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Phase transitions
• A thermodynamic (macroscopic) system can exist in different 

phases

• Example 1: Water, ice, steam

• Example 2: paramagnet, ferromagnet


• When external controls (temperature) are changed slightly, 
properties (density) 

• Most of the time change slightly


• Sometimes abruptly, changing phase  phase transition

• Study of phase transitions has been a central theme of 

statistical mechanics.

⟹



Role of statistical mechanics
• Discussed in detail by Sitabhra

• Bridging scales from micro to macro

• Example: start with gas of particles and determine 

macroscopic properties like pressure, temperature

• Molecules to protein to DNA to cells to tissues to 

organs

• People to society to country



In these lectures …
• Introduce spin models as prototypical models for studying past 

transitions

• Later, they will have their own importance as minimal models for 

different phenomena

• Will discuss how to study them

• Mean field theories

• Phase transitions

• Critical behaviour

• Numerical methods (Markov models and detailed balance)

• How to numerically characterise phase transitions



These might look intimidating to some, but

Fortunately, in my first year of graduate school, I had the good 
luck to fall into the hands of senior physicists who insisted, over 
my anxious objections, that I must start doing research, and 
pick up what I needed to know as I went along. It was sink or 
swim. To my surprise, I found that this works. I managed to get 
a quick PhD - though when I got it I knew almost nothing about 
physics. But I did learn one big thing: that no one knows 
everything, and you don’t have to.  [Weinberg, first golden rule 
of research]



Phase diagram of water
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Phase diagram of water



Phase diagram of water



Phase diagram of a magnet



Ising Model
• At each site a spin


• 2 orientations 


• Energy 


• Neighbouring spins aligning decreases 
energy


• Magnetic field breaks plus/minus symmetry

• Boundary conditions

• Periodic (not necessary)

• Translational symmetry (no edge effects)

Si = ± 1
ℋ = − J∑

⟨ij⟩

SiSj − h∑
i

Si



Lattice gas
• A generic inter-particle potential

• Lennard Jones


• U(r) = ϵ [( σ
r )
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Lattice gas
• A generic inter-particle potential

• Lennard Jones
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• Utmost one particle per site: 


• Energy 


• Change variables: 


•

τi = 0,1
ℋ = − ϵ∑

⟨ij⟩

τiτj − μ∑
i

τi

σi = 2τi − 1
σi = ± 1



Ising  Lattice gas↔



How to analyse?

• Given , how to proceed?


• Recipe for calculation


• A configuration  has energy 


• Then 


•

ℋ = − J∑
⟨ij⟩

SiSj − h∑
i

Si

C E(C)

Prob(C) =
exp[−βE(C)]

∑C′￼

exp[−βE(C′￼)]

⟨O⟩ = ∑
C

O(C)Prob(C)



Different ways to analyse
• Solve exactly (unlikely)

• Low temperature expansion

• High temperature expansion

• Mean field theory

• Curie-Weiss

• Bethe lattice

• Variational


• Simulations

• Etc



Symmetries

• 


• When  then 


• Then, can we have a phase where 

• Such a phase would break the symmetry

• Similar example is a crystal

• Hamiltonian has continuous translational symmetry

• Crystal has discrete translational symmetry

ℋ = − J∑
⟨ij⟩

SiSj − h∑
i

Si

h = 0 ℋ({S}) = ℋ({−S})
m = ⟨S⟩ ≠ 0



Low and high temperature limits



Age old Curie-Weiss MFT
• Isolate a spin from its environment

• Spin sees an effective magnetic field


•   : fluctuating


• MFA: 


•

h + J ∑
j∈nn

Sj

∑
j

Sj ≈ ∑
j

⟨Sj⟩ = qm

Hmf = − (Jqm + h)∑
i

Si = − heffSi



Curie-Weiss MFT



Solving self-consistent equation



MFT: solution



Choosing solution



Sketching magnetisation



Behaviour near Tc



Critical Exponents



Other exponents (Susceptibility)



At Tc?



Summary of MFT

Tc = Jq



Minimal models and MFT
• Water and magnets complicated objects

• But a simple interacting spin model 

• Correct phases

• Qualitative phase diagram


• Not the correct 

• What about critical exponents?


• MFT

• Calculation simple


• Value of critical exponents wrong ( )

Tc

β2d = 1/8; βmf = 1/2



Minimal models and exponents

• If we could calculate the critical exponents, then it would 
be the value observed in experiments


• Different from usual modelling

• More complicated models for better results

• Here, simple enough but not too simple

• Results will not improve with more complicated 

models (next nearest neigbour? Full LJ?)

