big questions, we quickly realized that
25 simply wouldn’t convey the grand sweep of cutting-edge research that lies behind the responses we
received. So we have ended up with 125 questions, a fitting number for Science® 125th anniversary.

First, a note on what this special issue is not: It is not a survey of the big societal challenges that
science can help solve, nor is ita forecast of what science might achieve. Think of it instead as a survey
of our scientific ignorance, a broad swath of questions that scientists themselves are asking. As Tom
Siegfried puts it in his introductory essay, they are “opportunities to be exploited.”

‘We selected 25 of the 125 questions to highlight based on several criteria: how fundamental they
are, how broad-ranging, and whether their solutions will impact other scientific disciplines. Some
have few immediate practical implications—the composition of the universe, for example. Others we
chose because the answers will have enormous societal impact—whether an effective HIV vaccine is

feasible, or how much the carbon dioxide we
are pumping into the atmosphere will warm our
planet, for example. Some, such as the nature of
dark energy, have come to prominence only
recently; others, such as the mechanism behind
limb regeneration in amphibians, have
intrigned scientists for more than a century. We
listed the 25 highlighted questions in no special
order, but we did group the 100 additional
questions roughly by discipline.

Onr sister online publications are also devot-
ing special issues to Science’s 125th anniversary.
The Science of Aging Knowledge Environment,
SAGE KE (www.sageke.org), is surveying
several big questions confronting researchers on
aging. The Signal Transduction Knowledge
Environment, STKE (www.stke.org), has
selected classic Science articles that have had a
high impact in the field of cell signaling and is
highlighting them in an editorial guide. And
Seience’s Next Wave (www.nextwave.org) is
looking atthe careers of scientists grappling with
some of the questions Science has identified.

‘We are acutely aware that even 125 un-
knowns encompass only a partial answer to the
question that heads this special section: What
Don’t We Know? So we invite you to participate
in a special forum on Science’s Web site
(www.sciencemag.org/sciext/eletters/125th),
in which you can comment on our 125 questions
or nominate topics we missed—and we apol-
ogize if they are the very questions you are
working on.

—Donap KENNEY AND CouN NoRMAN

In Praise of Hard Questions
What Is the Universe Made Of?
What Is the Biological Basis of
Consclousness?

Why Do Humans Have 50

Few Genes?

ToWhat Extent Are Genetic
Variation and Personal Health
Linked?

Can the Laws of Physics

Be Unified?

How Much Can Human Life
Span Be Extended?

What Controls Organ
Regeneration?

How Can a Skin Cell Become
a Nerve Cell?

How Does a Single Somatic
Cell Become a Whole Plant?
How Does Earth's Interior Work?
Are We Alone in the Universe?
How and Where Did Life on
EarthArise?

What Determines Species
Diversity?

What Genetic Changes Made
Us Uniquely Human?

Contents >> News

How Are Memories Stored

nd Retrieved?
How Did Cooperative Behavior
Evolve?

94 How Will Big Pictures Emerge

From a Sea of Biological Data?
How Far CanWe Push
Chemical Self-Assembly ?

96 What Are the Limits of

Conventional Computing?

97 Can We Selectively Shut Off

Immune Responses?

Do Deeper Principles Underlie
Quantum Uncertainty and
MNonlocality?

99 Is an Effective HIV Vaccine
Feasible?

) How Hot Will the Greenhouse

World Be?
What Can Replace Cheap Oil—
and When?

102 Will Malthus Continue to Be

Wrong?

78 So MuchMore to Know ...

See also Editorial onp. 19and
www.sdencemaqg. org/sciext/125th




Mechanisms for sustaining Cooperation

Direct reciprocity

o o
b

Tit-for-tat strategies that utilize past strategy of interacting partner

Indirect reciprocity

ok

q O Strategies based on reputation of interacting partner

LY
‘-.

Spatial selection

Strategies adapted to structured populations that facilitates
more cooperative interactions through clustering

Multi-level selection

/e (&

|.. Group selection
o/ @

Kin selection

.—).r

Nowak; Science (2006)

Rand & Nowak
Trends in Cognitive Sciences (2013)

Interaction and cooperation with related individuals promote
spread of cooperation : Hamilton’s rule



Nash Equilibrium

A strategy is said to be a Nash Equilibrium if the person adopting the strategy cannot
increase his payoff by changing to a different strategy.

