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rock, pop, metal,
electronic, hip-hop 
and rap, jazz, folk, 
country and world 
music, classical 
music, reggae and 
ska, unclassified.

Similarity Network of Musicians



Can you draw this 
• without taking your 

pen off the paper, and
• without crossing any 

path twice?



Can you draw this 
• without taking your 

pen off the paper, and
• without crossing any 

path twice?

What about this?



THE SEVEN BRIDGES OF KÖNIGSBERG



EULER’S SOLUTION IN 1736

Each land mass can be viewed as a 
“vertex” and each bridge as a “link”.
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Only terminal vertices can have an 
odd number of links.



GRAPHS AND NETWORKS

Euler’s work laid the foundation 
for the field of graph theory.

Any network of connections 
between entities can be analysed 
by viewing it as a graph that 
describes the manner in which a 
set of objects are connected.

A network can simply be thought 
of as a graph where the objects 
and relations have certain 
attributes.

image: http://social-dynamics.org/a-gephi-visualization-of-gephi-on-twitter/



FUNDAMENTAL CONCEPTS:
NODES AND LINKS

1 NODE DEGREE

1 1

2 3

3 2

4 3

5 3
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Nodes (or “Vertices”) Links (or “Edges”)

The total number 
of links associated 
with a node it its  
degree ( ).k

k = 1 k = 2

k = 3



EDGE WEIGHT
1 1
2 2
3 3
4 1
5 2
6 0.5

FUNDAMENTAL CONCEPTS:
DIRECTED AND WEIGHTED NETWORKS
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Directed network
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Weighted network

1
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In a directed 
network a node 
can have an in-
degree different 
to its out-degree

kout = 1
kin = 1

ktotal = 2

NODE IN-
DEGREE

OUT-
DEGREE

TOTAL 
DEGREE

1 0 1 1

2 1 2 3

3 1 1 2

4 2 1 3

5 2 1 3



SOME OTHER TYPES OF NETWORKS
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4
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Networks that describe relations between 
two different classes of objects are known 
as Bipartite networks.

Networks in which there may be different 
types of links between nodes are known as 
Multiplex networks.
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Bipartite network Multiplex network



FUNDAMENTAL CONCEPTS:
ADJACENCY MATRIX
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Adjacency matrix

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1

2

3

4

5

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 1
3 0 0 0 0 1
4 0 0 1 0 0
5 0 0 0 1 0

target

so
ur

ce

The Adjacency matrix  
specifies all connections 
in the network. If nodes  
and  are connected then 

 else .

A

i
j

Aij = 1 Aij = 0

In an undirected 
network, the degree  
of a node  can be 
obtained via:

ki
i

ki = ∑
i

Aij = ∑
j

Aij



FUNDAMENTAL CONCEPTS:
DENSITY AND SPARSITY

1 2 3 4 5 6 7 8
1 0 0 1 0 1 0 0 0
2 0 0 0 1 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 1
5 1 0 0 0 0 1 0 1
6 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1
8 0 0 0 1 1 0 1 0
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8
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Dense network

Sparse network
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1 2 3 4 5 6 7 8

1 0 1 1 1 1 1 0 0
2 1 0 1 1 1 0 1 1
3 1 1 0 1 0 1 1 0
4 1 1 1 0 1 1 1 1
5 1 1 0 1 0 1 1 1
6 1 0 1 1 1 0 1 0
7 0 1 1 1 1 1 0 1
8 0 1 0 1 1 0 1 0

The density  can be 
understood as the 
probability that there 
exists a link between 
a pair of nodes .

ρ

(i, j)

A network is said to 
be dense if “most” of 
the possible links are 
present, and sparse if 
“most” are absent.



A walk is a route along the edges of a 
network.  In an undirected network, an edge 
can be crossed in either direction.

The length of a walk is the number of hops 
taken along the route.

A path is a self-avoiding walk, i.e. one in 
which no edge is traversed twice.

FUNDAMENTAL CONCEPTS:
WALKS AND PATHS
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Walk

Path
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The shortest path length  between two 
nodes  and  is the minimum number of links 
one has to cross to travel between them.

dij
i j

FUNDAMENTAL CONCEPTS:
SHORTEST PATH LENGTH

1

2

3

4

5

i-j 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
dij 1 3 2 2 2 1 1 1 1 1

1

2

3

4
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Can you work out what the shortest path 
length is between every pair of nodes of this 
directed network?



