Introduction to spin systems
and phase transitions

R. Rajesh
IMSc




Phase transitions

* A thermodynamic (macroscopic) system can exist in different
phases

« Example 1: Water, ice, steam
 Example 2: paramagnet, ferromagnet

 \When external controls (temperature) are changed slightly,
properties (density)

 Most of the time change slightly

o Sometimes abruptly, changing phase = phase transition

o Study of phase transitions has been a central theme of
statistical mechanics.



Role of statistical mechanics

* Discussed in detail by Sitabhra
* Bridging scales from micro to macro

 Example: start with gas of particles and determine
macroscopic properties like pressure, temperature

 Molecules to protein to DNA to cells to tissues to
organs

* People to society to country



In these lectures ...

* Introduce spin models as prototypical models for studying past
transitions

o Later, they will have their own importance as minimal models for
different phenomena

* Will discuss how to study them
 Mean field theories
 Phase transitions
» Critical behaviour
 Numerical methods (Markov models and detailed balance)
 How to numerically characterise phase transitions



These might look intimidating to some, but

Fortunately, in my first year of graduate school, | had the good
luck to fall into the hands of senior physicists who insisted, over
my anxious objections, that | must start doing research, and
pick up what | needed to know as | went along. It was sink or
swim. To my surprise, | found that this works. | managed to get
a quick PhD - though when | got it | knew almost nothing about
physics. But | did learn one big thing: that no one knows
everything, and you don’t have to. [Weinberg, first golden rule

of research]



Phase diagram of water
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Phase diagram of water




Phase diagram of water




Phase diagram of a magnet




Ising Model

* At each site a spin

» 2 orientations §; = % 1

Energy # = —JZSZ-SI-—hZSi
(§) i

* Neighbouring spins aligning decreases

energy

 Magnetic field breaks plus/minus symmetry
 Boundary conditions

* Periodic (not necessary)

* Translational symmetry (no edge effects)



Lattice gas

* A generic inter-particle potential

e | ennard Jones
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Lattice gas

* A generic inter-particle potential 10
 Lennard Jones
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Lattice gas

* A generic inter-particle potential 10
 Lennard Jones
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Ising <> Lattice gas
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How to analyse?

~ Given Z = — JZ 59 — h Z S, how to proceed?
(if) i

 Recipe for calculation

A configuration C has energy E(C)
expl—pE(C)]

> exp[—BE(C))]
. (0) =) O(C)Prob(C)
C

. Then Prob(C) =



Different ways to analyse

* Solve exactly (unlikely)
 Low temperature expansion
* High temperature expansion
 Mean field theory

* Curie-Weiss

* Bethe lattice

* \ariational
e Simulations
 Etc



Symmetries

H=-7)SS—h) s
(i) i
When h = O then Z({S}) = Z({—S})

Then, can we have a phase where m = (S) # 0
Such a phase would break the symmetry

Similar example is a crystal

 Hamiltonian has continuous translational symmetry
* Crystal has discrete translational symmetry



Low and high temperature limits
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Age old Curie-Weiss MFT

e |solate a spin from its environment
e Spin sees an effective magnetic field

. h+J Z 5; : fluctuating

JENN

CMFA: ) S;x ) (S) =gm
j j



Curie-Weiss MFT
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Solving self-consistent equation




MF I: solution

‘MW = W(ﬁfq,m)
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Choosing solution
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Sketching magnetisation




Behaviour near 1/,



Critical Exponents




Other exponents (Susceptibility)
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Summary of MFT




Minimal models and MFT

 Water and magnets complicated objects
 But a simple interacting spin model
 Correct phases
e Qualitative phase diagram

 Not the correct 1

 \What about critical exponents?
e MFT
e Calculation simple

» Value of critical exponents wrong (6,; = 1/8; b, = 1/2)



Minimal models and exponents

* |f we could calculate the critical exponents, then it would
be the value observed in experiments

» Different from usual modelling
 More complicated models for better results
 Here, simple enough but not too simple

* Results will not improve with more complicated
models (next nearest neigbour? Full LJ?)

 Why? Ans: universality
 Depends only on certain symmetries



Drawbacks of Curie-Weiss MFT

* Ad hoc approximation: Hamiltonian itself changed,
now depends on observable itself!

 No way to do systematically
* Predicts phase transition for one dimension [not true}

« Specific heat is zero for 1" > 1

» Better way of doing MFT?
e Simulations for better quantitative answers??
e Other well-studied spin systems?






