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Outline

❖ Evolution in Finite Populations

❖ Evolutionary Games in Structured Populations

❖ Evolutionary Games in Finite, well-mixed Populations

▪ Evolution via mutation without selection
▪ Evolution via selection without mutation
▪ Evolution with mutation and selection 



Darwinian Evolution

❖ Mutation acts randomly to produce new variants

❖ Selection acts on those variants to preferentially select the ones with higher 
fitness

Evolution is a stochastic process

Higher fitness individuals are not guaranteed to take over the population 

but 

more likely to do so than dictated by chance.



Quasi-Species Equation: Evolution with Mutation and selection
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Useful in describing evolution of population of sequences where 

❖Variations between sequences arise as a result of errors during replication

❖ Presence of replication errors shifts the equilibrium from a pure state (survival 
of the fittest) to a mixed state where multiple quasi-species can coexist

❖The equilibrium state does not necessarily maximize average fitness

Selection without mutation
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Pictorial representation of evolution by mutation without selection

A-type B-type

Time=t

Time

Repeat process for other members of population

#A #B

nA nB

Time=t+1 nA-1 nB+1

Check if RN < u1, if true 
mutate A to B. If False, 
leave A unchanged

Pick Random members 

Check type A or B



Divide population of size N equally between two types of individuals A and B represented by the 
numbers 0 & 1

Define mutation rates u1 and u2 

Start loop over generations (total =T)

 Start loop over entire population (size=N)

   Check if the individual chosen is of type 0 or type 1

     If type 0, mutate individual from 0 to 1 with probability u1 

  Pick a random number r between 0 and 1

  If r < u1, mutate individual from 0 to 1, else leave unchanged 

     If type 1, mutate individual from 1 to 0 with probability u2

  Pick a random number r between 1 and 0 

  If r < u2, mutate individual from 1 to 0, else leave unchanged 

 Close loop over population

Calculate frequency of type 0 and type 1 in the population

Record generation versus frequency data

Close loop over generations

Evolution via mutation without selection :  Algorithm

Practice Assignment

Run simulations using u1=0.003 and u2=0.001 for 3 different population sizes N=100, 1000, 10000

Verify if the equilibrium value for frequency of type 0 and type 1 matches with theoretical predictions



Genetic Drift: Neutral Evolution

What is the outcome of evolution of a population of 2 species having the same fitness?

A-type B-type

Time=t

Time #A #B

nA nB

Time=t+1 nA-1 nB+1

Pick a member at random for 
reproduction 

Pick a member at random for 
death 

Two Absorbing States: A only or B only

How does the final state of the population depend on the initial fraction of A and B ?

GenDrift-global.nlogo

Pick Random members Є [1,N] 



Moran Process
Assume two types of individuals A and B in the population of N individuals, both types having the 
same fitness. 

Fixation Probability of B: Probability that the frequency of B increases from an initial value of i/N 
to a final value of 1 i.e. the final population consists entirely of B

Question: What is the fixation probability of B ?

A-type B-type

A picked for reproduction & B for death B picked for reproduction & A for death A picked for reproduction & A for death

Time=t Time=t Time=t

Time=t+1 Time=t+1 Time=t+1

Probability = p i,i+1 Probability = p i,iProbability = p i,i-1

p i,i-1 + p i,i + p i,i-1 =1

In every generation, one individual is picked at random for reproduction and another individual is 
picked at random for death. 



Difference between Invasion and Fixation

Invasion is a special case of Fixation

In deterministic simulations involving the replicator equation,

Invasion by type A ➔ frequency of A increases from a very small fraction x= << 1 ➔ x=1

Fixation of A ➔ frequency of A increases from any x ➔ x=1

In stochastic simulations like evolution by Moran process 

Invasion by type A ➔ frequency of A increases from x=1/N ➔ x=1

Fixation of A ➔ frequency of A increases from any x (such that 0 < x=#A/N  < 1) ➔ x=1

NOTE

The inability of A to invade a population of B does not mean that A cannot get fixed in the 
population if its initial frequency is sufficiently large. 