The diameter  of a network is the 
“longest shortest path” between all pairs of 
nodes  and  in the network : .

dmax

i j max
(i,j)

(dij)

FUNDAMENTAL CONCEPTS:
DIAMETER
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Can you work out the diameter of this 
directed network?

dmax = 3

dmax = ?



FUNDAMENTAL CONCEPTS:
AVERAGE PATH LENGTH

The average path length is the average of the shortest path lengths 
between every pair of nodes in the network.

For a network comprising  nodes, if  is the shortest number 
of steps between nodes  and , then the average path length is:

N d(i, j)
i j

L =
1

N(N − 1) ∑
i≠j

d(i, j)

What is the 
average path 
length of these 
networks?



MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH

1

2

3

4

5

#walks of length 1

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1

2

3

4

5

1 2 3 4 5
1 1 0 0 1 1
2 0 3 2 1 1
3 0 2 2 1 1
4 1 1 1 3 2
5 1 1 1 2 3

#walks of length 2

The total number of 
walks  of length  

between a pair of 
nodes  is just  

N(1)
ij 1

(i, j) Aij

How does one find 
the total number of 
walks  of length  

between pair ?

N(d)
ij d

(i, j)



1

2

3

4

5

In order to have a walk of length  
between nodes , we consider 
all the nodes of distance  from 
node # , and count how many of 
them are distance  from node # .

2
(2,3)

1
2

1 3
i.e.  

N(2)
23 = ∑

k

A2kAk3

N(d) = A A… A
d

= Ad

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH



MORE ON PATH LENGTHS:
BREADTH-FIRST SEARCH

To find the shortest path 
between nodes , we 
can follow the breadth-
first search algorithm:

(i, j)
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1. Find the neighbours (blue) of node  (green) 
from the adjacency matrix .

2. Remove the green node and make the blue 
nodes green.

3. Find the neighbours of the green nodes 
(excluding removed ones).

4. Repeat as long as there are neighbours.

i
A

distance  from node #  1 7 distance  from node #  2 7 distance  from node #  3 7



FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFICIENT

In real networks, one often finds that nodes that form links with one another 
also form links with those that the neighbour link to.

This can be measured by the (global) clustering coefficient: the fraction of paths 
of length  that are “closed” (the three nodes of the path are all connected).

A triangle of nodes connected to each other contain  closed paths.

2

3

1

2

3

4

5

closed

no
t c

los
ed

Thus, the global clustering coefficient is:

where a connected triple is a path of length  
(either closed or not closed).

C =
#triangles × 3

#connected triples

2



FUNDAMENTAL CONCEPTS:
LOCAL CLUSTERING COEFFICIENT

The (local) clustering coefficient of a node 
measures the extent of connectivity of its 
local neighbourhood, i.e. how close they are 
to being a “clique” or a complete subgraph.

If a node  in an undirected network has  
neighbours, there can be a maximum of 

 links between them.

The local clustering coefficient  of node  is 
the fraction of these links that exist.

i ki

ki(ki − 1)/2

Ci i ?
?

?

1

2

3

4

5

blue nodes form a clique 



FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFICIENT

Calculate the clustering coefficients for a node in the following networks:

ki = 4 ki = 8 ki = 6

What is the 
clustering 
coefficient of 
the blue nodes?



FUNDAMENTAL CONCEPTS:
COMPONENTS

In an undirected 
network, a pair of 
nodes  are 
connected if there 
exists a path (of any 
length) between them.

(i, j)

1

4

2

6

8

3

7

5
1 2 3 4 5 6 7 8

1 0 1 0 1 0 0 0 0
2 1 0 1 1 0 0 0 0
3 0 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 0 0 0 0 1 1 1
6 0 0 0 0 1 0 1 1
7 0 0 0 0 1 1 0 1
8 0 0 0 0 1 1 1 0

A component is a 
subset of the network 
in which all nodes are 
connected.

A bridge is a link that, 
when cut, causes the 
network to be 
disconnected.
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In an directed 
network, a strongly 
connected component 
is one where exists a 
path between all 
constituent nodes.

FUNDAMENTAL CONCEPTS:
COMPONENTS
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A weakly connected 
component is a 
connected component 
that exists if one were 
to ignore the directed 
nature of the edges.

