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Financial crisis

Some of the most dramatic events of history

Looking back:

Goes back 400 years!

I Can Calculate The Motions Of Heavenly Bodies, But Not The
Madness Of People!
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Financial crisis

Some of the most dramatic events of history

Looking back:

Goes back 400 years!

I Can Calculate The Motions Of Heavenly Bodies, But Not The
Madness Of People: Isaac Newton (1720)
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Financial crisis

Tulip mania, Netherlands (1637)

Figure: First recorded speculative bubble!

Reference: Dutch catalog Verzameling van een Meenigte Tulipaanen
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Financial crisis

The great depression (1929-32)

Figure: Bank of United States in New York failed in 1931!

Reference: Library of Congress. New York World-Telegram & Sun Collection. http://hdl.loc.gov/loc.pnp/cph.3c17261

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 4 / 59



Financial crisis

Black Monday (1987)

Figure: FTSE 100 index: Stock markets around the world crashed. Largest
one-day percentage decline ever!

Reference: Wiki
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Financial crisis

Asian financial crisis (1997)

Figure: Fall of the ‘miracle economies’ !

Reference: PatrickFlaherty (talk) Asian Financial Crisis.png: Bamse derivative work: Bluej100 (talk)
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Financial crisis

Global financial crisis (2007-09)

Figure: Growth rate of the countries worldwide.

Reference: Sbw01f, Kami888, Fleaman5000, Kami888derivative work: Mnmazur (talk) -

Gdp real growth rate 2007 CIA Factbook.PNG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10058473

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 7 / 59



Financial crisis

Traders on a frenzy

Figure: Market madness: Sell the stock!
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Financial crisis

Traders on a frenzy

Figure: Market madness: Buy the stock!
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Static Analysis Correlation structure

Multivariate Data

Dimension reduction

Factor models

Principal components

Spectral filtering
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Static Analysis Correlation structure

Correlation network

In this discussion, we will analyze correlation/comovement networks.

Easy to construct.

Theoretical development to filter not-so-important edges.

Filtering techniques have been developed for many-dimensional data.

Similar to the idea of principle component analysis.
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Factor models

Factor models

First, we will introduce factor models.

This is a very useful way to carry out dimension reduction.

Popular in the finance literature (Fama-French).

We will follow Tsay’s textbook exposition for the factor models.

Also, check Hamilton.
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Factor models

Factor models: Tsay’s exposition

Imagine a world with k assets producing return {rit} over T days.

A general factor model for the return series:

rit = αi + βi1f1t + . . .+ βimfmt + ϵit . (1)

where αi is a constant representing the intercept, {fjt |j = 1, . . . ,m} are m
common factors, βij is the factor loading for asset i on the jth factor, and
ϵit is the specific factor of asset i .
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Factor models

Factor models

General properties:

E (ft) = µf (2)

Cov (ft) = Σf , an m ×m matrix (3)

E (ϵit) = 0 for all i and t (4)

Cov (fjt , ϵis) = 0 for all j , i , t and s (5)

Cov (ϵit , ϵjs) =

{
σ2
i , if i = j and t = s

0, otherwise
(6)
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Factor models

Factor models

In vector form:
rt = α+ βft + ϵt , t = 1, . . . ,T (7)

which can be shortened as

rt = ξgt + ϵt . (8)

Clearly, we can write
Cov (rt) = βΣf β

′ +D. (9)

A different way of writing the same thing would be

R i = αi1T + Fβ′
i + E i . (10)
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Factor models

Factor models

Compressing everything into matrices, we get

R = Gξ′ + E . (11)

Standard OLS result gives us

ξ̂′ =

[
α̂′

β̂′

]
=

(
G

′
G
)−1 (

G
′
R
)

(12)

We can back out the residuals in the usual manner

Ê = R − G ξ̂′. (13)

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 16 / 59



Principle components

Principal Component Analysis

Let us start with n time series.

k-dimensional random variable: r = (r1, ..., rn)
′

Covariance matrix: Σ̂r

The objective of PCA is to find a linear combination of {r} such that
we can explain substantial part of the variation in Σ̂r .

Usefulness

Therefore, principle component analysis is very useful for analyzing large
datasets. One can perform dimension reduction still retaining substantial
part of the variation in the data.
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Principle components

Principal Component Analysis

Let us start with a linear combination of the data:

Construct: Yi = w ′
i r =

∑k
j=1 wij rj .

Let us normalize the data s.t. w ′
iwi =

∑k
j=1 w

2
ij = 1

Clearly,
var(Yi ) = w ′

i Σ̂rwi

and
cov(YiYj) = w ′

i Σ̂rwj .
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Principle components

Principal Component Analysis

Note the goal of PCA can be formulated as

(1) Y1 = w ′
1r which maximizes var(Y1) s.t. w

′
1w1 = 1.

(2) Y2 = w ′
2r which maximizes var(Y2) s.t. w

′
2w2 = 1, and

cov(Y2Y1) = 0.
...

(k) Yn = w ′
nr which maximizes var(Yn) s.t. w

′
nwn = 1, and

cov(YnYi ) = 0 ∀ i = 1, 2, ..., n − 1.
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Principle components

Principal Component Analysis

One method to achieve the aforementioned goal is eigenvalue
decomposition

Σr =
n∑

i=1

eiλie
′
i (14)

ei = (ei1, ..., ein), and without loss of generality λi > λj ∀ i < j .