• Why? Ans: universality

• Depends only on certain symmetries



Drawbacks of Curie-Weiss MFT

• Ad hoc approximation: Hamiltonian itself changed, 
now depends on observable itself!


• No way to do systematically

• Predicts phase transition for one dimension [not true]


• Specific heat is zero for 

• Better way of doing MFT?

• Simulations for better quantitative answers?

• Other well-studied spin systems?

T > Tc



Recap



Ising Model

• At each site a spin


• 2 orientations 


• Energy 

Si = ± 1
ℋ = − J∑

⟨ij⟩

SiSj − h∑
i

Si



Summary of MFT

Tc = Jq



Lecture 2 
Monte Carlo simulations



Motivation
• Equilibrium statistical mechanics (no dynamics, only Hamiltonian)

• Recipe for calculation


• A configuration  has energy 


• Then 


• Aim: generate configurations  to their equilibrium weights


• Then 

C E(C)

Prob(C) =
exp[−βE(C)]

∑C′￼

exp[−βE(C′￼)]

C1, C2, …∝

⟨O⟩ =
1
T

T

∑
t=1

O(Ct)



Motivation
• Model defined through dynamics

• Example: random walkers that repel each other


• Simplest and most common dynamics: Markovian

• Dynamical rules depend only on the current state


• For generating equilibrium configurations also, we will choose 
Markovian dynamics


• Questions

• How to define the dynamics?

• How to simulate on a computer?

• What dynamics will generate equilibrium weights?



Defining a model
• What should be given to define a model?


• The configurations a system can be in 


• The transition rates to go from  to : 

(C1, C2, C3 . . . )
Ci Cj W(Ci → Cj)



Defining a model
• What should be given to define a model?


• The configurations a system can be in 


• The transition rates to go from  to : 

(C1, C2, C3 . . . )
Ci Cj W(Ci → Cj)

Rates?



What does rate mean?
• Suppose an event occurs at rate 


• Probability of the event occurring in time 


• What is the probability of it occurring for the first time at time 

λ
dt ≡ λdt

t?
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What does rate mean?
• Suppose an event occurs at rate 


• Probability of the event occurring in time 


• What is the probability of it occurring for the first time at time 

λ
dt ≡ λdt

t?

• Probability = (1 − λdt)t/dt × λdt

• Probability = e−λdt×t/dt × λdt

• Probability = e−λt × λdt

• Summary


• Infinitesimal time: 


• Waiting time:  
λdt

P(t) = e−λt × λ



Generating probabilities
• Usually a random number generator in (0,1) is available


• Event occurs with probability 


• draw a random number  in (0,1)


• If  then event occurs, else not


• What about distributions like ? (You are 
only given a random number generator in (0,1))

λdt
r

r < λdt
P(t) = e−λt × λ

• Given , and  what is ?PX(x) for x y(x) PY(y) for y



Changing variables



Generating exponential distribution
• Let  be uniform distribution in (0,1)


• Let 


• What should  be? 

Px(x)
PY(y) = λe−λy

y(x)



Generating exponential distribution
• Let  be uniform distribution in (0,1)


• Let 


• What should  be? 

Px(x)
PY(y) = λe−λy

y(x)



Coming back to Markov process
• What is a complete description of the stochastic 

process?

• Configurations keep changing probabilistically, so 

trajectory cannot be predicted


• Interested in : the probability of being in 
configuration  at time 

P(C, t)
C t

dP(Ci, t)
dt

= ∑
j

W(Cj → Ci)P(Cj, t) − ∑
j

W(Ci → Cj)P(Ci, t)

Master equation

Ways of generating Ci Ways of going out of Ci



Matrix form



Conservation of probability
dPi

dt
= ∑

j

WijPj



Conservation of probability
dPi

dt
= ∑

j

WijPj

∑
i

dPi

dt
= ∑

i
∑

j

WijPj
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i
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Conservation of probability
dPi
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j

WijPj

∑
i

dPi

dt
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j

WijPj

∑
i

dPi

dt
= ∑

j
∑

i

WijPj
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Conservation of probability
dPi

dt
= ∑

j

WijPj

∑
i

dPi

dt
= ∑

i
∑

j

WijPj

∑
i

dPi

dt
= ∑

j
∑

i

WijPj

d∑i Pi

dt
= 0

∑
i

Pi = 1



Properties of W matrix
•  looks like Schrödinger equation


• But W need not be Hermitian (  in general)


• Interested in eigenvectors and eigenvalues

• Important: left and right eigenvectors need not be same!

