Introduction to spin systems and phase transitions

R. Rajesh IMSc

Phase transitions

- A thermodynamic (macroscopic) system can exist in different phases
 - Example 1: Water, ice, steam
 - Example 2: paramagnet, ferromagnet
- When external controls (temperature) are changed slightly, properties (density)
 - Most of the time change slightly
 - Sometimes abruptly, changing phase \Longrightarrow phase transition
- Study of phase transitions has been a central theme of statistical mechanics.

Role of statistical mechanics

- Discussed in detail by Sitabhra
- Bridging scales from micro to macro
- Example: start with gas of particles and determine macroscopic properties like pressure, temperature
- Molecules to protein to DNA to cells to tissues to organs
- People to society to country

- Introduce spin models as prototypical models for studying past transitions
- Later, they will have their own importance as minimal models for different phenomena
- Will discuss how to study them
 - Mean field theories
 - Phase transitions
 - Critical behaviour
 - Numerical methods (Markov models and detailed balance) How to numerically characterise phase transitions

In these lectures ...

These might look intimidating to some, but

Fortunately, in my first year of graduate school, I had the good luck to fall into the hands of senior physicists who insisted, over my anxious objections, that I must start doing research, and pick up what I needed to know as I went along. It was sink or swim. To my surprise, I found that this works. I managed to get a quick PhD - though when I got it I knew almost nothing about physics. But I did learn one big thing: that no one knows everything, and you don't have to. [Weinberg, first golden rule of research]

Phase diagram of water

Phase diagram of water

Phase diagram of a magnet

- At each site a spin
 - 2 orientations $S_i = \pm 1$
 - Enei
- Neighbouring spins aligning decreases energy
- Magnetic field breaks plus/minus symmetry
- **Boundary conditions** \bullet
 - Periodic (not necessary)
 - Translational symmetry (no edge effects)

Ising Model

$$\operatorname{rgy} \mathscr{H} = -J\sum_{\langle ij\rangle} S_i S_j - h\sum_i S_i$$

- A generic inter-particle potential
 - Lennard Jones

•
$$U(r) = \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{12} \right]$$

r/σ

- A generic inter-particle potential
 - Lennard Jones

•
$$U(r) = \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{12} \right]$$

- A generic inter-particle potential
 - Lennard Jones

•
$$U(r) = \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{12} \right]$$

- A generic inter-particle potential
 - Lennard Jones

•
$$U(r) = \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{12} \right]$$

- - Energ
- $\sigma_i = \pm 1$

• Utmost one particle per site: $\tau_i \stackrel{\prime \sigma}{=} 0, 1$

$$y \mathcal{H} = -\epsilon \sum_{\langle ij \rangle} \tau_i \tau_j - \mu \sum_i \tau_i$$

• Change variables: $\sigma_i = 2\tau_i - 1$

 $H = -\epsilon \sum_{(ij)} \left(\frac{1+\sigma_i}{2} \right) \left(\frac{1+\sigma_j}{2} \right) - \mu_j \frac{1+\sigma_j}{2}$ $= -\frac{6}{4} \sum_{ij} \frac{1}{2} \sum_{ij} \frac$ Ising model

$lsing \leftrightarrow Lattice gas$

 $J = -\frac{6}{4}$; $h = \mu + \frac{6}{2}$; $\sigma_i = \frac{5}{2} = \frac{1}{4}$

- Recipe for calculation
 - A configuration C has energy E(C)
 - $\langle O \rangle = \sum O(C) \operatorname{Prob}(C)$

How to analyse?

Given $\mathscr{H} = -J\sum_{\langle ij \rangle} S_i S_j - h\sum_i S_i$, how to proceed?