Weakly connected 
component

Strongly connected 
component

The in-component of a 
node in a directed 
network is the set that 
can reach it, and its 
out-component is the 
set that can be reached 
from it.
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2

3

4

5

in out



FUNDAMENTAL CONCEPTS:
COMPONENTS

The image on the right 
displays the adjacency matrix 
of a large undirected network.

White squares represent 
connections between nodes, 
while black represents the 
absence of a link.

Can you guess the number of 
connected components of this 
network? 😳

nodes →

nodes →



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

For the case of undirected networks with no self-edges, one can define the 
graph Laplacian  as follows:  or , where the 
degree matrix  contains the degree along the diagonal and  
elsewhere.

If the network is weighted, the definition is as follows: 

L Lij = ki δij − Aij L = D − A
Dij = ki δij 0s

Lij = ∑
j

Aij δij − Aij

1

2

3

4

5

Adjacency matrix

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1 2 3 4 5
1 1 -1 0 0 0
2 -1 3 0 -1 -1
3 0 0 2 -1 -1
4 0 -1 -1 3 -1
5 0 -1 -1 -1 3

graph Laplacian



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

The number of zero 
eigenvalues of the 
laplacian indicate the 
number of connected 
components of the 
network.

1

2

3

4

5

1 2 3 4 5
1 1 -1 0 0 0
2 -1 3 0 -1 -1
3 0 0 2 -1 -1
4 0 -1 -1 3 -1
5 0 -1 -1 -1 3

LA

1

4

2

6

8

3

7

5
1 2 3 4 5 6 7 8

1 2 -1 0 -1 0 0 0 0
2 -1 3 -1 -1 0 0 0 0
3 0 -1 2 -1 0 0 0 0
4 -1 -1 -1 3 0 0 0 0
5 0 0 0 0 3 -1 -1 -1
6 0 0 0 0 -1 3 -1 -1
7 0 0 0 0 -1 -1 3 -1
8 0 0 0 0 -1 -1 -1 3

A

B
LB

, , , , 

, , , , , , , 

λA = eig(LA) =
{0 0.83 2.69 4 4.48}

λB = eig(LB) =
{0 0 2 4 4 4 4 4}



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

1 -1 0 0 0

-1 3 0 -1 -1

0 0 2 -1 -1

0 -1 -1 3 -1

0 -1 -1 -1 3

2 -1 0 -1 0 0 0 0
-1 3 -1 -1 0 0 0 0
0 -1 2 -1 0 0 0 0
-1 -1 -1 3 0 0 0 0
0 0 0 0 3 -1 -1 -1
0 0 0 0 -1 3 -1 -1
0 0 0 0 -1 -1 3 -1
0 0 0 0 -1 -1 -1 3

1

1

1

1

1

=

1

1

1

1

1

λ

1
1
1
1
0
0
0
0

1
1
1
1
0
0
0
0

= λ

If  is an eigenvector of the Laplacian 
and  is its associated eigenvalue, 
then

A Laplacian with a single component, 
has an eigenvector  
with .

A Laplacian with a two components, 
has  and 

 both with 
.

v
λ

Lv = λv

v = [1,1,…]T

λ = 0

v = [1,1,…,0,0,…]T

v = [0,0,…,1,1,…]T

λ = 0
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4

5

On the right are the 
list of all possible 
shortest paths between 
every pair of nodes in 
the above network.

FUNDAMENTAL CONCEPTS:
BETWEENNESS CENTRALITY

SHORTEST PATHS

1-2 {1,2}
1-3 {1,2,5,3}, {1,2,4,3}
1-4 {1,2,4}
1-5 {1,2,5}
2-3 {2,4,3}, {2,5,3}
2-4 {2,4}
2-5 {2,5}
3-4 {3,4}
3-5 {3,5}
4-5 {4,5}

To find the 
betweenness 
centrality of a 
node, we count 
the fraction of 
times it appears in 
the shortest paths 
between other 
nodes.