A is a strict Nash Equilibrium if a > ¢ A B

A is a Nash Equilibrium if a > ¢ A a b
M=

B is a strict Nash Equilibrium if d > b B C d

B is a Nash Equilibrium ifd > b

Evolutionarily Stable Strategies (ESS)

Consider a large population of individuals employing strategy A. If a mutant employing
strategy B is introduced into the population, can the mutant invade the population
consisting primarily of A-type players?

In the infinitely large population size limit, let the number of B mutants (invaders) be infinitesimally
small with frequency given by Xg =& . Frequency of A’s: X, =1- €

f,=a(l-€)+be;fg=c(1l-€)+de
B cannotinvade Aonlyiff;<f, i.e.a(1-€) +be>c(1-¢€)+de
Since ¢ is very small, neglecting terms of order € gives a>c

If however, a=c, f, > fg gives b>d

Condition for A to be an ESS in infinite population limit: a>c or if a=c, b>d



Key Questions

How is the concept of an ESS modified for finite populations?

!

How does population size affect the survival of cooperative strategies ?



Games in Finite Populations

C D
b<c and a>d
C a b _
For the Payoff Matrix M= 5 5 No. of C players = i
C

No. of D players = N-i
Prob. that C interacts with another C = (i-1)/(N-1)
Prob. that C interacts with another D = (N-i)/(N-1)
Prob. that D interacts with another C = i/(N-1)
Prob. that D interacts with another D = (N-i-1)/(N-1)

Expected payoff to C when it interacts with C = a(i-1)/(N-1)
Expected payoff to C when it interacts with D = b(N-i)/(N-1)
Total expected payoff for C : F; = (a(i-1)+b(N-i))/(N-1)
Total expected payoff for D : G; = (ci+d(N-i-1))/(N-1)

Define fithnessof Cas : f, = 1-w+ wF,; fithessof Das: g = 1-w + w G
w = intensity of selection

w=1 =» strong selection; fithess completely determined by interactions
w=0 =>» no selection between C & D

w<<1 = weak selection



Revisiting the ESS condition for large populations

When can a population of D-type players avoid being invaded by a single mutant C-type?

Selection opposes C invading D: Fitness of a single C-type < Fitness of (N-1) D-types Infinite population result

D is an ESS iff:
fl <0; & |[b(N-1)<c+d(N-2) [ > ForN>>1:b<d ;For N=2: b<c {mmmmm)  d<borifb=d,a<c

C D
C a b

M=
D C d

When can a population of C-type players avoid being invaded by a single mutant D-type?

Selection opposes D invading C: Fitness of a single D-type < Fitness of (N-1) C-types
Infinite population result

Cis an ESS iff:
Oy < fyy o |cN-D) <b+a(N-2) | 5 ForN>>1:c< a; For N=2: c<b {mmmmm)  a<corifa=c, b>d

Essential to consider fixation probability in finite populations to determine the ESS

1
P> N —  Selection favours C replacing D

1
P < N — Selection opposes C replacing D



Moran Process in Games in Finite Populations

C’s and D’s are picked for reproduction with a probability proportional to their mean fitness and for death
randomly.

Ny
Probability of picking C for reproduction and D for death : pi,i+1_ai T i+(N ) g N

N —i i
Probability of picking D for reproduction and C for death : pi’i_1 = ,Bi = (If i(+ (N )—gi)igi)(ﬁ)
B9
V= a. B fi
N-1
9,
1 IIf. =0
_ __ Po_172
Pe N-1 k L= ] b f
gi Nk g pC =1 i
1+ 1+ 11 !
1 ia T = ia f

In the limit w0, P~ N leads to the inequality

a(N-2) + b(2N-1) > ¢(N+1) + d(2N-4) | which in the limit N>>1,reducesto | a + 2b > c + 2d

For fixed, a,b,c,d, the above inequality gives a lower bound on the population size N
2a+b+c—-4d
a+2b-c-2d

Nc is the minimum size of the population necessary for selection to favour fixation of cooperators

N > Nc NC:




1/3 Law: Condition for the invasion probability of C > neuwtralinvasion probability

. d-b . 1 Condition on the mixed state
X = —> X <—= equilibrium frequency obtained
a—-c+d-b 3 from replicator dynamics
x =1/3 X =2/3
PN PN PeN
1 oy 1
pD<N 'OD N pD>W




Risk Dominance in Evolutionary Games
Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and d>b then which

strategy has a higher fixation probability ?