No. of A players = i; No. of B players = N-i.             Also assume A and B has the same fitness

Neutral Evolution via Moran Process in Finite Populations

Prob. of choosing A for both death and reproduction = (i/N)^2

Prob. of choosing B for both death and reproduction = ((N-i)/N)^2

Prob. of choosing A for reproduction and B for death = {i/N}{(N-i)/N}= p i,i+1

Prob. of choosing B for reproduction and A for death = {(N-i)/(N)}{i/N}= p i,i-1

If       is the fixation probability of A’s starting from a state with #A=i xi
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Pictorial algorithm for the Simulation of Moran Process: Neutral Evolution Case
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For the Neutral Evolution Case, invasion probability of a single mutant is inversely proportional to population size

Invasion probability of A: Invasion probability of B:

A-type B-type

Time=t+1 nA+1 nB-1

Time=t

Time

A picked for reproduction &  B for 
death

#
A

#
B

n
A

n
B

Suppose RN1=6 ; RN2=4

Pick Random members 

Repeat above steps as many times until #A=N or #B=N

Repeat simulation with same initial condition NT times to determine           and 
A


B



Neutral Evolution: A simple model without mutation

Time

Fitness of Fitness of=

Initial #
fixp =

#       +  #



Evolution with selection via Moran Process

Reproduction: Occurs with probability proportional to the fitness of the agent

Death: Occurs at random, independent of the fitness of the agent 
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For r> 1; as N➔ ∞ 𝑥1 ≡ 𝜌𝐴 ≃ 1 −
1

𝑟

➔ Invasion by a selectively advantageous mutant is not guaranteed even for large population sizes

r

2 0.5

1.01 0.016

1 0.01

1 Ax 
r

0.99 0.0058

0.9 0.000003

1 Ax 

Invasion Probabilities for N=100



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

A-type B-type

Time=1

Time

B picked for reproduction

Parent pop. Array (P) 

Time=1 Offspring pop. Array (O)

Suppose RN=3

Pick  a Random member 

Compare with <fitness> for reproduction: Pick RN between 0&1. If RN < normalized_fitness of B, then OK 

OK

Not OK

B becomes the seventh member of the Offspring pop. at t=2 

B becomes the seventh member of the Offspring pop. at t=1 

Offspring population at t=1 becomes the parent population t=2

Evolution by Moran Process

A picked for death at random

Parent pop. Array (P) Time=2

Repeat above steps to generate the parent population t=3 and so on

Note: If fitness of A is r1 and fitness of B is r2, 

normalized_fitness_of_A=r1/(r1+r2);  normalized_fitness_of_B=r2/(r1+r2)



Different possible outcomes of Evolution

No mutation
Selection with probability proportional to Fitness

Fitness of         > Fitness of       >   Fitness of     

Alternative outcome



Algorithm for Moran Process

Create an array for the population of size N. The array P should initially contain 1 type 0 and N-1 type 1

     Start loop over trials (Nt)
 
  Generate a uniformly distributed random number RN1 lying between 1 and N
  The corresponding member in the population array i.e. P[RN1] is marked for death
 
      Generate another uniformly distributed random number RN2 lying between 1 and N
           Generate a random number z between 0 and 1
             If P[RN2]=0 and z < r/(r+1) replace P[RN1] by 0
             If P[RN2]=1 and z < 1/(r+1) replace P[RN1] by 1
      Else Generate new RN2 by picking a random no. between 1 and N

  Repeat last 3 steps till a suitable individual is found for reproduction

       Calculate frequency of type 0 and type 1 in the population.
 
 Repeat above steps for next generation; Continue iterations until freq. of type 0 is either 0 or 1
          
         Write frequencies of type 0 and type 1 vs time in a file for any one trial

     Close loop over trials

Calculate fixation probability of type0 by counting how many times type 0 gets fixed in the population.