• Then Prob(C) = $\frac{\exp[-\beta E(C)]}{\sum_{C'} \exp[-\beta E(C')]}$

Different ways to analyse

- Solve exactly (unlikely)
- Low temperature expansion
- High temperature expansion
- Mean field theory
 - Curie-Weiss
 - Bethe lattice
 - Variational
- Simulations
- Etc

- When h = 0 then \mathcal{H}
- Then, can we have a phase where $m = \langle S \rangle \neq 0$
- Such a phase would break the symmetry
- Similar example is a crystal
 - Hamiltonian has continuous translational symmetry
 - Crystal has discrete translational symmetry

Symmetries

$$h\sum_{i} S_{i}$$

$$\mathscr{C}(\{S\}) = \mathscr{H}(\{-S\})$$

Low and high temperature limits Free Energy F = E - TS [F = -kT M Z]

F is minimized When T= 0, no entrop => 1111... When T= os, enteropy \Rightarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow ⇒ <m>= 0 Lmy to x T= 0 Is Te>0? Ans: only in d?2

pie contribution
$$\langle |m| \rangle = 1$$

or $\downarrow \downarrow \downarrow \downarrow \downarrow$

Age old Curie-Weiss MFT

- Isolate a spin from its environment
- Spin sees an effective magnetic field

•
$$h + J \sum_{j \in nn} S_j$$
 : fluctuating
• MFA: $\sum_j S_j \approx \sum_j \langle S_j \rangle = qm$
• $H_{mf} = -(Jqm + h) \sum_i S_i = -h_{eff}S_i$

Curie-Weiss MFT

- - $M = \frac{1}{B} \frac{\partial}{\partial h} (\ln Z)$

 - $\Rightarrow m = \frac{M}{N} = tanh(Bheff)$

 $H_{mf} = -h_{eff} \sum_{i}^{\Sigma} S_{i}$ $Partition fn Z = \sum_{s_{i}}^{\Sigma} \sum_{s_{e}}^{\Sigma} \dots \sum_{s_{N}}^{\Sigma} e^{\beta h_{eff} (S_{i} t S_{e} t \cdot t S_{N})}$ $= \left(e^{\beta h_{eff}} t e^{-\beta h_{eff}}\right)^{N}$ $= \left(e^{\beta h_{eff}} t e^{-\beta h_{eff}}\right)^{N}$ = [2 cosh(Bheff)]N = kTNB tanh (Bheff)

Solving self-consistent equation

when does m* = 0 exist?

m = tanh(BJqm) when does m* = 0 exist? Ans: when slope of tanh(pJqm) 71 at M=0 = sech²(βJam) $\beta_{c} Ja|_{m=0} = 1$ or $\frac{kT_c}{T_c} = 9$ e solution M = 0 solutions m=0, m*, -m* we choose?

MFT: solution

Choosing solution

Remember F = - k T hr Z F

 $F = -kT \ln Z$ = -kTN h(2 cosh βJqm) $\frac{\partial F}{\partial m} = -kTN \tanh(\beta Jmq) \beta Jq$ = -NJq tanh(βJmq) -70 for m<0 < o for m>0

> _____m => m^{*} ≠ o har lower free energy => m^{*} ≠ o is correct solution

Sketching magnetisation $m = tanh\left(\frac{J_{q}m}{T}\right)$ $T \neq T_c : M = 0$ $T = T_{c} : M = 0$ $T < T_e : m = m^* \neq 0$ |m|Ferromagnetié 1 Paramagneti => non-analytic at Tc

Behaviour near 1/ det $T = T_c(I - \epsilon)$ $m^* = tanh \frac{J_q m^*}{T_c(I - \epsilon)}$ but $T_c = J_q$. $m^* = tanh(\frac{m^*}{1-E})$; $tanh x = x - \frac{x}{2} + ...$ $m^* = \frac{m^*}{1-\epsilon} = \frac{m^{*3}}{(1-\epsilon)^{3}}$ $m \frac{m^{2}}{2} = \frac{1}{1-e} = \frac{1}{1-e}$ $3(1-e)^{3} = \frac{1}{1-e} = \frac{1}{1-e}$ \Rightarrow $m^{*2} \approx 3E$ m* ave

m* x JE Mon-analytic behaviour captured by critical exponent $m^* \propto e^{\beta}$ $B_{mf} = \frac{1}{2} \qquad [Thin \beta n t / kT]$

Critical Exponents

Other exponents (Susceptibility)

