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60.000 routes
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‘The Political Blogosphere and the 2004 U.S. Election
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rock, pop, metal,

electronic, hip-hop
and rap,

, folk,
country and world

music, classical

music, reggae and
ska,




Can you draw this
without taking your
pen off the paper, and
without crossing any
path twice!?



Can you draw this What about this?
without taking your

pen off the paper, and
without crossing any
path twice!?
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ULER'S SOLUTION IN 1736

RONINGSHENGA ,
»
. | Pt g .
a4 R ~ N
. b | i
L

A

LTS\

"l

s : e

YTTLIRRLT S e

Each land mass can be viewed as a Only terminal vertices can have an
“vertex” and each bridge as a “link”. odd number of links.




GRAPHS AND NETWORKS

Euler’s work laid the foundation
for the field of graph theory.

Any network of connections
between entities can be analysed
by viewing it as a graph that
describes the manner in which a
set of objects are connected.

A network can simply be thought
of as a graph where the objects
and relations have certain
attributes.

st o
ok
A ch

image: http://social-dynamics.org/a-gephi-visualization-of-gephi-on-twitter/



FUNDAMENTAL CONCEPTS:

NODES AND LINKS

Nodes (or “Vertices”)

The total number
of links associated
with a node it its
degree (k).

Links (or “Edges”)

NODE DEGREE

y

2
3
4
5

|

3
2
3
3




FUNDAMENTAL CONCEPTS:
DIRECTED AND WEIGHTED N

Directed network Weighted network

WORKS

EDGE WEIGHT

1 1

O OB~ |WIN

NODE INE OUT- TOTAL

DEGREE DEGREE DEGREE |n a directed
1 0 1 1
network a node
can have an in-
degree different
to its out-degree

o B~ WO DN

1 2 3
1 1 2
2 1 3
2 1 3




SOME OTHER TYPES OF NETWORKS

Networks that describe relations between
two different classes of objects are known
as Bipartite networks.

Networks in which there may be different

types of links between nodes are known as
Multiplex networks.

Bipartite network Multiplex network



FUNDAMENTAL CONCEPTS:
ADJACENCY MATRIX

Adjacency matrix

1 2 3 4 5| TheAdjacency matrix A
1 1 specifies all connections
2 | 1 1 1| inthe network. If nodes i
3 1 1| andj are connected then
4 1 1 1| A;=1elseA;=0.
5 1 1 1

. In an undirected

target
S T 2 3 4 5| nhetwork,the degree k;
B 1 of a node i can be
2 1 1 obtained via:
3 1
4 1 kl:zAl]:ZAl]
A 1 [ J




FUNDAMENTAL CONC
D SPARS

DENSITY AN

Dense network
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The density p can be
understood as the

probability t
exists a link

nat there
between

a pair of nod

es (i, ]).

A network is said to

be dense if“
the possible
present, and

most’’ of
links are
sparse if

“most’ are absent.



FUNDAM

-NTAL CONCEPTS:

WALKS AND PATHS

Walk

A walk is a route along the edges of a
network. In an undirected network, an edge
can be crossed in either direction.

The length of a walk is the number of hops

taken along the route.

A path is a self-avoiding walk, i.e. one in
which no edge is traversed twice.




FUNDAM

SHORTES

PA

-NTAL CONCEPTS:

H LENGTH

- 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
di 1 3 2 2 2 1 1 1 1 1

The shortest path length d;; between two

nodes 7 and J is the minimum number of links
one has to cross to travel between them.

Can you work out what the shortest path
length is between every pair of nodes of this
directed network?



FUNDAM

DIAM

-R

-NTAL CONCEPTS:

The diameter d_,, of a network is the
“longest shortest path” between all pairs of

nodes i and j in the network :max(dij).
)

Can you work out the diameter of this
directed network!?



FUNDAMENTAL CONCEPTS:
AVERAGE PATH LENGTH

The average path length is the average of the shortest path lengths
between every pair of nodes in the network.

For a network comprising N nodes, if d(i, j) is the shortest number
of steps between nodes 7 and J, then the average path length is:

1 .
L:N(N—l)%;d(l’])

What is the
average path
length of these
networks!?



MORE ON PATH LENGTHS:

TOTAL NUMBER OF WALKS OF A GIVEN LENGTH

#walks of length |

1 2 3 4 5

1 1

2 |1 1 1
3 1 1
£ 1 1 1
5 1 1 1

#walks of length 2

1 2 3 4

— a2 N W
- =4 N DN
W N =S a4 a1 o

:
1
1
3
2

The total number of
walks N'V of length 1
ij

between a pair of
nodes (i, ) is just Alj

How does one find
the total number of

walks N9 of length d
ij

between pair (i, j)?



MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH

1 2 3 4 5 1 3 4 5

—+ I N

—_—t A

w

—

—
OOk~ WO N =
—_ -

—_ -

In order to have a walk of length 2 N(z) — ZAZkAkS
between nodes (2,3), we consider

all the nodes of distance 1 from
node #2, and count how many of ie. N =AA... A=A"

=~

them are distance 1 from node #3. T




MOR

BREA

- ON PATH LENGTHS:

D

H-FIRS

distance 1 from node #7/

S

-ARCH

distance 2 from node #7/ distance 3 from node #7/

o

6/7—8

To find the shortest path
between nodes (i, j), we

can follow the breadth-
first search algorithm:

|. Find the neighbours (blue) of node i (green)
from the adjacency matrix A.

2. Remove the green node and make the blue
nodes green.

3. Find the neighbours of the green nodes
(excluding removed ones).

4. Repeat as long as there are neighbours.



FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFCIEN

In real networks, one often finds that nodes that form links with one another
also form links with those that the neighbour link to.

This can be measured by the (global) clustering coefficient: the fraction of paths
of length 2 that are “closed” (the three nodes of the path are all connected).

A triangle of nodes connected to each other contain 3 closed paths.

Thus, the global clustering coefficient is:

#Htriangles X 3

#connected triples

where a connected triple is a path of length 2
(either closed or not closed).




FUNDAMENTAL CONCEPTS:
LOCAL CLUSTERING COEFFHCIEN

blue nodes form a clique

The (local) clustering coefficient of a node
measures the extent of connectivity of its
local neighbourhood, i.e. how close they are
to being a “clique” or a complete subgraph.

If a node i in an undirected network has k;

neighbours, there can be a maximum of
ki(k. — 1)/2 links between them.

The local clustering coefficient C; of node i is
the fraction of these links that exist.




FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFCIEN

What is the
clustering
coefficient of
the blue nodes?

Calculate the clustering coefficients for a node in the following networks:

K
e
KA
KA

PININIge
e




FUNDAMENTAL CONCEPTS:
COMPONENTS

1 2 3 4 5 6 7 8

1 1

21 1 1

3 1 1

411 1 1

) 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1
In an undirected
network, a pair of A component is a A bridge is a link that,
nodes (i, j) are subset of the network when cut, causes the
connected if there in which all nodes are network to be
exists a path (of any = connected. disconnected.

length) between them.




FUNDAMENTAL CONCEPTS:

COMPONEN

In an directed
network, a strongly

S5

Weakly connected
component

Strongly connected
component

A weakly connected
component is a

connected component connected component

is one where exists a
path between all
constituent nodes.

that exists if one were
to ignore the directed
nature of the edges.

The in-component of a
node in a directed
network is the set that
can reach it, and its
out-component is the
set that can be reached
from it.




FUNDAMENTAL CONCEPTS:

COMPONENTS

nodes —

The image on the right
displays the adjacency matrix
of a large undirected network.

White squares represent
connections between nodes,
while black represents the
absence of a link.

< sopou

Can you guess the
of this

network?



FUNDAMENTAL CONCEPTS:

HE GRAPH LAPLACIAN

Adjacency matrix graph Laplacian
1 2 3 4 5 1 2 3 4 5
1 1 11 -1
2 | 1 1 1 2 -1 3 -1 -1
3 1 1 3 2 -1 -1
4 1| 1 1 4 -1 -1 3 -1
5 1011 5 -1 -1 -1 3
For the case of undirected networks with no self-edges, one can define the

I Vij
degree matrix D;; = k; 0;; contains the degree along the diagonal and Os

elsewhere.

graph Laplacian L as follows: L;; = k; 6; — A;; or L = D — A, where the

If the network is weighted, the definition is as follows: L;; = ZAU' 0; — Ajj

J



FUNDAMENTAL CONC

= lIN}

HE GRAPH LAPLACIAN

0N Ok W N =

LA
1 2 3 4 5
111 -1
21-1 3 1 -1
3 2 -1 -1
4 1 -1 3 -1
5 1 -1 -1 3
LB
1 2 3 4 5 6 7 8
2 1-1] 0 |-1
1|3 [-1]-1
1|2 |-1
1-1-13

The number of zero
eigenvalues of the
laplacian indicate the
number of connected
components of the
network.