Ising Model

* At each site a spin
» 2 orientations §; = £ 1

‘ Energy?f:—JZSiSj—hZSi
(ij) i



Summary of MFT
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| ecture 2
Monte Carlo simulations




Motivation

* Equilibrium statistical mechanics (no dynamics, only Hamiltonian)
* Recipe for calculation

A configuration C has energy E(C)
expl—pE(C)]

ZC' eXp[_ﬁE(C/)]

 Aim: generate configurations C;, (5, ... to their equilibrium weights

T
_ Then (0) = %Z O(C)
=1

~ Then Prob(C) =



Motivation

Model defined through dynamics

 Example: random walkers that repel each other
Simplest and most common dynamics: Markovian
 Dynamical rules depend only on the current state

For generating equilibrium configurations also, we will choose
Markovian dynamics

Questions

 How to define the dynamics?

 How to simulate on a computer?

 What dynamics will generate equilibrium weights?



Defining a model

 \What should be given to define a model?

» The configurations a system can be in (C, C,, C5...)
» The transition rates to go from C; to C;: W(C; — C))




Defining a model

 \What should be given to define a model?

» The configurations a system can be in (C, C,, C5...)
» The transition rates to go from C; to C;: W(C; — C))

Rates?




What does rate mean?

» Suppose an event occurs at rate A
» Probability of the event occurring in time df = Adt

» What is the probability of it occurring for the first time at time ¢?
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» Probability of the event occurring in time df = Adt
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What does rate mean?

» Suppose an event occurs at rate A
» Probability of the event occurring in time df = Adt

» What is the probability of it occurring for the first time at time ¢?

db, AF 4k |
0 t

» Probability = (1 — Adt)"¥ x Adt
« Probability = ¢ ~A4>Xdt »¢ )y
« Probability = ¢ ™ X Adt



What does rate mean?

» Suppose an event occurs at rate A
» Probability of the event occurring in time df = Adt

» What is the probability of it occurring for the first time at time ¢?

db AE db
0 t
» Probability = (1 — Adf)"¥ x Adt * Summary
. Probability = e =41t ¢ 3 ¢ e Infinitesimal time: Adt
+ Probability = e ™ X Ad1 ‘(\Vﬂ\\’ai“ng time: P(1) = e " X
0 ﬂ%é{.
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Generating probabilities

 Usually a random number generator in (0,1) is available

» Event occurs with probability Adt
 draw a random number r in (0,1)
o |f r < Adt then event occurs, else not

. What about distributions like P(f) = e X A1? (You are
only given a random number generator in (0,1))

» Given Py(x) for x, and y(x) what is Py(y) for y?



Changing variables
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Generating exponential distribution

e Let P (x) be uniform distribution in (0,1)
. Let Py(y) = de ™
» What should y(x) be?



Generating exponential distribution

e Let P (x) be uniform distribution in (0,1)
. Let Py(y) = de ™
» What should y(x) be?



Coming back to Markov process

 \What is a complete description of the stochastic
process?

» Configurations keep changing probabillistically, so
trajectory cannot be predicted

o Interested in P(C, t): the probability of being in
configuration C at time ¢

Master equation

TED S wic, - Py~ T WC — CHPCa
j J

" / \

Ways of generating C; Ways of going out of C;



Matrix form
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Conservation of probability

dP,
T 2 Wi,

J



Conservation of probability
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Conservation of probability
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Conservation of probability
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Properties of W matrix

dP
= = WP looks like Schroédinger equation
[

But W need not be Hermitian W * W..in general)

Interested in eigenvectors and elgenvalues
Important: left and right eigenvectors need not be same!
(1,1, 1, ...) is a left eigenvector. Why?



Properties of W matrix

dP
= = WP looks like Schroédinger equation
[

But W need not be Hermitian W * W..in general)

Interested in eigenvectors and elgenvalues
Important: left and right eigenvectors need not be same!
(1,1, 1, ...) is a left eigenvector. Why?