Susceptibility $\chi = \frac{\partial m}{\partial h}\Big|_{h \to 0}$ $T = T_c (1+E)$

$$x = \operatorname{seeh}^{2} \frac{\operatorname{ht} \operatorname{Jw}}{\operatorname{Jq}(\operatorname{It})}$$

$$x = \left[1 - \frac{1}{1 + \epsilon} \right] = \frac{1}{\operatorname{Jq}(1)}$$

$$x = \frac{1}{1 + \epsilon} = \frac{1}{\operatorname{Jq}(1 + \epsilon)}$$

$$x = \frac{1}{\operatorname{Jr}} = \frac{1}{\operatorname{Jq}}$$

$$x = \frac{1}{\operatorname{Jr}} = \frac{1}{\operatorname{Jq}} = \frac{1}{2\operatorname{Jq}} = \frac{1}$$

Atte

At T_c ?

 $m = tanh \left[\frac{h + Jq}{Jq} \right]$ $m = \frac{h + J q m}{J q} - \frac{m^3}{3} + \cdots$ $m^3 r h$ merh $\delta_{mf} = 3$

Summary of MFT

T.

ね

Minimal models and MFT

- Water and magnets complicated objects
- But a simple interacting spin model
 - Correct phases
 - Qualitative phase diagram
 - Not the correct T_c
 - What about critical exponents?
- MFT
 - Calculation simple
 - Value of critical exponents wrong ($\beta_{2d} = 1/8; \beta_{mf} = 1/2$)

Minimal models and exponents

- If we could calculate the critical exponents, then it would be the value observed in experiments
- Different from usual modelling
 - More complicated models for better results
 - Here, simple enough but not too simple
 - Results will not improve with more complicated models (next nearest neigbour? Full LJ?)
- Why? Ans: universality
- Depends only on certain symmetries

Drawbacks of Curie-Weiss MFT

- Ad hoc approximation: Hamiltonian itself changed, now depends on observable itself!
- No way to do systematically
- Predicts phase transition for one dimension [not true]
- Specific heat is zero for $T > T_c$
- Better way of doing MFT?
- Simulations for better quantitative answers?
- Other well-studied spin systems?

Recap

Ising Model

- At each site a spin
 - 2 orientations $S_i = \pm 1$

Energy
$$\mathscr{H} = -J\sum_{\langle ij\rangle}S_iS_j - h\sum_i S_i$$

Summary of MFT

Lecture 2 Monte Carlo simulations

Motivation

- Equilibrium statistical mechanics (no dynamics, only Hamiltonian)
- Recipe for calculation
 - A configuration C has energy E(C)• Then $Prob(C) = \frac{exp[-\beta E(C)]}{\sum_{C'} exp[-\beta E(C')]}$
 - Aim: generate configurations $C_1, C_2, \dots \infty$ to their equilibrium weights • Then $\langle O \rangle = \frac{1}{T} \sum_{t=1}^T O(C_t)$

Motivation

- Model defined through dynamics
 - Example: random walkers that repel each other
- Simplest and most common dynamics: Markovian
 - Dynamical rules depend only on the current state
- For generating equilibrium configurations also, we will choose Markovian dynamics
- Questions
 - How to define the dynamics?
 - How to simulate on a computer?
 - What dynamics will generate equilibrium weights?

Defining a model

- What should be given to define a model?
 - The configurations a system can be in $(C_1, C_2, C_3...)$
 - The transition rates to go from C_i to C_j : $W(C_i \rightarrow C_j)$

Defining a model

- What should be given to define a model?
 - The configurations a system can be in $(C_1, C_2, C_3...)$
 - The transition rates to go from C_i to C_j : $W(C_i \rightarrow C_j)$

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

• Probability = $(1 - \lambda dt)^{t/dt} \times \lambda dt$

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

- Probability = $(1 \lambda dt)^{t/dt} \times \lambda dt$
- Probability = $e^{-\lambda dt \times t/dt} \times \lambda dt$

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

- Probability = $(1 \lambda dt)^{t/dt} \times \lambda dt$
- Probability = $e^{-\lambda dt \times t/dt} \times \lambda dt$
- Probability = $e^{-\lambda t} \times \lambda dt$

- Suppose an event occurs at rate λ
- Probability of the event occurring in time $dt \equiv \lambda dt$
- What is the probability of it occurring for the first time at time t?