Ay = eig(Ly) =
{0,0.83,2.69,4,4.48}

Ag = eig(Lg) =
{0,0,2,4,4,4,4,4}



~UN
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- GRAPH LAPLACIAN

—)t | bk | ek | ek | ek

I T
QWO 4O a4 a4

1 1 1
— —_—k — w

1 | 1
—_ —_ w —_k

I o
a W a4 4

1 1 1
w —_— — —k

—_—t | A | A | A | A

= lIN}

If v is an eigenvector of the Laplacian

and 4 is its associated eigenvalue,
then

Lv=Av

A Laplacian with a single component,
has an eigenvector v = [1.1,...17

with 4 = 0.

A Laplacian with a two components,
has v =[1,1,...,0,0,...]" and

v =[0,0,...,1,1,...]" both with
A=0.



FUNDAMENTAL CONCEPTS:
BE TWEENNESS CENTRALITY

1-2 {1 52}
l -3 {1 !2!5!3}! {1 !214!3} 1o find the
) betweenness
-4 {1,2,4} centrality of a
1-5 {1,2,5} node, we count
2-3 {2,473} {2,5,3}) the fraction of
| i times it appears in
On the right are the =4 12,4} the shortest paths
list of all possible 2-5 {2,5} between other
shortest paths between 3-4 {3,4} nodes.
every pair of nodes in 3-5 {3,5)
the above network. 4-5 {4 5)




FUNDAMENTAL CONCEPTS:
BE TWEENNESS CENTRALITY
1-2 {1,2}
1-3  {1,2,5,3}, {1,2,4,3} 1 0
1-4 {1,2,4}
1-5 {1,2,5} 2 2/2+1+1
2-3 {2,4,3}, {2,5,3}
2.4 (2.4 3 0
2-5 {2,5}
3.4 (3.4) 41 1/2 +1/2
22 Sgi 5| 1/2 +1/2

0

3

If o, is the no. of
shortest paths from
s to f,and o (V) is
the number of these
containing node v,
then:

6,(v)
Cov) = ) —
SEIFV Ost

Is the betweenness
centrality.



- XERCISES

|. Find the average degree of the
network.

2. Find the shortest path length
between nodes 3 & 4.

3. Find the diameter of the network

4. Find the number of walks of length
5 between nodes 2 & 3.

5. Find the clustering coefficient of
nodes 1 & 8.

6. Find the global clustering coefficient.

/. Find the betweenness centrality of
nodes 3 & 4.
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DO THESE TWO HAV

- IN COMMON?
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image: https://oracleofbacon.org

Both their names are
popularly associated with
the concept of “six
degrees of separation”

Erdos




“The worker knows the manager in the shop, who
knows Ford; Ford is on friendly terms with the
general director of Hearst Publications, who last
year became good friends with Arpad Pasztor,
someone | not only know, but is to the best of my
knowledge a good friend of mine - so | could easily
ask him to send a telegram via the general director
telling Ford that he should talk to the manager and
have the worker in the shop quickly hammer
together a car for me, as | happen to need one.”

Frigyes Karinthy, “Lancszemek (Chains)” (1929).

“Everybody on this planet is separated by only six
other people. Six degrees of separation. Between us
and everybody else on this planet. The president of
the United States. A gondolier inVenice. Fill in the
names.”

John Guare,“Six Degrees of Separation” (1990).



MILGRAM'S LET TER EXPERIMENT

Information packets were sent to 296 random
individuals in Nebraska and Kansas.

They were asked to forward the letter to
someone who they think might know a
specified person in Boston (details of the
person were mentioned).

Of the letters that reached the final target, the
average path length was ~ 5.2.
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image [left]: Barabasi,A.-L.,“Network Science” (http://networksciencebook.com/)



Regular

SMALL
WORLD
NETWORKS

A regular graph has high clustering coefficient C and high average path
length L. A random graph has the opposite properties.

Watts and Strogatz (1998) suggested a procedure for obtaining
networks with properties of both regular and random networks:

Start with a regular graph where each node has K neighbours.

Cycle through each node, and consider the K/2 rightward links.

Randomly rewire each of these links with probability p, avoiding
self-loops and duplicate links.

image: Watts, D. & Strogatz, S., Nature 393, 440-442 (1998).




SMALL
WORLD
NETWORKS

For an intermediate p the
networks have a low
average path length L and
a high clustering
coefficient C.

These are referred to as
“small-world” networks.

Regular

Small-world Random

images:Watts, D. & Strogatz, S., Nature 393, 440-442 (1998).
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FRDOS-RENY! NETWORKS

In 1959 two related models for
generating random networks were
proposed.

In the more commonly used version
of the model (G(n, p)), we consider
a group of n nodes, and connect

each pair with a probability p. Alfréd Rényi Edgar Gilbert

/ / VR . For certain choices of (11, p), the resulting
T network may have multiple connected
components.