N

&:N—l - —1&
p. WU,
w<<ls Y =1-w(F, _Gi)+O(W2)

N—

Po Zﬁ(l_W(Fi -G))) =l—Wj(Fi -G))

i=1

N-1 N-1
- —b—-c+d) —a+bN —dN +d
F-G)=) ui+v u:(a : V=

> (F-6)=3 D¢ =

Po_1 Wy [X=(a+b-c-d)N-2a+2d| | X>0=p.>p, .
Pe ° d—b 1w [
N>>1:X>0=la+b>c+d X = =X <— D| ¢

a—c+d-Db 2

Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and d>b then which

strategy has a higher fixation probability ?



Fixation Probabilities and the 1/3 Law for w<<1 and N>>1

® -- Unstable mixed state equilibrium

X =1/3 X =2/3
1 1 1
PN PN PN
1 J1
pD<% IOD N pD N
D | @«——=% >@ [ C
X:O X:l
PPy PP
x::1/2

Cis Risk Dominantif L£.- 0O, =2 a+b>c+d whenw<<land N>>1
D is Risk Dominantif  ©5~ P

X/

% A strategy is Risk Dominant if the total payoff for that strategy is larger than the total payoff for every
other strategy.

X/

% The Risk Dominant strategy has a greater fixation probability in the limit w<<1 and N>>1



Evolutionary Stability in Finite Populations

If a>c and b>d, C is a strict Nash equilibrium as well as an ESS and selection will always
favour fixation of C and oppose fixation of D in a finite population of any size.

If a>c and b<d, both C and D is an ESS. According to the /infinite population analysis, a small
fraction of C mutants cannot invade a population consisting predominantly of D players.

What happens for finite populations ?

Condition for a strategy to be an ESS has to be modified for 7inite populations.
In a finite population of size N, a strategy C is an £ESSN if
(i) A single mutant of any other strategy has lower fithess than C

(ii) The fixation probability of every other strategy must be smaller than the neutral fixation
probability and the fixation probability of C must be larger than the neutral fixation
probability

1 1
Cisan £SSN if Gy; < Fyy;and p.>y  and Po 7y

1 1
Disan ESSN if F, < G,and P,>y and APc<y



Evolutionary Stability in Finite Populations: Examples

For D to be an ESS:
Selection opposes C invading D: Fitness of a single C-type < Fitness of (N-1) D-types

f,<0, 2 |b(N-1)<c+d(N-2)

1
Selection opposes C replacing D: o <ﬁ

a(N-2) + b(2N-1) < ¢(N+1) + d(2N-4) | for w<<1

C D
For N>>1: b <d and a+b<c+d M= ¢ [a bJ
1 D C d
For N=2: fl <0; = b<c and ,0C<§ = b<c
Examples
clr20 o Infinite population inference Ve C[1 28 Infinite'population inference
~ ol 171 Both C & D are an ESS bl 2 30 Only Diis an ESS
f <
1:1 < gl = -15<N In finite populations 1 gl > N>15 In finite populations
1 D is an ESS only for N<53 1 D is an ESS only for N>17
Pc<N > N<53 PN D N>17




Fixation Probability and Risk Dominance using the Fermi update rule

Payoff Comparison method of population update

1 :
Blume 1993, Szabo & Toke 1998 ~ P(C — D) = S FoTF C : Focal player
Traulsen, Pacheco, Nowak 2007 1+e b—rc D : Role model