- Probability = $(1 \lambda dt)^{t/dt} \times \lambda dt$
- Probability = $e^{-\lambda dt \times t/dt} \times \lambda dt$
- Probability = $e^{-\lambda t} \times \lambda dt$

Generating probabilities

- Usually a random number generator in (0,1) is available
- Event occurs with probability λdt
 - draw a random number r in (0,1)
 - If $r < \lambda dt$ then event occurs, else not
- What about distributions like $P(t) = e^{-\lambda t} \times \lambda$? (You are only given a random number generator in (0,1))
- Given $P_X(x)$ for x, and y(x) what is $P_Y(y)$ for y?

Generating exponential distribution

- Let $P_{Y}(y) = \lambda e^{-\lambda y}$
- What should y(x) be?

• Let $P_{x}(x)$ be uniform distribution in (0,1)

Generating exponential distribution

- Let $P_{Y}(y) = \lambda e^{-\lambda y}$
- What should y(x) be?

$$dx = i$$

$$x$$
$$\int dx = i$$

• Let $P_{y}(x)$ be uniform distribution in (0,1)

Coming back to Markov process

- What is a complete description of the stochastic process?
- Configurations keep changing probabilistically, so trajectory cannot be predicted
- Interested in P(C, t): the probability of being in configuration C at time t

$$\frac{dP(C_i, t)}{dt} = \sum_{j} W(C_j \rightarrow C_i)P(C_j, t) - \sum_{j} W(C_i \rightarrow C_j)P(C_i, t)$$
Ways of generating C_i Ways of going out of C_i

Master equation

Matrix form

$$\frac{d}{dt} \begin{pmatrix} P(C_{1}) \\ P(C_{2}) \\ P(C_{3}) \\ P(C_{4}) \end{pmatrix} = \begin{bmatrix} -W_{12}^{-}-W_{13}^{-}-W_{14} & W_{21} & W_{31} & W_{41} \\ W_{12} & -W_{21}^{-}W_{23}^{-}W_{24} & W_{32} & W_{42} \\ W_{13} & W_{23}^{-}-W_{31}^{-}W_{32}^{-}W_{43} & W_{43} \\ W_{14} & W_{24} & W_{34} & -W_{41}^{-}W_{42}^{-}W_{43} \\ P(C_{4}) \end{bmatrix}$$

(1)
$$W_{ij} \gtrsim 0, i \neq j$$

(2) $W_{ii} < 0$
(3) $\sum_{i} W_{ij} = 0$ [column sum]
 $i = 0$

 $\frac{dP_i}{dt} = \sum_j W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{i} \sum_{j} W_{ij}P_j$

 $\frac{dP_i}{dt} = \sum_j W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{i} \sum_{j} W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{j} \sum_{i} W_{ij}P_j$

 $\frac{dP_i}{dt} = \sum_j W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{i} \sum_{j} W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{j} \sum_{i} W_{ij}P_j$ $\frac{d\sum_{i}P_{i}}{=0}$

dt

- $\frac{dP_i}{dt} = \sum_j W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{i} \sum_{j} W_{ij}P_j$ $\sum_{i} \frac{dP_i}{dt} = \sum_{j} \sum_{i} W_{ij}P_j$ $\frac{d\sum_{i}P_{i}}{=0}$
 - $\sum P_i = 1$

Properties of W matrix

- dP• $\frac{dt}{dt} = WP$ looks like Schrödinger equation
- But W need not be Hermitian ($W_{ij} \neq W_{ji}$ in general) Interested in eigenvectors and eigenvalues Important: left and right eigenvectors need not be same! • (1, 1, 1, ...) is a left eigenvector. Why?