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

A-type B-type

Time=1

Time

B picked for reproduction

Parent pop. Array (P) 

Time=2 Offspring pop. Array (O)

Suppose RN=3

Pick  a Random member 

Compare with <fitness> for reproduction: Pick RN between 0&1. If RN<normalized_fitness of B, then OK 

OK

Not OK

B becomes the second member of the Offspring pop. at t=2 

B becomes the second member of the Offspring pop. at t=2 

Repeat above steps to fill up the offspring pop. at t=2 

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

Offspring pop. Array (O) at t=2

Parent pop. Array (P) at t=3 

Copy 

Wright- Fischer process: Evolution by updating whole population every generation



Quasi-Species Equation: Evolution with Mutation and selection
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Useful in describing evolution of population of sequences where 

❖Variations between sequences arise as a result of errors during replication

❖ Presence of replication errors shifts the equilibrium from a pure state (survival 
of the fittest) to a mixed state where multiple quasi-species can coexist

❖The equilibrium state does not necessarily maximize average fitness

Selection without mutation
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Adaptation: Generic case

Well adapted population 
clustered around the peak Initial population distribution 

Sequence Space

Fitness

Sequence Space

Fitness

Evolution

Size of the circles represent the frequency of the corresponding sequence in the population 

Below Error Threshold : Adaptive evolution

Sequence Space

Fitness

Sequence Space

Fitness

Evolution

u<1/L

Eq. freq. of 
Type 0



Above Error Threshold : Non-adaptive evolution

Sequence Space

Fitness

Evolution

u>1/L

Fittest Sequence Type (Type 0) lost from the population

Sequence Space

Fitness

Eigen’s Paradox

For a replicating molecule to be viable and not be subject to mutational degradation (i.e. evade the 
error threshold problem), its sequence length should be small.

For a replicating molecule to encode enzymes (i.e. to be functional), its sequence length should be 
substantially large. 

How can functional molecules with long sequences survive in the population? 



How does Mutation Rate per site (u) across organisms compare with the Error Threshold (1/L) ? 

Note: Organisms remain viable only if uL<1  

For polio virus: uL=0.814  



RNA virus Error Catastrophe

Anti-viral effect manifest by enhanced mutagenesis of the Polio virus genome 

High mutation rates ➔ loss of viability of the Polio virus genome 

Polio viruses reside near the edge of the Error Threshold

Modest (less than 2-fold) increase in mutation rate ➔ 50% of the viral population becomes unviable

4-fold increase in mutation rate ➔ 95% of the viral population becomes unviable. 

High mutation rate produces Polio-virus mutants having low infectivity

 The amount of infectious virus genomes in the population is reduced several fold 
as concentration of Ribavarin increases. 

Ref.: Crotty, Cameron, Andino; PNAS 98, 6895-6900 (2001) PFU: plaque forming unit

Untreated

100

400

1000



Nowak, M; Evolutionary Dynamics: Exploring the equations of life; Belknap Press (2006)

Traulsen, A. & Hauert, C. Stochastic evolutionary game dynamics; Rev. Nonlinear Dynam Complex. 2, 25–61 (2009).

1’st lecture: Key Results

;
1

1
N

x
A

= Neutral Fixation probability of A starting from an initial configuration with a single A 

Higher fitness type is not guaranteed to take over the population 
but

more likely to do so than dictated by chance.

Competition between two types A and B with different fitness 

References
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Evolution with Frequency-dependent Fitness

Individuals have fixed strategies  that are known to other individuals in the population. 

Random interactions occur with other individuals (including those belonging to the same type) 

In the Biological Context 

strategy                phenotype                        and                              payoff              fitness  

A component of Fitness of an individual is determined by the cumulative payoff to that individual 
resulting from the encounter with other individuals of the same type as well as different types.

The population is updated every generation when individuals reproduce with 

Probability proportional to   fitness

Fitness is a measure of reproductive success



Evolutionary Games in N➔∞ limit: A quick review

Competition between different types of individuals with frequency-dependent fitness can be thought 
of as a game in which each type employs a distinct strategy and gets a certain payoff in an encounter 
with another individual. 