Limiting case: w - o, If Fpo >F: , Cis replaced by D with probability 1

If F'o <Fc | Cis retained with probability 1

_ . N i 1 .
p =0(i:( I ) —v]\;(Fi—Gi))(N I) pi,i—lzﬂi:( N I)(1_|_eW(GiFi))(|l|)

i1 N"1+e N
Probability of choosing C for reproduction Probability of choosing D for reproduction
ﬂ N-1 N-1 SSRGEe) w
— — -w i—Ci
. e A 2 Wy
7/_ =i _ (R —pD = H Vi = H e_W(Fi -Gi) _ e = —p 2 Valid for all selection strengths
i i

ai P P

p C -1 -1

X=(@+b-c-d)N-2a+2d>0= p,<p. |[N>1:X>0=a+b>c+d




Fixation Probability calculation using the Fermi update rule

B B 1
,OC B N-1 k o N-1 k
53 | PIES B
k=1 i=1 k=1 i=1 C D
C a b
Payoff difference is the same regardless of which
fa-c=b-d mem— strategy one of the players unilaterally switch from L ¢ d
1 1—-e™ | 5
p =X = NI = o =>» Invasion probability of C
- 1+) e 1-¢
k=1
1
Wi compare 1-—)
1 —e X = r' Equivalent to fixation probability in the constant
P = N ﬁ i 1 selection case with ' = €

Fixation probability starting from a state with j C’s



TFT can Invade ALLD in a Finite Population

TFT ALLD
: T ma b+(m-1)d No. of TFT players = i
For the Payoff Matrix M= ]
No. of ALLD players = N-i
ALLD | C+(m-1)d md c>a>d>b m= ﬁ

According to the infinite population analysis, for m > (c-d)/(a-d), both TFT and ALLD are
an ESS and each strategy is stable against invasion by either strategy.

>
In finite populations, TFT can get fixed in the population even if Fir < G, p provided Prer N
If F, and G; is the fitness of i TFT and (N-i) ALLD players,

_ma(i—1)+(b+(m-1)d)(N —i) _(c+(m-1)d)i+md (N —i-1)

N —1 N -1

F

Fl = FTFT =b+(m'1)d and G1=GALLD=(C+(m-1)d + md(N'Z))/(N_l)

_ S(N+1)+d(N -2)-b(2N -1)
(a—d)(N —2)

1
For w20 and fixed N, O~y gives a lower bound on m:

When N=2, m>oco, When N=3: m>10 When N=4: m>6

c+d-2b
For N>>1, lower boundonm: m>——=m>3 when a=3, b=0, c=5, d=1

(a-d)



1
For fixed m, P~ givesa lower boundon N: (a)

5
w=0.01
E 4
|\|>2ma+b+(:—2d(m+1) 2
ma+2b—-c—-d(m+1) g %
o
8 w=0.1
B o NN
For fixed m=10 : N > 3 (if a=3,b=0,c=5,d=1) c o

400 800 1,200 1,600 2,000
Population size, N



Structure of an agent-based simulation (ABS) of evolutionary games on networks

+* Initial configuration: specify initial distribution of different strategies on a network

X Payof'f calculation: interaction and payoff calculation for every member of the population

X Strategy u pd ate: Update the strategies of the agents using specified deterministic or stochastic update rules



Spatial Games

Rules for Deterministic Spatial Games . . . . . Payoff matrix:
1. The payoff to each player is given by the total | A B
payoff obtained by playing each of its eight 7a+1bQ4a+abg2c+6d
neighbours.

| ¢4C+4d,

2. Rules for updating a cell are deterministic: The focal cell will be
The focal (central) cell is replaced either by itself or . . Lakenhovr?r Ey whoev%r
one of the eight neighbouring cells (Moore as the highest payo

- ! among the 8 nelgh ors
neighbourhood) depending on which has the

and the cell itsel
highest payoff.

. Cooperator . Defector Nowak 2006

3. All cells are updated simultaneously (synchronous
updating)

b-Measure of benefit gained from exploiting an
altruistic partner relative to the benefit gained from
cooperating with an altruistic partner

4. Periodic boundary condition is used to ensure all
cells are treated in the same way and there are no
boundary effects.

The survival of a cell depends on its own strategy, the strategy of
its eight neighbours as well as the strategies of their neighbours . . . . .

= 25 cells in all
o ] ]
As €20, the focal cell (D) has a total payoff = 4b since it is

surrounded by 4 C's and 4 D’s. . u .