Properties of W matrix

- dP• $\frac{dt}{dt} = WP$ looks like Schrödinger equation
- But W need not be Hermitian ($W_{ij} \neq W_{ji}$ in general) Interested in eigenvectors and eigenvalues • Important: left and right eigenvectors need not be same!
- (1, 1, 1, ...) is a left eigenvector. Why?
- (1, 1, 1, ...) times any column = 0 (because column sum=0) • Therefore, 0 is an eigenvalue
- Denote right eigenvector as $P_s(C)$

Other Properties of W matrix

- $\lambda_1 = 0$ is non-degenerate
- All entries of $P_s(C) \ge 0$
- $Re(\lambda_j) < 0$ for j > 1
- Eigenvectors are orthogonal as usual

Analysing the master equation

Now expand PCC, $P(c,t) = \alpha(t) |\Psi_i\rangle$ $\langle || || P(C, t) \rangle = a_i(t)$ but LHS = 1From master eq. $\frac{da_1}{dt} \left[\frac{\psi_1}{\psi_1} + \frac{da_2}{dt} \frac{\psi_2}{\psi_2} \right] + \frac{\psi_1}{dt} + \frac{\psi_2}{dt} + \frac{\psi_1}{dt} + \frac{\psi_2}{\psi_2} + \frac{\psi_1}{\psi_2} + \frac{\psi_2}{\psi_2} + \frac{\psi_2}{\psi_2} + \frac{\psi_1}{\psi_2} + \frac{\psi_2}{\psi_2} + \frac$ Take inner product will $\frac{da_2}{dt} = \lambda$

and so on

$$\Rightarrow a_1(t) = 1 \quad \forall t$$

$$- = \alpha_{1}(t) W |\Psi_{1}\rangle + \alpha_{2}(t) W |\Psi_{2}\rangle$$

$$+ \cdots$$

$$= |\Psi_{1}\rangle + \lambda_{2}\alpha_{2}(t) |\Psi_{2}\rangle + \cdots$$

$$<\Psi_{2}^{1} \qquad \qquad \lambda_{2}t$$

$$\lambda_{2}\alpha_{2}(t) = \gamma \quad \alpha_{2}(t) = \alpha_{2}(0) e^{-1}$$

Long time behaviour Thus but Re(Xj)<0 When $t \rightarrow \infty P(C,t)$ and P(c,t

- Long time behaviour unique: steady state
- Eigenvector of eigenvalue 0
- Independent of initial condition
- True if system is ergodic

Determining steady state

- Apriori not known
- Given relevant model, determining steady state becomes the key
- Can give unexpected results
- Approach to steady state: controlled by second eigenvalue λ_{γ}

Simulating a Markov process

- Multiple events possible
 - Do in infinitesimal time
 - Do in finite time
- No generic speed up routines (I do not know)
- Problem specific

Infinitesimal time updates

Suppose N possibilities with rate
$$\lambda_1, ..., \lambda_N$$

Protability of $i = \lambda_i dt$
Total probability $= (\lambda_1 + \lambda_2 + \dots + \lambda_N) dt$
Rejection free $\Rightarrow (\lambda_1 + \lambda_2 + \dots + \lambda_N) dt = 1$
or $dt = \frac{1}{\lambda_1 + \lambda_2 + \dots + \lambda_N}$
Then $Prot(i) = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_N}$
 $\overrightarrow{\lambda_1 + \lambda_2 + \dots + \lambda_N}$
Pick random # in $(0, \Sigma \lambda_i)$:
In scample, pick up 3.
 $\overrightarrow{0 dt_1}$ dt_2 dt_3 dt_4 t

Finite waiting time updates

- Multiple waiting times
- Reduces to sorting them
- And keeping them sorted!
- Efficiency can be gained
 - by tricks
 - Parallelisation

Recap

- What should be given to define a model?
 - The configurations $(C_1, C_2, C_3...)$
 - The transition rates to go from C_i to C_j : $W(C_i \rightarrow C_j)$

Markov processes

- $\frac{dP}{dt} = WP$
- $P = [P(C_1), P(C_2), \dots]^T$ • $W_{ij} = W(C_j \rightarrow C_i)$
- Column sums of W=0