Fitness is a measure of reproductive success and strategies that yield higher cumulative payoff, 
reproduce at a faster rate.

Consider a population with two types of individuals A and B whose fitness are fA and fB respectively.

Assuming linear dependence of fitness on frequencies xA ,xB ;

fA = a xA + b xB

fB = c xA + d xB 

Can be written in matrix notation as f = Mx, f=[fA ,fB ]; x=[xA ,xB ]

where M is the payoff matrix. 

a b

c d

A            B

A

B
M=

E(A,A)=a : Payoff to A when it interacts with another A

E(A,B)=b : Payoff to A when it interacts with B

E(B,A)=c : Payoff to B when it interacts with A

E(B,B)=d : Payoff to B when it interacts with another B

George Price John Maynard-Smith

➔ ( )i ij jf x M x=

( )i
i i

dx
x f

dt
= −



Replicator Dynamics

Case 1: a>c; b >d ➔ Payoff to A > Payoff to B : A dominated B i.e. A is a Nash 

Only one stable equilibrium solution exists. 

Case 2: a<c; b<d ➔ Payoff to B > Payoff to A : B dominates A i.e B is a Nash

Only one stable equilibrium solution exists. 

Case 3: a>c; b<d ➔

3 equilibrium solution exists; A and B are bistable, mixed-state solution is unstable. 

Both A and B are Nash

Case 4: a<c; b>d ➔ 

Only one stable equilibrium solution exists. A & B stably co-exist. Neither A nor B is a Nash

x=0, 1 are unstable equilibrium solutions. 

A B

x=1 x=0

A B

x=1 x=0

𝑥 = 0, 1, (d−b)/{(a−c)+(d−b)}

A Bx
x=1 x=0𝑥 = (d−b)/{(a−c)+(d−b)}

𝑥 = 0, 1, (d−b)/{(a−c)+(d−b)}

A B

x=1 x=0

x

𝑥 = (d−b)/{(a−c)+(d−b)}

a b

c d

A            B

A

B
M=

ሶ𝑥𝐴 = 𝑥𝐴(1- 𝑥𝐴)[(𝑎 − 𝑏 − 𝑐 + 𝑑)𝑥𝐴 + 𝑏 − 𝑑]

PD game:

Harmony game:

Stag-Hunt game/
Coordination game:

Chicken game/
Snowdrift game:



Cooperation and Conflict

©Bill Watterson

Altruistic behaviour comes at a cost

Selfish behaviour does not entail a cost

but

How do we explain the survival of altruistic agents?

A fundamental problem in evolution



Behaviour affecting Evolution of Cooperation & Conflict

How is evolution of our “behaviour” affected by

❖ Size and underlying structure of the social network in which we are embedded

❖ The nature and behaviour of connected neighbours

❖ The economic and social environment

❖ Individual aspiration levels

❑ How do individuals incorporate these factors into their learning strategies?

❑ How do these factors shape collective (population-level) outcomes ?

❑ Can we socially engineer situations where cooperation thrives?

How does individual “behaviour” evolve during a social conflict?

Big Questions





Nowak; Science (2006)
Rand & Nowak

Trends in Cognitive Sciences (2013)



Nash Equilibrium

A strategy is said to be a Nash Equilibrium if the person adopting the strategy cannot 
increase his payoff by changing to a different strategy. 

A is a strict Nash Equilibrium if a > c

A is a Nash Equilibrium if a ≥ c 

B is a strict Nash Equilibrium if d > b

B is a Nash Equilibrium if d ≥ b 

Evolutionarily Stable Strategies (ESS)

Consider a large population of individuals employing strategy A. If a mutant employing 
strategy B  is introduced into the population, can the mutant invade the population 
consisting primarily of A-type players? 