(1,1, 1, ...) times any column = 0 (because column sum=0)
Therefore, O Is an eigenvalue

Denote right eigenvector as P (C)



Other Properties of W matrix

» A; = 0is non-degenerate
» All entries of P (C) > 0
» Re(4;) <0 forj> 1

* Eigenvectors are orthogonal as usual



Analysing the master equation

Plc, k) = o L9y + el LB + -~
| PGB = a,(8)

bt LHS=1 I =7 a,(!:)s‘ | X

From maniku 24, l

oy Loy + eyt - = M=) W W) t 2 Wk
AL AL M

= Wy + A AR W& -
Take dwnin pudnd vall <y;l a1t

d&: )\1&1@3) = a,,@)-; 0.1_(0)6

AKX

and so on



Long time behaviour

N At
Thua PCC,t) = \\Ul7-[— a,_(o)e | WY + 4-3(0)6 \\(;3}.[....
bt Re(Af) <0
Whw £ —> 2 P(C,L)= P(e)

A,k
awd. P, x)-P (c) < €

* Long time behaviour unique: steady state
* Eigenvector of eigenvalue O

* Independent of initial condition

* True If system is ergodic



Determining steady state

e Apriori not known

* Given relevant model, determining steady state
becomes the key

e Can give unexpected results

* Approach to steady state: controlled by second
eigenvalue 4,



Simulating a Markov process

 Multiple events possible

Do In infinitesimal time

Do in finite time
 No generic speed up routines (| do not know)
 Problem specific



Infinitesimal time updates
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Finite waiting time updates

 Multiple waliting times
* Reduces to sorting them
 And keeping them sorted!
o Efficiency can be gained
* by tricks
» Parallelisation






Markov processes

 \What should be given to define a model?
» The configurations (C, C,, C5 . . .)
» The transition rates to go from C; to C;: W(C; — C))




Master equation

dP
. — = WP
dt

. P=[P(C)),P(Cy,...1"
. VVij — W(C] — Ci)

e Column sums of W=0



Long time behaviour

N At
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bt Re(Af) <0
Whw £ —> 2 P(C,L)= P(e)

A,k
awd. P, x)-P (c) < €

* Long time behaviour unique: steady state
* Eigenvector of eigenvalue O

* Independent of initial condition

* True If system is ergodic



Simulating on a computer

« What are rates

* How to implement them on a computer
e Small time increments
* Waiting time calculations

 Two events do not occur at same time

 Because continuous time Markov process

* Equivalently one could have discrete time Markov
processes

 Examples: all agents change their decision for
second round

« P(t+1)=TP(¢)

 Similar properties (steady state, A, . = 1, etc)

max



| ecture 3
Simulating Equilibrium Systems



Equilibrium systems

e All this talk about Markov process

 But equilibrium models defined by E(C)
 No dynamics specified



Equilibrium systems

e All this talk about Markov process

But equilibrium models defined by E(C)
No dynamics specified

Question now reversed
P(C) e PEO) s given
What is the dynamics that gives above?



Detalled Balance

o Steady state of Markov process is unique

e |If we find one solution to the master equation, that is the
unigue solution

dP(C,
d

_ 2 W(C; - C)P(C.1) — ) W(C, > C)P(C,.1)
J

dP(C,, 1)
= - Z W(C, — CIP(C, 1) = W(C, > C)P(C, 1)
choose dynamics such that W(C, — C)P(C;, 1) = W(C; — C)P(C

W(C
e ¢

W(C — C))

Detailed balance condition




Detalled Balance

W(C; — C)P(Cj,1) = W(C; — C)P(C;, 1

»—E(C)

P(C1) = —

How to implement on a computer?

Comment about equilibrium vs nonequilibrium



A Convenient Rule: Metropolis

At some time step let energy=FE

Make a dynamical move that changes
configuration

Let new energy=L,, and AL =E , —E ,;
Accept new configuration with probability

[l Pmb(new)] [l (—BAE)]
min| l,— | = mun| 1, exp(—
Prob(old) P
Acceptance rule obeys detailed balance
(Why?)

If we run with this rule, we will generate
configurations with equilibrium weight



A Convenient Rule: Metropolis

At some time step let energy=FE
Make a dynamical move that changes

configuration b By € B i}
Qb HEpus EM)
Let new energy=L, , and AE=FE , —E . hecaplimas prsminly = € e -B(EyuCa)
E =
Accept new configuration with probability Pote £ 44) WELD ) = & =
, Prob(new) , I
min|l,————] = mun|[ 1, exp(—pAE)] B
Prob(old) | Py LEW)\.JLEW-? Ed) = eﬁF;"“"x |
Acceptance rule obeys detailed balance b F Ea7 Bua

(Why?)