SHORTEST PATHS

1-2 {1,2}
1-3 {1,2,5,3}, {1,2,4,3}
1-4 {1,2,4}
1-5 {1,2,5}
2-3 {2,4,3}, {2,5,3}
2-4 {2,4}
2-5 {2,5}
3-4 {3,4}
3-5 {3,5}
4-5 {4,5}

FUNDAMENTAL CONCEPTS:
BETWEENNESS CENTRALITY

OCCURRENCES CB

1 0 0

2 2/2 + 1 + 1 3

3 0 0

4 1/2 + 1/2 1

5 1/2 + 1/2 1

If  is the no. of 
shortest paths from 
 to , and  is 

the number of these 
containing node , 
then:

Is the betweenness 
centrality.

σst

s t σst(v)

v

CB(v) = ∑
s≠t≠v

σst(v)
σst



EXERCISES

1. Find the average degree of the 
network.

2. Find the shortest path length 
between nodes .

3. Find the diameter of the network

4. Find the number of walks of length 
 between nodes .

5. Find the clustering coefficient of 
nodes .

6. Find the global clustering coefficient.

7. Find the betweenness centrality of 
nodes .

3 & 4

5 2 & 3

1 & 8

3 & 40

1

2

3

4

5
6

7

8

9



WHAT DO THESE TWO HAVE IN COMMON?



image: https://oracleofbacon.org

Both their names are 
popularly associated with 

the concept of “six 
degrees of separation”



“The worker knows the manager in the shop, who 
knows Ford; Ford is on friendly terms with the 
general director of Hearst Publications, who last 
year became good friends with Árpád Pásztor, 
someone I not only know, but is to the best of my 
knowledge a good friend of mine - so I could easily 
ask him to send a telegram via the general director 
telling Ford that he should talk to the manager and 
have the worker in the shop quickly hammer 
together a car for me, as I happen to need one.”

Frigyes Karinthy, “Láncszemek (Chains)” (1929).

“Everybody on this planet is separated by only six 
other people. Six degrees of separation. Between us 
and everybody else on this planet. The president of 
the United States.  A gondolier in Venice. Fill in the 
names.”

John Guare, “Six Degrees of Separation” (1990).



MILGRAM’S LETTER EXPERIMENT
Information packets were sent to 296 random 
individuals in Nebraska and Kansas.

They were asked to forward the letter to 
someone who they think might know a 
specified person in Boston (details of the 
person were mentioned).

Of the letters that reached the final target, the 
average path length was .∼ 5.2

image [left]: Barabási, A.-L., “Network Science” (http://networksciencebook.com/)



A regular graph has high clustering coefficient  and high average path 
length .  A random graph has the opposite properties.

Watts and Strogatz (1998) suggested a procedure for obtaining 
networks with properties of both regular and random networks:

• Start with a regular graph where each node has  neighbours.

• Cycle through each node, and consider the  rightward links.

• Randomly rewire each of these links with probability , avoiding 
self-loops and duplicate links.

C
L

K
K/2

p

SMALL 
WORLD

NETWORKS

image:  Watts, D. & Strogatz, S., Nature 393, 440-442 (1998).



For an intermediate  the 
networks have a low 
average path length  and 
a high clustering 
coefficient .

These are referred to as 
“small-world” networks.

p

L

C

SMALL 
WORLD

NETWORKS

images: Watts, D. & Strogatz, S., Nature 393, 440-442 (1998).



ERDŐS-RÉNYI NETWORKS

In 1959 two related models for 
generating random networks were 
proposed.

In the more commonly used version 
of the model ( ), we consider 
a group of  nodes, and connect 
each pair with a probability .

G(n, p)
n

p Pál Erdős Alfréd Rényi Edgar Gilbert

image: By Vonfrisch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3469734

For certain choices of , the resulting 
network may have multiple connected 
components.

These random networks are commonly 
referred to as Erdős-Rényi (ER) networks. 

(n, p)



ERDŐS-RÉNYI NETWORKS
In a network of  nodes, a node has independent 
probabilities of connecting to each of the other 

 nodes. Thus, the probability of connecting to 
 chosen nodes and not to the remaining nodes is: 

.

Given that there are  ways of choosing  

out of  nodes, the probability that a node 
connects to  nodes is:

Thus, for an ER network the degree distribution 
(the probability  that a randomly selected node 
in the network has degree ) is just a binomial 
distribution.

n

n − 1
k
pk (1 − p)n−1−k

(n − 1
k ) k

n − 1
k

p(k) = (n − 1
k )pk (1 − p)n−1−k

p(k)
k



SCALE-FREE NETWORKS

The Barabási-Albert (BA) model generates random 
“scale-free” networks using a preferential 
attachment mechanism. 