• (1, 1, 1, …) is a left eigenvector. Why?

dP
dt

= WP

Wij ≠ Wji



Properties of W matrix
•  looks like Schrödinger equation


• But W need not be Hermitian (  in general)


• Interested in eigenvectors and eigenvalues

• Important: left and right eigenvectors need not be same!

• (1, 1, 1, …) is a left eigenvector. Why?

dP
dt

= WP

Wij ≠ Wji

• (1, 1, 1, …) times any column = 0 (because column sum=0)

• Therefore, 0 is an eigenvalue 


• Denote right eigenvector as Ps(C)



Other Properties of W matrix

•  is non-degenerate


• All entries of 


• 


• Eigenvectors are orthogonal as usual

λ1 = 0
Ps(C) ≥ 0

Re(λj) < 0 for j > 1



Analysing the master equation

and so on



Long time behaviour

• Long time behaviour unique: steady state

• Eigenvector of eigenvalue 0

• Independent of initial condition

• True if system is ergodic



Determining steady state

• Apriori not known

• Given relevant model, determining steady state 

becomes the key

• Can give unexpected results

• Approach to steady state: controlled by second 

eigenvalue λ2



Simulating a Markov process

• Multiple events possible

• Do in infinitesimal time

• Do in finite time 


• No generic speed up routines ( I do not know)

• Problem specific



Infinitesimal time updates



Finite waiting time updates

• Multiple waiting times

• Reduces to sorting them

• And keeping them sorted!

• Efficiency can be gained 

• by tricks

• Parallelisation



Recap



Markov processes
• What should be given to define a model?


• The configurations 


• The transition rates to go from  to : 

(C1, C2, C3 . . . )
Ci Cj W(Ci → Cj)



Master equation

• 


• 


• 


• Column sums of W=0

dP
dt

= WP

P = [P(C1), P(C2), . . . ]T

Wij = W(Cj → Ci)



Long time behaviour

• Long time behaviour unique: steady state

• Eigenvector of eigenvalue 0

• Independent of initial condition

• True if system is ergodic



Simulating on a computer
• What are rates

• How to implement them on a computer

• Small time increments

• Waiting time calculations


• Two events do not occur at same time

• Because continuous time Markov process
• Equivalently one could have discrete time Markov 

processes

• Examples: all agents change their decision for 

second round


• 


• Similar properties (steady state, , etc)
P(t + 1) = TP(t)

λmax = 1



Lecture 3 
Simulating Equilibrium Systems



Equilibrium systems
• All this talk about Markov process


• But equilibrium models defined by 

• No dynamics specified

E(C)



Equilibrium systems
• All this talk about Markov process


• But equilibrium models defined by 

• No dynamics specified

E(C)

• Question now reversed


•  is given

• What is the dynamics that gives above?

Ps(C) ∝ e−βE(C)



Detailed Balance
• Steady state of Markov process is unique

• If we find one solution to the master equation, that is the 

unique solution

dP(Ci, t)
dt

= ∑
j

W(Cj → Ci)P(Cj, t) − ∑
j

W(Ci → Cj)P(Ci, t)

dP(Ci, t)
dt

= ∑
j

[W(Cj → Ci)P(Cj, t) − W(Ci → Cj)P(Ci, t)]
choose dynamics such that W(Cj → Ci)P(Cj, t) = W(Ci → Cj)P(Ci, t)

Detailed balance condition Ci Cj

W(Ci → Cj)

W(Cj → Ci)



Detailed Balance

W(Cj → Ci)P(Cj, t) = W(Ci → Cj)P(Ci, t)

P(Cj, t) =
e−E(Cj)

Z

How to implement on a computer?

Comment about equilibrium vs nonequilibrium



A Convenient Rule: Metropolis 
• At some time step let energy= 

• Make a dynamical move that changes 

configuration


• Let new energy=  and 

• Accept new configuration with probability 

 


• Acceptance rule obeys detailed balance 
(Why?)