% : These random networks are commonly
4 . - o referred to as ErdGs-Rényi (ER) networks.

image: By Vonfrisch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3469734



FRDOS-RENY! NETWORKS

In a network of n nodes, a node has independent
probabilities of connecting to each of the other

n — 1 nodes.Thus, the probability of connecting to
k chosen nodes and not to the remaining nodes is:

pk (1 o p)n—l—k.

n—1
Given that there are . ways of choosing k

out of n — 1 nodes, the probability that a node
connects to k nodes is:

n—1
p(k) = . p*(1 —pyr=t=k

Thus, for an ER network the degree distribution
(the probability p(k) that a randomly selected node
in the network has degree k) is just a binomial
distribution.




SCALE-FREE NETWORKS

Albert-Laszld
Barabasi

Réka Albert

The Barabasi-Albert (BA) model generates random
“scale-free” networks using a preferential power law distribution

attachment mechanism. — ¢
) k) ~ k7

Nodes are sequentially added to the network and = Pk) ~
each connects to m random existing nodes. =

- N
The probability that a new node connects to an ie

isti is:p. = k. /2 .k. >

existing node i is: p; = k;/2Zk; . log, (k)

image [top]: By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64122479



STRUCTURAL FEATURES:
CORE-PERIPHERY STRUCTURE

0 One can deconstruct a network in
terms of its core-periphery
structure.

The k-core is the set of nodes of
the network, within which each
node has k links with each other.

A core need not be a single
connected component.

The nodes of the highest k-core
are referred to as core nodes and
others are peripheral nodes.




STRUCTURAL FEATURES:
MODULARITY

A network is said to have
a modular structure if
there exist groups (or
“communities”) of nodes
that have a higher density
of connections than that
between groups.

In practice, one has to first specify the modules/communities and then
check if the density of intra-connections is more than that of the inter-
connections.

image: https://towardsdatascience.com/community-detection-algorithms-9bd895 | e7dae



STRUCTURAL FEATURES:
MODULARITY

We can quantify the extent to which communities in a network are segregated as follows.

If g; represents the community that node i belongs to, then the total number of edges

1
between nodes belonging to the same community is 5 ZAU' 5&_&_

7

If the total number of links in the network is m, one can imagine 2m “stubs”.

If all of the links were random (assuming a given nhumber of
stubs k; per node i), then the expected number of links
between stubs of nodes i and j is k; k;/2m.

\

stub So the expected total number of links between nodes belonging

to the same community is — —90, .
2 - 2m gzg]

7




STRUCTURAL FEATURES:
MODULARITY

Thus, the (normalized) difference between the actual and expected number of
edges between nodes of the same group in an undirected network is

1 kikj
0= 5y 2 (Al:f ] %) %

7

Here, the quantity Q is referred to as the modularity. This gives us a measure of the
excess number of links seen within groups than would be expected by chance.

For the case of a directed network, one can similarly derive:

1 kzm kjout
Q — Z Z (Alj - m > 5&8]'

i

where the factor of 2 is missing since the links are not double-counted.



STRUCTURAL FEATURES:
MODULARITY

A number of approaches can be used to obtain the modular structure. One of the
most common approaches involves modularity maximization.

For this, we assume that each node i is in one of two groups, and introduce the
column vector s (s; = = 1, depending on which group i belongs to). Then we have:

1 kiki '\ s+ 1 1 ki k; 1 1
- — E A.. — e J— A ——— g5 = — B.s.s. = — STBS
¢ 2m ( 7 2m > 2 4m p 7o 2m Y 4m T Am

] ]

Thus the problem can be reduced to the following :

Given the modularity matrix B, find s such that Q is maximum.

A widely used method is based on the insight that the optimal s (were it not

constrained to take values s; = £ 1) would be an eigenvector of B (Newman,
2006; Leicht & Newman, 2008).



Brain networks are modular
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image: Pathak, A., Menon, S. N. and Sinha, S., Phys. Rev. E 106, 054304 (2022).
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X TRACTING STRUCTURE:
HIERARCHY

A network is said to have a hierarchical structure if there
exists “layers” of nodes, such that the density of connections

between consecutive layers is higher than that within layers,
or between non-consecutive layers.

Just as one can determine the extent to which a network is

modular, it is also possible to define a hierarchy index
(Pathak et al, 2024) as follows:

1 kzm kjout
H = . Z Aji— - O 141t 0414)
Yy

Maximising H leads to the optimal hierarchical
decomposition of the network.

reference: Pathak, A., Menon, S. N. and Sinha, S., PNAS 121,e2314291121 (2024).




H maximization
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Brain networks exhibit “modular hierarchy”
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image: Pathak, A., Menon, S. N. and Sinha, S., PNAS 121,e2314291121 (2024).
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