Master equation
Long time behaviour Thus but Re(Xj)<0 When $t \rightarrow \infty P(C, t)$ and P(c,t

- Long time behaviour unique: steady state
- Eigenvector of eigenvalue 0
- Independent of initial condition
- True if system is ergodic

Simulating on a computer

- What are rates
- How to implement them on a computer
 - Small time increments
 - Waiting time calculations
- Two events do not occur at same time
- Because continuous time Markov process
- Equivalently one could have discrete time Markov processes
- Examples: all agents change their decision for second round
- P(t+1) = TP(t)
- Similar properties (steady state, $\lambda_{max} = 1$, etc)

Lecture 3 Simulating Equilibrium Systems

Equilibrium systems

- All this talk about Markov process
- But equilibrium models defined by E(C)
- No dynamics specified

Equilibrium systems

- All this talk about Markov process
- But equilibrium models defined by E(C)
- No dynamics specified
- Question now reversed
- $P_s(C) \propto e^{-\beta E(C)}$ is given
- What is the dynamics that gives above?

Detailed Balance

- Steady state of Markov process is unique
- If we find one solution to the master equation, that is the unique solution

$$\frac{dP(C_i, t)}{dt} = \sum_j W(C_j \to C_i)P(C_j, t) - \sum_j W(C_i \to C_j)P(C_i, t)$$
$$\frac{dP(C_i, t)}{dt} = \sum_j \left[W(C_j \to C_i)P(C_j, t) - W(C_i \to C_j)P(C_i, t) \right]$$

choose dynamics such that $W(C_j \rightarrow C_j)$

Detailed ba

$$C_i)P(C_j, t) = W(C_i \to C_j)P(C_i, t)$$

Indication $U(C_i \to C_j) = W(C_i \to C_j) = U(C_i \to C_j) = U(C_i \to C_j) = U(C_i \to C_j)$

Detailed Balance

 $W(C_j \rightarrow C_i)P(C_j,$

 $P(C_j,$

How to implement on a computer?

Comment about equilibrium vs nonequilibrium

$$t) = W(C_i \to C_j)P(C_i, t)$$
$$t) = \frac{e^{-E(C_j)}}{Z}$$

A Convenient Rule: Metropolis

- At some time step let energy= E_{old}
- Make a dynamical move that changes configuration
- Let new energy= E_{new} and $\Delta E = E_{new} E_{old}$
- Accept new configuration with probability $\min[1, \frac{Prob(new)}{Prob(old)}] = \min[1, \exp(-\beta\Delta E)]$
- Acceptance rule obeys detailed balance (Why?)
- If we run with this rule, we will generate configurations with equilibrium weight

A Convenient Rule: Metropolis

- At some time step let energy= E_{old}
- Make a dynamical move that changes configuration
- Let new energy= E_{new} and $\Delta E = E_{new}$
- Accept new configuration with probab $\min[1, \frac{Prob(new)}{Prob(old)}] = \min[1, \exp(-\frac{1}{2})]$
- Acceptance rule obeys detailed balan (Why?)
- If we run with this rule, we will generate configurations with equilibrium weight

det
$$E_{old} \leq E_{new}$$

 $Acceptance probability = e^{-\beta(E_{new}-E_{old})}$
Acceptance probability = $e^{-\beta E_{old}} -\beta(E_{new})$
Prot $(E_{old}) \otimes (E_{old} \rightarrow E_{new}) = \frac{e^{-\beta E_{old}}}{Z} -\beta(E_{new})$
 $= \frac{e^{-\beta E_{new}}}{Z}$
Prot $(E_{new}) \otimes (E_{new} \rightarrow E_{old}) = \frac{e^{-\beta E_{new}}}{Z} \times 1$
 $\lim_{W} F_{W} E_{old} \rightarrow E_{new}$

Coming back to Ising model

- Local moves
 - Glauber dynamics

 - Pick a spin at random and flip it (old and new) Does not conserve magnetisation
 - Kawasaki dynamics

 - Pick a pair of neighbouring spins and exchange them Conserves magnetisation

What happened to rates, time?

