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wWhew the outcome of one depends on the
actions of other...we have a game!
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Let's fry to understand this

ohemormenon Pigou’s Network 1920

T unit of traffic

c(x) =x

c(x) =x

Traffic

Dominant coutrol

Strategy s

1 1 1 3

Expected travel fime v Expacted fravel fime == 1 T 2T

ey =1-1=1 2
DS 2quilibria

Travel fime i DS equilibrium 1

Q: Is this the 1deal outcome ? - =2

Min average fravel fime 3/4 3 .
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Q: What should be our social objective ?

Auns: Minimize average fravel fime

Q: How far can we be from this objective ?

Travel time in DS equilibrium

Price of Anarchy (POA) =

Min possible average travel time
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what uf the cost ts non-Linear ?

c(x) = x" c(x) = x" |
€ 15 very small

Travel time n DS Travel fime
-e?ui“bria =] :6.1-|-(1—€)-(1—g)p:€+(1—€)p+1

Teavel Five in DSE — 0 whewn p 15 large enough
ravel fime tn
POA = Is unbounded!

Min possible fravel fime
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T unit of traffic

. After super-highway
[nitially

Fool bl (1 L 1 1) 3 Travel fime m DS =1-140+1-1=2

Price Of Salfish behavior =—— =~ [t 15 taking more fime!!
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what Ls the prioe of selfish behaviowr ?

[n Pigou network loss due to selfish behaviour s
33 %

What (£ the network structure s more complex ?
‘*many more vertices, roads, different source-destination pairs efc

What (f the cost fumnctions are more complex 7
Can this gef worse ?
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what uf the network ts wmore complicated ??

Roughgarden and Tardos 2002

ln every nefwork routing game with lnear (or affine) cost

| . . . 4
Function the price of selfishness s g

POA unbounded! Journey of 80 years!

Moral of the story: Culprits

are won-linear cost Functions!
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Different kinds of selfish routing

Nonatomic Selfish Routing Agents have negligible size and mdividuals
have negligible tmpact on the nefwork

Eg: road traffic, private users of communication nefwork

Atomic SQ‘;CISA Rou{‘l.hg Each agent controls a significant fraction of
the overall traffic.

Eg: an agent could represent an ISP respounsible For routing the
data of a large number of end users
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Some cool facts about congestion games

Research tnitiated by economist Robert W. Rosenthal tn 1973

He proved that every congestion game has a pure strategy Nash <quilibrium (PNE)
‘ot a common pPhenomenon!

[n fact, he proved that every congestion game 15 an exact potential game.
Later, Monderer and Shapley proved the converse:
Any game with an exact potential Function 1s equivalent to some congestion game.

lu recent Himes, people have asked: Do potential functions (and thus PNE) exist

| for more general congestion games ?
What is the rate of convergence ?

What s the computational complexity of Finding an equilibrium?
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Among all networks with cost function €, the
(argest POA 15 achieved tn a Pigou-(ike netfwork.
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Let s start from the start -

constant c(r)

1. Two vertices, origin 0 and destimation d

2. Two edges from o to d, and upper and lower edge \/y@

3. A von-negative traffic rate r c(x)
4. A cost Function c(x) n the lower edge. DS 15 to send flow via lower 2dge
5. The (constant) cost fumction c(r) on the upper edge. Travel time tn DSE =r- c(r)

++no less atfractive than the constant cost c(r),
even when fully congested!

Min possible fotal fravel time 1s inf {x-c(x)+ (r—x)-c(r)}

0<x<r
POA — .Trave(. Fime 1h DS? . sup{ r-c(r) }
Min possible fravel fime w0 LX)+ (r—x)-c(r)
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x-cx)+ (r—x)-c(r)

Let € be awn arbifrary set of non-negative, continuous, and nondecreasing cost functions.

Pigou bound a(€) 15 the largest POA tn a Pigou-like network tn which the lower edge cost Function
belongs to €

a(6) = sup 4 sup < sup { r-clr) }
CECG r>0 x>0 X C(X) + (7’ — X) | C(I”)
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POA = — , , = sup
Min possible fravel fime w0 LX-cx)+(r—x)-c(r)

Let € be an arbifrary set of non-negative, confinuous, and nondecreasing cost Functions.

Pigou bound a(€) 15 the largest POA tn a Pigou-like network tn which the lower edge cost Function
belongs to €

{ r-c(r) }
a(G) = sup 4 sup { sup

cEG r>0 x>0 X C()C) + (I’ — X) ) C(l")

Description | Typical Representative Price of Anarchy
Worst POA with Linear ax + b 4/3
Po(ymomiaf cost Quadratic ax’® + bx + ¢ 33’/\52 ~ 1.6
. : Cubic axs + bz’ +cx+d %}% ~ 1.9
functions with . 4, 13 REzN
- _— Quartic ax® + bx° + cx®+dx + e ST 2.2
positive coefficient Degree < p P D YpFl . p
— 1=0 " (p+1)¥Yp+1—p ~ Inp
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