Nodes are sequentially added to the network and 
each connects to  random existing nodes.

The probability that a new node connects to an 
existing node  is:  .

m

i pi = ki /Σjkj

Albert-László

Barabási Réka Albert

image [top]: By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64122479

power law distribution

log10(k)
lo

g 1
0(

P(
k)

)

P(k) ∼ k−γ



STRUCTURAL FEATURES:
CORE-PERIPHERY STRUCTURE

One can deconstruct a network in 
terms of its core-periphery 
structure.

The -core is the set of nodes of 
the network, within which each 
node has  links with each other.

A core need not be a single 
connected component.

The nodes of the highest -core 
are referred to as core nodes and 
others are peripheral nodes.

k

k

k

3

3

2

3

3

1

2

1

1
3



STRUCTURAL FEATURES:
MODULARITY

In practice, one has to first specify the modules/communities and then 
check if the density of intra-connections is more than that of the inter-
connections.

image: https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae

A network is said to have 
a modular structure if 
there exist groups (or 
“communities”) of nodes 
that have a higher density 
of connections than that 
between groups.



STRUCTURAL FEATURES:
MODULARITY

We can quantify the extent to which communities in a network are segregated as follows.

If  represents the community that node  belongs to, then the total number of edges 

between nodes belonging to the same community is 

If the total number of links in the network is , one can imagine  “stubs”.

gi i
1
2 ∑

ij

Aij δgigj

m 2m

stub

If all of the links were random (assuming a given number of 
stubs  per node ), then the expected number of links 
between stubs of nodes  and  is .

So the expected total number of links between nodes belonging 

to the same community is 

ki i
i j ki kj /2m

1
2 ∑

ij

ki kj

2m
δgigj



STRUCTURAL FEATURES:
MODULARITY
Thus, the (normalized) difference between the actual and expected number of 
edges between nodes of the same group in an undirected network is

Here, the quantity  is referred to as the modularity. This gives us a measure of the 
excess number of links seen within groups than would be expected by chance.

For the case of a directed network, one can similarly derive:

where the factor of  is missing since the links are not double-counted. 

Q =
1

2m ∑
ij (Aij −

ki kj

2m ) δgigj

Q

Q =
1
m ∑

ij (Aij −
kin

i kout
j

m ) δgigj

2



STRUCTURAL FEATURES:
MODULARITY
A number of approaches can be used to obtain the modular structure. One of the 
most common approaches involves modularity maximization.

For this, we assume that each node  is in one of two groups, and introduce the 
column vector  ( , depending on which group  belongs to).  Then we have: 

Thus the problem can be reduced to the following :

Given the modularity matrix , find  such that  is maximum.

A widely used method is based on the insight that the optimal  (were it not 
constrained to take values ) would be an eigenvector of  (Newman, 
2006; Leicht & Newman, 2008).

i
s si = ± 1 i

Q =
1

2m ∑
ij (Aij −

ki kj

2m )
sisj + 1

2
=

1
4m ∑

ij (Aij −
ki kj

2m ) sisj =
1

4m ∑
ij

Bijsisj =
1

4m
sTBs

B s Q

s
si = ± 1 B



image: Pathak, A., Menon, S. N. and Sinha, S., Phys. Rev. E 106, 054304 (2022).

Brain networks are modular



EXTRACTING STRUCTURE:
HIERARCHY

A network is said to have a hierarchical structure if there 
exists “layers” of nodes, such that the density of connections 
between consecutive layers is higher than that within layers, 
or between non-consecutive layers.

Just as one can determine the extent to which a network is 
modular, it is also possible to define a hierarchy index 
(Pathak et al, 2024) as follows:

Maximising  leads to the optimal hierarchical 
decomposition of the network.

H =
1
m ∑

ij (Aij −
kin

i kout
j

m )(δli,lj+1 + δli+1,lj)

H

reference: Pathak, A., Menon, S. N. and Sinha, S., PNAS 121, e2314291121 (2024).



image: Pathak, A., Menon, S. N. and Sinha, S., PNAS 121, e2314291121 (2024).



image: Pathak, A., Menon, S. N. and Sinha, S., PNAS 121, e2314291121 (2024).

Brain networks exhibit “modular hierarchy”
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