In the infinitely large population size limit, let the number of B mutants (invaders) be infinitesimally 

small with frequency given by xB =ε . Frequency of A’s: xA =1- ε 

fA = a (1- ε) + b ε ; fB = c (1- ε) + d ε 

B cannot invade A only if fB < fA i.e. a (1- ε) + b ε > c (1- ε) + d ε 

Since ε is very small, neglecting terms of order ε gives a>c

If however, a=c, fA > fB  gives b>d

a b

c d

A            B

A

B
M=

Condition for A to be an ESS in infinite population limit: a>c or if a=c, b>d 



Key Questions

How is the concept of an ESS modified for finite populations?

How does population size affect the survival of cooperative strategies ?



For the Payoff Matrix
a b

c d

C            D

C

D
M=

b<c and a>d

No. of C players = i 

No. of D players = N-i

Games in Finite Populations

Prob. that C interacts with another C = (i-1)/(N-1)

Prob. that C interacts with another D = (N-i)/(N-1)

Prob. that D interacts with another C = i/(N-1)

Prob. that D interacts with another D = (N-i-1)/(N-1)

Expected payoff to C when it interacts with C = a(i-1)/(N-1)

Expected payoff to C when it interacts with D = b(N-i)/(N-1)

Total expected payoff for C : Fi = (a(i-1)+b(N-i))/(N-1)

Total expected payoff for D : Gi = (ci+d(N-i-1))/(N-1)

Define fitness of C as : fi = 1- w + w Fi ; fitness of D as : gi = 1- w + w Gi 

w ➔ intensity of selection

w=1 ➔ strong selection; fitness completely determined by interactions

w=0 ➔ no selection between C & D

w<<1 ➔ weak selection



Revisiting the ESS condition for large populations

When can a population of D-type players avoid being invaded by a single mutant C-type?

Selection opposes C invading D: Fitness of a single C-type < Fitness of (N-1) D-types

                            ➔                                             ➔  For N>>1: b < d  ; For N=2: b<c 

When can a population of C-type players avoid being invaded by a single mutant D-type?

Selection opposes D invading C: Fitness of a single D-type < Fitness of (N-1) C-types

                                  ➔                                          ➔  For N>>1: c < a; For N=2: c<b

b(N-1) < c + d(N-2)
1 1f g

1 1N Ng f− − c(N-1) < b + a(N-2)

Infinite population result
D is an ESS iff:
d<b or if b=d, a<c  

Infinite population result
C is an ESS iff:
a<c or if a=c, b>d  

Essential to consider fixation probability in finite populations to determine the ESS

1

C N
   Selection favours C replacing D

Selection opposes C replacing D
1

C N
  

a b

c d

C            D

C

D
M=
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In the limit w➔0, leads to the inequality 

a(N-2) + b(2N-1) > c(N+1) + d(2N-4) which in the limit N>>1,reduces to a + 2b > c + 2d 

Moran Process in Games in Finite Populations

C’s and D’s are picked for reproduction with a probability proportional to their mean fitness and for death 
randomly.

Probability of picking C for reproduction and D for death : 

Probability of picking D for reproduction and C for death : 
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For fixed, a,b,c,d, the above inequality gives a lower bound on the population size N

N > Nc 
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dcba
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Nc is the minimum size of the population necessary for selection to favour fixation of cooperators
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1
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NC
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ND
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Condition on the mixed state 
equilibrium frequency obtained 
from replicator dynamics

x*

1/3 Law: Condition for the invasion probability of C > neutral invasion probability



Risk Dominance in Evolutionary Games
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Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and d>b then which 
strategy has a higher fixation probability ?

a b

c d

C            D

C

D
M=

Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and d>b then which 
strategy has a higher fixation probability ?
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Fixation Probabilities and the 1/3 Law for w<<1 and N>>1 

x -- Unstable mixed state equilibrium

C is Risk Dominant if                      ➔ a + b > c + d    when w<<1 and N>>1

D is Risk Dominant if 

❖ A strategy is Risk Dominant if the total payoff for that strategy is larger than the total payoff for every 
other strategy.

❖ The Risk Dominant strategy has a greater fixation probability in the limit w<<1 and N>>1


DC




CD



CD x

x=1x=0

x



If a>c and b>d, C is a strict Nash equilibrium as well as an ESS and selection will always 
favour fixation of C and oppose fixation of D in a finite population of any size.