If 4b>7, central cell remains a Defector in the next generation . . . . .
! 3 4b 2b
If 4b<7, central cell transforms from Defector to Cooperator in . . . . .
! . a=1,b=0,c=b,d=¢

the next generation



Spatial Games

Algorithm for Stochastic Spatial Games . . . . . Payoff matrix:

1. The payoff to each player is given by the total | A B

payoff obtained by playing each of its eight . .
neighbours.
2. Rules for updating a cell are stochastic: .
The focal cell will be
% The fitness of all altruists (fC) and all selfish (fD) . . Laakse an"r?.gﬁ‘ésﬁ’ 2‘:}2’”
i i i ors

agents in the neighbourhood of each focal player is among the 8 nelg

separately calculated. . . . . . and the cell tsel
% The fractional fitness of the altruists (FC) and

selfish agents (FD) is calculated by dividing fC and . Cooperator . Defector
fD by the total fithess (fC+fD). FC=fC/(fC+fD) etc

b-Measure of benefit gained from exploiting an
% Generate random number (RN) between 0 & 1. altruistic partner relative to the benefit gained from
IF RN <minimum(FC,FD) cooperating with an altruistic partner
replace focal cell with C if FC<FD
with D if FD<FC
ELSE
replace focal cell with C if FC>FD

with D if FD>FC -
Hl

3. All cells are updated simultaneously (synchronous Altruism.nlogo
updating)

4. Periodic boundary condition is used to ensure all
cells are treated in the same way and there are no
boundary effects.

Nowak 2006



b=1.55

b=1.70

Colour Code:

Blue : C that was C earlier.
Green: C that was D earlier.
Red: D that was D earlier.

Yellow: D that was C earlier

Nowak 2006

Time evolution for b=1.65
t=124
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Evolutionary Graph Theory
Questions

» How does the fixation probability of a mutant change when the population is structured i.e. only
certain members of the population can replace others during the course of evolution.

« If a structured population is represented by a graph, with vertices representing members and
edges representing interaction between corresponding members, is it possible to characterize a//
graphs that have the same evolutionary dynamics.

« Can certain structured populations increase the fixation probabilities of advantageous mutants ?

« Can certain structured populations eliminate the effect of selection ?
/ Q /
®
Kk ® O
j P4 O O

Structured Population Unstructured Population

Not all vertices are connected by an edge

The edges can have different weights There is an edge between any two vertices

i can replace j and j can replace i All edges have the same weight

k can replace i but i cannot replace k



Formulating Evolution on Networks
A graph (network) can be completely specified by a stochastic matrix W=[w;]

W=[w;] is an N x N stochastic matrix that determines the probability of replacing the j'th
member of the population by the i'th member.

w;; =0 if there is no directed edge from i toj =» offspring of i cannot replace ]

N
ZWU_ =1 since the i'th member picked for reproduction has to replace someone
j=1

i. — O i‘ — @,
® Evolution ®
Q/ « E— ‘/ «
k k
° © ° © ¢

Structured Population Structured Population

Population composition changes as the population evolves but the rules for replacement via the
Moran process remain the same.



Fixation Probability of a mutant that arises in a structured population

(01000 0] . .
O — O O 0O —
001000 2 2
1 1
000100 —~ 0 5 0 0 o0
000010 o%o%oo
000O0O0 1 W= 1 1
o O — O — 0
100000 2 2
- - 1 1
Directed Cycle © 00T 23 Cycle
L()()OLO
2 2

The i'th member can only be replaced by the
member preceding it i.e the (i-1)th member.

Fitness of B (blue) = r
Fitness of A (red) =1

Due to the nature of the structured population (only nearest neighbour replacements are
allowed), there can be only one cluster of B's. Fragmentation of clusters into two or more sub-
clusters is not possible.

1 1=l
Pe™ T E 19/
1+ 1_[7/i
k=1 i=1

Fixation probability of B on a directed cycle is identical to the fixation probability of B in the
Moran process (unstructured population)



Fixation probability of a mutant randomly placed on a “Line” graph

Rules of Replacement: Every member is replaced only by the
member preceding it. The last member replaces itself.

If the mutant B arises at any position other than the first position
in the line, it will be replaced by A and become extinct.

Probability that B arises in any positions from i=2...N
is (N-1)/N since there are N-1 such positions.

Probability that B appears in position 1: 1/N
The mutant B will definitely be fixed if it arises in position 1
Fixation probability of B: O = N

Fixation probability differs from the Moran process and is
independent of the fitness of members.