• If we run with this rule, we will generate 
configurations with equilibrium weight

Eold

Enew ΔE = Enew − Eold

min[1,
Prob(new)
Prob(old)

] = min[1, exp(−βΔE)]



A Convenient Rule: Metropolis 
• At some time step let energy= 

• Make a dynamical move that changes 

configuration


• Let new energy=  and 

• Accept new configuration with probability 

 


• Acceptance rule obeys detailed balance 
(Why?)


• If we run with this rule, we will generate 
configurations with equilibrium weight

Eold

Enew ΔE = Enew − Eold

min[1,
Prob(new)
Prob(old)

] = min[1, exp(−βΔE)]



Coming back to Ising model
• Local moves

• Glauber dynamics

• Pick a spin at random and flip it (old and new)

• Does not conserve magnetisation


• Kawasaki dynamics

• Pick a pair of neighbouring spins and exchange them

• Conserves magnetisation



What happened to rates, time?
• Say, each spin flips with rate 


• In a time  the total rate of all events 


• We are going to choose  such that 


• 


• In metropolis, probability that a spin is attempted to flip 


•  consistent


• All time defined in terms of 


• Convenient to choose  flips = 1 Monte Carlo 
step

λ
dt = Nλdt

dt Nλdt = 1

⟹ λdt =
1
N

=
1
N

⟹
λ−1

λ = 1 ⟹ N



Equilibration



Simulations on finite lattices

• Simulations are on finite lattices

• How does one extrapolate to infinite lattices: 

finite size scaling

• Tells about nature of transition, exponents, etc



Going back to Metropolis
•At some time step let energy= 


•Make a dynamical move that changes configuration


• Let new energy=  and 


•Accept new configuration with probability 

 


•Acceptance rule obeys detailed balance

•Note that each simulation is done at a fixed value of temperature 

(and/or other parameters)

Eold

Enew ΔE = Enew − Eold

min[1,
Wt(new)
Wt(old)

] = min[1, exp(−βΔE)]



Can we determine density of states g(E)?

• 


• 


• If g(E) is known, then data for whole temperature 
range can be found in one go. 

• In regular Monte Carlo, each temperature has to 

be simulated separately

•How to determine g(E) in a Monte Carlo 

simulation?

Z = ∑
E

g(E)exp(−βE)

⟨En⟩ = Z−1 ∑
E

Eng(E)exp(−βE)

density of states



Flat Histogram Methods
•Suppose 


•Run a simulation satisfying detailed balance: prob= 




•Measure histogram , the number of times  is visited


•Then 


• If , then histogram would be flat


•Of course, one does not know , but one could use the fact 
that if the correct  is chosen, then histogram would be flat

Wt(E) ≠ exp(−βE)

min[1,
Wt(new)
Wt(old)

]

H(E) E
H(E) ∝ g(E)Wt(E)

Wt(E) = 1/g(E)
g(E)

Wt(E)



A Direct Implementation
• Make a guess for 




• Then 


• 

• Conceptually, one could stop now, but in practice 

 is a poor estimate


• Iterate above a few times to get 

g(E) = g1(E) ⟹ Wt(E) = 1/g1(E)
H(E) ∝ g(E)Wt(E) = g(E)/g1(E)

g2(E) = g(E) = H(E)g1(E)

g2(E)
g1, g2, … → g(E)



An example
• Issues: convergence is very slow. For larger system 

sizes, it depends crucially on initial guess g1(E)

• How can one improve the convergence?
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Data for NN exclusion model (L=32)



Wang Landau algorithm

•  continuously evolves during the simulation (next slide)

• Simulation does not satisfy detailed balance because g(E) is changing

• But convergence is very fast

• A very popular and efficient algorithm

g(E)

Wang et al, PRL, 2001



Wang Landau protocol

• Change configuration 

• Acceptance prob:  

•  
•

min [ g(Eold)
g(Enew)

,1]
g(E) → g(E)f
H(E) + +

Is H(E) flat? Is f < fc

•  

•
f → f
H(E) = 0

Exit
YesNo Yes

No

g(E)=1 
H(E)=0



Flattening of Histograms

• Ising Model (2D): 16x16



Benchmarking

Wang et al, PRL, 2001



Many spin models
• Potts model: 


• 


• Clock model: 


• 


• XY model:  limit of clock model

Si = 1,2,3,…, q
ℋ = − J∑

⟨ij⟩

δSi,Sj

S =
2πij

q
, j = 0,1,…, q − 1

ℋ = − J∑
⟨ij⟩

cos(θi − θj)

q → ∞