If a>c and b<d, both C and D is an ESS.  According to the infinite population analysis, a small 
fraction of C mutants cannot invade a population consisting predominantly of D players.

What happens for finite populations ?

Condition for a strategy to be an ESS has to be modified for finite populations. 

In a finite population of size N, a strategy C is an ESSN if 

(i) A single mutant of any other strategy has lower fitness than C 

(ii) The fixation probability of every other strategy must be smaller than the neutral fixation 
probability and the fixation probability of C must be larger than the neutral fixation 
probability 

C is an ESSN if GN-1 < FN-1 and                 and  

 

D is an ESSN  if F1 < G1 and                and 

NC

1


ND

1


ND

1


NC

1


Evolutionary Stability in Finite Populations



Evolutionary Stability in Finite Populations: Examples

a b

c d

C            D

C

D
M=

For D to be an ESS:

Selection opposes C invading D: Fitness of a single C-type < Fitness of (N-1) D-types

                            ➔                                         

Selection opposes C replacing D: 

     a(N-2) + b(2N-1) < c(N+1) + d(2N-4)    for w<<1

For N>>1: b < d  and  a+b<c+d

For N=2:                 ➔ b<c   and            ➔ b<c

b(N-1) < c + d(N-2)1 1f g

NC

1


1 1f g
1

2C
 

C

D

C

D

C         DC         D

1 1f g 1 1f g

NC

1


NC

1


➔ -15<N ➔ N>15

➔ N>17➔ N<53

Infinite population inference
Both C & D are an ESS 

In finite populations
D is an ESS only for N<53 

Examples

Infinite population inference
Only D is an ESS 

In finite populations
D is an ESS only for N>17 



Fixation Probability and Risk Dominance using the Fermi update rule

Payoff Comparison method of population update

C : Focal player
D : Role model

𝑃(𝐶 → 𝐷) =
1

1 + 𝑒−𝑤(𝐹𝐷−𝐹𝐶)

Limiting case:             , If               , C is replaced by D with probability 1    𝒘 → ∞ 𝐹𝐷 > 𝐹𝐶

If               , C is retained with probability 1    𝐹𝐷 < 𝐹𝐶

Blume 1993, Szabo & Toke 1998
Traulsen, Pacheco, Nowak 2007
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Fixation Probability calculation using the Fermi update rule
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Fixation probability starting from a state with i C’s

Equivalent to fixation probability in the constant 
selection case with 

Payoff difference is the same regardless of which 
strategy one of the players unilaterally switch from
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C            D

C
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➔ Invasion probability of C



TFT can Invade ALLD in a Finite Population 

For the Payoff Matrix

ma b+(m-1)d

C+(m-1)d md

TFT

ALLD

M =
No. of TFT players = i 

No. of ALLD players = N-i

c>a>d>b

TFT                  ALLD

According to the infinite population analysis,  for m > (c-d)/(a-d), both TFT and ALLD are 
an ESS and each strategy is stable against invasion by either strategy.

In finite populations, TFT can get fixed in the population even if FTFT < GALLD provided  NTFT

1


If Fi and Gi is the fitness of i TFT and (N-i) ALLD players,

F1 = FTFT =b+(m-1)d and G1=GALLD=(c+(m-1)d + md(N-2))/(N-1)

1
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For w➔0 and fixed N,                  gives a lower bound on m:  
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For N>>1, lower bound on m:  
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−
when a=3, b=0, c=5, d=1

When N=2, m>∞,             When N=3: m>10  When N=4: m>6

1

1
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For fixed m,                  gives a lower bound on N:  NTFT

1
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N

For fixed m=10 : N > 3 (if a=3,b=0,c=5,d=1)  



❖ Initial configuration: Specify initial distribution of different strategies on a network

❖ Payoff calculation: Interaction and payoff calculation for every member of the population

❖ Strategy update: Update the strategies of the agents using specified deterministic or stochastic update rules

Structure of an agent-based simulation (ABS) of evolutionary games on networks



Spatial Games 

Rules for Deterministic Spatial Games

1. The payoff to each player is given by the total 
payoff obtained by playing each of its eight 
neighbours. 

2. Rules for updating a cell are deterministic: 
The focal (central) cell is replaced either by itself or 
one of the eight neighbouring cells (Moore 
neighbourhood) depending on which has the 
highest payoff. 