If we run with this rule, we will generate
configurations with equilibrium weight



Coming back to Ising model

 Local moves
e Glauber dynamics
* Pick a spin at random and flip it (old and new)
* Does not conserve magnetisation
 Kawasaki dynamics
* Pick a pair of neighbouring spins and exchange them
e Conserves magnetisation



What happened to rates, time?

 Say, each spin flips with rate A
 |n atime df the total rate of all events = NAdt
« We are going to choose dt such that NAdt = 1

|
., — Adt = —
N

1

. In metropolis, probability that a spin is attempted to flip = —

N

e —> consistent
. All time defined in terms of 4 ~!

e Convenient to choose 4 =1 = N flips = 1 Monte Carlo
step



Equilibration




Simulations on finite lattices

| K | ) K
T -i‘c T

e Simulations are on finite lattices

 How does one extrapolate to infinite lattices:
finite size scaling

e Tells about nature of transition, exponents, etc



Going back to Metropolis

e At some time step let energy=L _,,
e Make a dynamical move that changes configuration

eletnewenergy=Ek, , and AE=FE , —E

e Accept new configuration with probability

min| 1 M] = min| 1, exp(—fAE)]
Wioldy . TE

e Acceptance rule obeys detailed balance

¢ Note that each simulation is done at a fixed value of temperature
(and/or other parameters)



Can we determine density of states g(E)?

/density of states

Z= ) s(E)exp(~pE)
E

(E™ =271 E"g(E)exp(—pE)
E

¢ If g(E) iIs known, then data for whole temperature
range can be found in one go.

¢ In regular Monte Carlo, each temperature has to
be simulated separately

* How to determine g(E) in a Monte Carlo
simulation?



Flat Histogram Methods

e Suppose Wi(E) # exp(—pFE)

¢ Run a simulation satisfying detailed balance: prob=
Wt(new)

Wt(old) |

e Measure histogram H(E), the number of times E is visited
e Then H(E) «x g(E)WHE)

o If WH(E) = 1/g(E), then histogram would be flat

e Of course, one does not know g(£), but one could use the fact
that if the correct Wi(E) is chosen, then histogram would be flat

min| 1,



A Direct Implementation

» Make a guess for
§(E) = g|(E) = WKE) = 1/g,(E)

.+ Then H(E)  g(E)WI(E) = g(E)/g,(E)

+ &(E) = g(k) = H(E)g,(E)

* Conceptually, one could stop now, but in practice
2-(L) is a poor estimate

» Iterate above a few times to get g, 2, ... — g(E)



(H(n)- (H(n)) )/ (H(n))

N
O

N
QS

15

10

An example

* |ssues: convergence is very slow. For larger system
sizes, it depends crucially on initial guess g(E)

Data for NN exclusion model (L=32)

[ [ [ [ [ 250 [ [ [ [ [
iteration=1 —— iteration=1 ——
iteration=6 —— iteration=6 ——

(\ iteration=11 ] 200 - iteration=11 -
iteration=16 iteration=16
iteration=21 | iteration=21

~ 150 - _
) g
=
~ 100 - —
S — -
J _J \_ \ N
| | | | | 0 | /]/\ | | |
100 200 300 400 500 0 100 200 300 400 500
n n

« How can one improve the convergence?



Wang Landau algorithm

g(E) continuously evolves during the simulation (next slide)

Simulation does not satisfy detailed balance because g(E) is changing
But convergence is very fast
A very popular and efficient algorithm

Wang et al, PRL, 2001



Wang Landau protocol

g(E)=1
H(E)=0

l

¢ Change configuration
8(Euen)

Acceptance prob: min [

o o(E) — g(E)f
e HE) + +




Flattening of Histograms

Evolution of Histogram (L = 16) at J=1, h=0
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Benchmarking
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FIG. 1. Comparison of the density of states obtained by our
algorithm for 2D Ising model and the exact results calculated by
the method in Ref. [13]. Relative errors e(log(g(E))) are shown
in the inset.

FIG. 3. Specific heat for the 2D Ising model on a 256 X 256
lattice in a wide temperature region. The relative error €(C) is
shown in the inset in the figure.

Wang et al, PRL, 2001



Many spin models

» Potts model: §; = 1,2,3,...,¢q

T == )
)

2]
. Clockmodel: $ = —,7=0,1,...,g — 1

q
. H = —]Zcos(é’i—é’j)
(i)
o XY model: g — oo limit of clock model