® O
v v
® O
A 4 A 4
® O
A 4 A 4
® O
v v
o O
v v
o O

o-0-0-0-0-0
o-0-0-0-0-0
-0-0-0-0-0
-0-0-0-0-0




Invasion probability of a mutant randomly placed on a “Burst” graph

Rules of Replacement: Every member is replaced only by the
member at the centre with equal probability. The central member
cannot be replaced by any other peripheral member or itself.

If the mutant B arises at any position other than the central
position in the star, it will be replaced by the A at the centre and
become extinct.

Probability that B arises in any positions from i=2...N
is (N-1)/N since there are N-1 such positions.

Probability that B appears in the central position: 1/N

The mutant B will definitely be fixed if it appears at the centre of
the star
1

Invasion probability of B: O = N

Invasion is /ndependent of the fitness of members and equivalent
to that of a neutral mutant in the Moran process.

Both the “Line” and “Burst” graphs are suppressors of selection

Burst



Graphs which are suppressors or amplifiers of selection

_1-1/r
Pe=121/,"

Invasion probability of a single mutant with a relative fitness rin a Moran process

If the fixation probability of a single mutant with a relative fitness r on the structured graph G is pG

If ,OG > ,0B when r>1 =» G is an amplifier of selection. G favours selection over drift

If O.< 0, whenr>1- Gisan suppressor of selection. G favours drift over selection

1
If pG = ﬁ when r>1 = G is the strongest possible suppressor of selection.
' f.\ p=1IN

O & -0 O
o-0-0-0-0—-0 St
P -0-0-0-0

0 f

O

1

All Graphs with a singl/e root have the same invasion probability: ,OG - ﬁ



Evolution of Cooperation on Graphs

Image Source: Wikipedia

\\a
O Caley Tree/Bethe Lattice *X

* szz
% Regular graph with each node having k neighbours — /

% Graph does not have any loops N

Caley Tree/Bethe Lattice with k=3

Constraints on the Theoretical Formulation

O Theoretical analysis valid for
% N>>k
% Weak selection limit holds i.e. w<<1 when separation of time-scales is possible

% Uses the pair approximation which is valid only for Bethe lattices i.e. graphs without
any loops.

Pair Approximation =» frequencies of larger clusters obtained from pair frequencies



Condition for Spread of Cooperation on Networks
Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

1
Birth-Death (BD) updating: O~ N > 0. wmmmh Selection never favours fixation of cooperators

a Cycle b Lattice € Random regular graph d Random graph e Scale-free network

0.014 N =100
0.012 ° . o

4 . - o * ' + :
oortf-Ed A 190 S NS | N8 Y- AN D | Wodo oo fll _____
0.008 ° ‘2 . . : aa 7, °

0.006

0.007 . N =500

0.006 , ) . .
0.005 ° . .
0.004t ¥ " e ) ° . . °
0.003 ° ° °

i

0.002_;___;___§t ____________ L}Jl ________________ i__jj____li ____________ o} f'___l:_‘ _________ iJl _______
0.001}% . a2 o . . S

Fixation probability, o

@
10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Benefit-to-cost ratio, b/c

+k=2 Ak=3 k=4 Ok=6 HWk=8 k=10

1
Arrow indicates b/c=k. Theoretical Prediction : b/c > k & P>~ Lo

» Discrepancy with theoretical prediction observed for non-regular graphs
% Discrepancy increases with increasing k but decreases with increasing N



Realm of Possibilities: A biased sample

¢ Role of different forms of learning during strategy update

= Social Learning
= Bayesian Learning
= Reinforcement Learning

= Heterogeneous learning strategies

¢ Multiple games on multiplex networks

Pathak, Verma, Ram and SS; Proc. Royal Society B (2020)
Anuran Pal and SS; Chaos (2022)

Patra, SS, Paul, Chakraborty, NJP (2024)

Amit Basak and SS; PLoS Computational Biology (2024)

Game 1
C D
bi—¢; =4
b, 0
Game 2
)
C D
by—c, ¢
[7'1 0

» Switching between different games: Stochastic games on networks

A_©® ®

@
S

B

ol

S
P,

Gan
o
® R
@ 7

v e -

00, o0

-

® R
PR

FAI
o
R
1

o LLhen

. o

Hilbe et al. Nature (2018)
Su et al. ; PNAS (2019)



©Bill Watterson
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