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• whose behaviour is not entirely predictable 

•whose outcome depends on the behaviour of 
the other entires 

When a situation consists of entities:

• And its behaviour can differ based on 
(knowledge) of other people’s behavior 

So what is a (congestion) game ?

When the outcome of one depends on the 
actions of other…we have a game!

This map will give us 
the answer

Strate
gic Behavio
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Q: What should be our social objective ?

5

Ans: Minimize average travel time

Q: How far can we be from this objective ?

Price of Anarchy (POA) =
Travel time in DS equilibrium

Min possible average travel time
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What is the price of selfish behaviour ?

In Pigou network loss due to selfish behaviour is 
 33 %

What if the network structure is more complex ? 

…many more vertices, roads, different source-destination pairs etc 

What if the cost functions are more complex ? 
Can this get worse ?
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What if the network is more complicated ??

Roughgarden and Tardos 2002 

Moral of the story: Culprits 
are non-linear cost functions!

In every network routing game with linear (or affine) cost 

function the price of selfishness is  
4
3

A

B

c(x
) =

xp

c(x) = 1

1 − ϵ

ϵ

POA unbounded! Journey of 80 years!
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Different kinds of selfish routing
Nonatomic Selfish Routing

Atomic Selfish Routing 

Agents have negligible size and individuals 
have negligible impact on the network

Eg: road traffic, private users of communication network 

Eg: an agent could represent an ISP responsible for routing the 
data of a large number of  end users

Each agent controls a significant fraction of 
the  overall traffic.
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…not a common phenomenon!

In fact, he proved that every congestion game is an exact potential game.

He proved that every congestion game has a pure strategy Nash equilibrium (PNE)

 Research initiated by economist Robert W. Rosenthal in 1973

Later, Monderer and Shapley proved the converse:

Any game with an exact potential function is equivalent to some congestion game.

Some cool facts about congestion games

In recent times, people have asked: Do potential functions (and thus PNE) exist 
for more general congestion games ?

What is the computational complexity of finding an equilibrium?

What is the rate of convergence ? 



Thank You!
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Among all networks with cost function , the 
largest  is achieved in a Pigou-like network.

𝒞
POA

 We will prove
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routing network with cost function in , the 

 is at most , where 

𝒞
𝒞

POA =
Flow in DSE

Optimum flow
α(𝒞)

More formally

α(𝒞) = sup
c∈𝒞

sup
r≥0

sup
x≥0 { r ⋅ c(r)

x ⋅ c(x) + (r − x) ⋅ c(r) }
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