3. All cells are updated simultaneously (synchronous 
updating) 

4. Periodic boundary condition is used to ensure all 
cells are treated in the same way and there are no 
boundary effects. 

The survival of a cell depends on its own strategy, the strategy of 
its eight neighbours as well as the strategies of their neighbours 
➔ 25 cells in all

As ➔0, the focal cell (D) has a total payoff = 4b since it is 

surrounded by 4 C’s and 4 D’s.

If 4b>7, central cell remains a Defector in the next generation

If 4b<7, central cell transforms from Defector to Cooperator in 
the next generation

Cooperator Defector

4b b

2b

2b4b

47

5

3

b-Measure of benefit gained from exploiting an 
altruistic partner relative to the benefit gained from 
cooperating with an altruistic partner

Nowak 2006

a=1,b=0,c=b,d=



Spatial Games 

Algorithm for Stochastic Spatial Games

1. The payoff to each player is given by the total 
payoff obtained by playing each of its eight 
neighbours. 

2. Rules for updating a cell are stochastic: 

❖ The fitness of all altruists (fC) and all selfish (fD) 
agents in the neighbourhood of each focal player is 
separately calculated.

❖ The fractional fitness of the altruists (FC) and 
selfish agents (FD) is calculated by dividing fC and 
fD by the total fitness (fC+fD). FC=fC/(fC+fD) etc

❖  Generate random number (RN) between 0 & 1.
       IF RN <minimum(FC,FD)
 replace focal cell with C if FC<FD
          with D if FD<FC
       ELSE
 replace focal cell with C if FC>FD
          with D if FD>FC

3. All cells are updated simultaneously (synchronous 
updating) 

4. Periodic boundary condition is used to ensure all 
cells are treated in the same way and there are no 
boundary effects. 

Cooperator Defector

b-Measure of benefit gained from exploiting an 
altruistic partner relative to the benefit gained from 
cooperating with an altruistic partner

Nowak 2006



Nowak 2006

Colour Code:

Blue : C that was C earlier.

Green: C that was D earlier.

Red: D that was D earlier.

Yellow: D that was C earlier

Nowak 2006

Time evolution for b=1.65



Evolutionary Graph Theory 

Questions

• How does the fixation probability of a mutant change when the population is structured i.e. only 
certain members of the population can replace others during the course of evolution. 

• If a structured population is represented by a graph, with vertices representing members and 
edges representing interaction between corresponding members, is it possible to characterize all 
graphs that have the same evolutionary dynamics. 

•  Can certain structured populations increase the fixation probabilities of advantageous mutants ?

• Can certain structured populations eliminate the effect of selection ? 

Unstructured Population Structured Population 

i

j

k

There is an edge between any two vertices

All edges have the same weight

Not all vertices are connected by an edge

The edges can have different weights

i can replace j and j can replace i

k can replace i but i cannot replace k



Structured Population 

i

j

k

A graph (network) can be completely specified by a stochastic matrix W=[wij] 

W=[wij] is an N x N stochastic matrix that determines the probability of replacing the j’th 
member of the population by the i’th member.

wij =0 if there is no directed edge from i to j ➔ offspring of i cannot replace j 

Formulating Evolution on Networks 

Structured Population 

i

j

k

Population composition changes as the population evolves but the rules for replacement via the 
Moran process remain the same. 

Evolution 


=

=
N

j
ijw

1

1 since the i’th member picked for reproduction has to replace someone



Directed Cycle

Fixation Probability of a mutant that arises in a structured population

The i’th member can only be replaced by the 
member preceding it i.e the (i-1)th member.