- Say, each spin flips with rate λ
- In a time dt the total rate of all events $= N\lambda dt$
- We are going to choose dt such that $N\lambda dt = 1$ • $\implies \lambda dt = \frac{1}{N}$
- In metropolis, probability that a spin is attempted to flip $= -\frac{1}{N}$
- \implies consistent
- All time defined in terms of λ^{-1} • Convenient to choose $\lambda = 1 \implies N$ flips = 1 Monte Carlo
- step

 $(t_1) = f(t_1 - t_2)$ time will depend on L

Simulations on finite lattices

- Simulations are on finite lattices
- How does one extrapolate to infinite lattices: finite size scaling
- Tells about nature of transition, exponents, etc

Going back to Metropolis

- At some time step let energy=.
- Make a dynamical move that changes configuration
- Let new energy= E_{new} and ΔE
- Accept new configuration with probability $\min[1, \frac{Wt(new)}{Wt(old)}] = \min[1, ex]$
- Acceptance rule obeys detailed balance
- Note that each simulation is done at a fixed value of temperature (and/or other parameters)

$$E = E_{new} - E_{old}$$

$$\exp(-\beta\Delta E)$$
]

Can we determine density of states g(E)?

$$Z = \sum_{E} g(E) \exp(-f)$$
$$\langle E^{n} \rangle = Z^{-1} \sum_{E} E^{n} g$$

- If g(E) is known, then data for whole temperature range can be found in one go.
- In regular Monte Carlo, each temperature has to be simulated separately
- How to determine g(E) in a Monte Carlo simulation?

- nsity of states
- βE)
- $F(E)\exp(-\beta E)$

Flat Histogram Methods

- Suppose $Wt(E) \neq \exp(-\beta E)$
- Run a simulation satisfying detailed balance: prob= $min[1, \frac{Wt(new)}{Wt(old)}]$
- Measure histogram H(E), the number of times E is visited
- Then $H(E) \propto g(E)Wt(E)$
- If Wt(E) = 1/g(E), then histogram would be flat
- Of course, one does not know g(E), but one could use the fact that if the correct Wt(E) is chosen, then histogram would be flat

A Direct Implementation

- Make a guess for
- $g(E) = g_1(E) \implies Wt(E) = 1/g_1(E)$ • Then $H(E) \propto g(E)Wt(E) = g(E)/g_1(E)$
- $g_2(E) = g(E) = H(E)g_1(E)$
- Conceptually, one could stop now, but in practice $g_2(E)$ is a poor estimate
- Iterate above a few times to get $g_1, g_2, \ldots \rightarrow g(E)$

An example

• Issues: convergence is very slow. For larger system sizes, it depends crucially on initial guess $g_1(E)$

• How can one improve the convergence?

Wang Landau algorithm

- g(E) continuously evolves during the simulation (next slide)
- Simulation does not satisfy detailed balance because g(E) is changing • But convergence is very fast
- A very popular and efficient algorithm

Wang et al, PRL, 2001

Flattening of Histograms

• Ising Model (2D): 16x16

Benchmarking

FIG. 1. Comparison of the density of states obtained by our algorithm for 2D Ising model and the exact results calculated by the method in Ref. [13]. Relative errors $\varepsilon(\log(g(E)))$ are shown in the inset.

FIG. 3. Specific heat for the 2D Ising model on a 256×256 lattice in a wide temperature region. The relative error $\epsilon(C)$ is shown in the inset in the figure.

Wang et al, PRL, 2001

Many spin models

- Potts model: $S_i =$ $\mathcal{H} = -J\sum \delta_{\varsigma}$
- Clock model: S =
 - $\mathcal{H} = -J\sum_{i}c_{i}$ $\langle ij \rangle$

$$S_i, S_j$$

 $\langle ij \rangle$

$$= \frac{2\pi i j}{q}, j = 0, 1, \dots, q - 1$$
$$\cos(\theta_i - \theta_j)$$

• XY model: $q \rightarrow \infty$ limit of clock model