Fitness of B (blue) = r
Fitness of A (red) = 1

Due to the nature of the structured population (only nearest neighbour replacements are 
allowed), there can be only one cluster of B’s. Fragmentation of clusters into two or more sub-
clusters is not possible. 

Fixation probability of B on a directed cycle is identical to the fixation probability of B in the 
Moran process (unstructured population)

NN
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k
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i

B r

r

/11

/11

1

1
1
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LineFixation probability of a mutant randomly placed on a “Line” graph

Rules of Replacement: Every member is replaced only by the 
member preceding it. The last member replaces itself.

If the mutant B arises at any position other than the first position 
in the line, it will be replaced by A and become extinct.

Probability that B arises in any positions from i=2…N
is  (N-1)/N since there are N-1 such positions. 

Probability that B appears in position 1: 1/N

The mutant B will definitely be fixed if it arises in position 1

Fixation probability of B:  

Fixation probability differs from the Moran process and is 
independent of the fitness of members.

NB

1
=



Burst

Invasion probability of a mutant randomly placed on a “Burst” graph

Rules of Replacement: Every member is replaced only by the 
member at the centre with equal probability. The central member 
cannot be replaced by any other peripheral member or itself.

If the mutant B arises at any position other than the central 
position in the star, it will be replaced by the A at the centre and 
become extinct.

Probability that B arises in any positions from i=2…N
is  (N-1)/N since there are N-1 such positions. 

Probability that B appears in the central position: 1/N

The mutant B will definitely be fixed if it appears at the centre of 
the star

Invasion probability of B:  

Invasion is independent of the fitness of members and equivalent 
to that of a neutral mutant in the Moran process.

NB

1
=

Both the “Line” and ”Burst” graphs are suppressors of selection



Graphs which are suppressors or amplifiers of selection

If the fixation probability of a single mutant with a relative fitness r on the structured graph G is G

NB r

r

/11

/11

−

−
= Invasion probability of a single mutant with a relative fitness r in a Moran process


BG

If                     when r>1 ➔ G is an amplifier of selection. G favours selection over drift

If                     when r>1 ➔ G is an suppressor of selection. G favours drift over selection

 


BG



If                     when r>1 ➔ G is the strongest possible suppressor of selection.
 NG

1
=

All Graphs with a single root have the same invasion probability: NG

1
=



Evolution of Cooperation on Graphs

❑ Caley Tree/Bethe Lattice 

❖ Regular graph with each node having k neighbours

❖ Graph does not have any loops 

❑ Theoretical analysis valid for
  

❖ N>>k

❖ Weak selection limit holds i.e. w<<1 when separation of time-scales is possible

❖ Uses the pair approximation which is valid only for Bethe lattices i.e. graphs without 
any loops.

Pair Approximation ➔ frequencies of larger clusters obtained from pair frequencies  

Caley Tree/Bethe Lattice with k=3

Image Source: Wikipedia
Constraints on the Theoretical Formulation



Condition for Spread of Cooperation on Networks

Birth-Death (BD) updating:
1

D CN
   Selection never favours fixation of cooperators 

Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

Arrow indicates b/c=k. Theoretical Prediction : b/c > k ➔  
1

C DN
  

❖ Discrepancy with theoretical prediction observed for non-regular graphs
❖ Discrepancy increases with increasing k but decreases with increasing N



Realm of Possibilities: A biased sample

❖ Role of different forms of learning during strategy update

❖ Switching between different games: Stochastic games on networks

❖ Multiple games on multiplex networks

▪ Social Learning
▪ Bayesian Learning
▪ Reinforcement Learning
▪ Heterogeneous learning strategies 

Pathak, Verma, Ram and SS; Proc. Royal Society B (2020)
Anuran Pal and SS; Chaos (2022)
Patra, SS, Paul, Chakraborty, NJP (2024)
Amit Basak and SS; PLoS Computational Biology (2024)

Hilbe et al. Nature (2018)
Su et al. ; PNAS (2019)



The possibilities are only limited by your imagination…….

©Bill Watterson
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