Result

The i-th principle component is:

Yi = e ′i r

var(Yi ) = e ′i Σ̂rei = λi

cov(YiYj) = 0. (15)
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Principle components

Principal Component Analysis

Now, we note that

k∑
var(ri ) = trace(Σ̂r )

=
n∑

λi

=
n∑

var(Yi ). (16)

An immediate corollary is:

var(Yi )∑
var(Yj)

=
λi∑n
j=1 λj

. (17)
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Principle components

Principal Component Analysis

Dimension Reduction:

Result

If λj = 0 for j = 1, 2, . . . , n̄, then dimension can be reduced to n̄ from n.
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Filtering

Spectral theory of filtering

Given n financial return series rit , construct the correlation matrix Σ̂r .

Conduct spectral decomposition:

Σr =
n∑

i=1

eiλie
′
i . (18)

Let us arrange them in descending order of eigenvalues λj > λi if i > j .
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Filtering

Spectral theory of filtering

Now we can decompose them into three modes:

Σr = Σmarket +Σgroup +Σrandom.

= λ1e1e
′
1 +

ng∑
2

λjeje
′
j +

n∑
ng+1

λjeje
′
j . (19)

Question

How to determine ng above?
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Filtering

Spectral theory of filtering

Eigenspectra:

Marcenko-Pastur theorem

For N → ∞ and T → ∞ and T/N >> 1, the distribution of the
eigenvalues is given by

p(λ) =
Q

2π

√
(λmax − λ)(λ− λmin)

λ
(20)

where λmin,max =
(
1± 1√

Q

)2
.

This theorem provides an empirical bound for choosing ng .
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Filtering

Spectral theory of filtering

Figure: Distribution of correlation coefficients (Σr ): Constructed from data of 300
stocks with largest market capitalization from New York Stock Exchange.
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Filtering

Spectral theory of filtering

Figure: Eigenvalue distribution of of the correlation matrix Σr constructed from
the same data set.
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Filtering

Spectral theory of filtering

Figure: Decomposition of Σr : The relevant structure is only Σgroup
r !
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Filtering

Spectral theory of filtering

Figure: Evolution of Σmarket of New York Stock Exchange from 1925-2013. Each
period is constructed as a four years’ window with 300 stocks with largest market
capitalization.
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Filtering

Spectral theory of filtering

Figure: Evolution of Σgroup of New York Stock Exchange from 1925-2013. Each
period is constructed as a four years’ window with 300 stocks with largest market
capitalization.
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Filtering

Spectral theory of filtering

Figure: Evolution of Σrandom of New York Stock Exchange from 1925-2013. Each
period is constructed as a four years’ window with 300 stocks with largest market
capitalization.
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Filtering

A minimalistic non-trivial representation

Once we have identified the useful links, we extract the minimum spanning
tree.

Definition

Minimum spanning tree A minimum spanning tree is a subset of the edges
of a connected, weighted network, that preserves the edges such that the
toal edge weight is minimized and the preserved network is a tree (i.e.
does not have a loop).
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Filtering

MST on multi-variate financial time-series

Figure: Main figure: US sectoral MST. Top-left: Eigenvector centrality.
Bottom-right: MDS plot. Source: Sharma et al, Sci. Rep., 2017.
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Filtering

MST on multi-variate financial time-series

Figure: Sectoral MST for 27 countries in the world. Source: Sharma et al, Sci.
Rep., 2017.
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Filtering

Studying the core-periphery dynamics during crisis period
and calm period

Figure: Core-periphery: Obtained from a transformation of eigencector centrality
and imposition of a threshold. See Sharma et al. (Sci. Rep., 2017)
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Dynamic Analysis

Stock price fluctuations

Potential sources:

Informational story: Herding behavior; Behavioral factors:
Over-optimism.

Wrong idea about technology growth; Availability of easy credit.

Miscalculation of risk: Systemic risk.

...

This paper takes an atheoretical & data-driven view

We want to model propagation of volatility shock across stocks and across
time.

Problem of identification

We do not see evolution of stock prices and volatilities separately. They
are interdependent and only the joint evolution is observable.
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Dynamic Analysis

Financial time series

Figure: S&P 500 index. Growing trend with occasional downswings.

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 37 / 59



Dynamic Analysis

Financial time series: Return data

Figure: S&P 500 index (rt = log(pt)− log(pt−1)) fluctuations.
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Dynamic Analysis

Financial time series: Latent volatility

Figure: S&P 500 index: Underlying volatility. GARCH: rt = σtϵt and
σ2
t = ω + ασ2

t−1 + βr2t−1.
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Dynamic Analysis

A granular look into the financial market

We can model joint evolution of individual assets:

Assets are traded simultaneously.

Each of them have their own volatility process.

Key point: They are interdependent!
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Preview of the results

Ripples on financial network (2002-05): Magnified view

Figure: Volatility shock propagation: Goldman Sachs is the epicenter.
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Preview of the results

Ripples on financial network (2002-05)

Figure: Volatility shock propagation: Goldman Sachs is the epicenter.
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Preview of the results

literature

Main papers:

[Barigozzi and Hallin, 2017b], [Barigozzi and Hallin, 2017a],
[Tibshirani, 1996]

[Diebold and Yilmaz, 2015b], [Diebold and Yilmaz, 2015a],
[Garman and Klass, 1980]

[Engle and Figlewski, 2014], [Acemoglu et al., 2015]

[Bonanno et al., 2004], [Mantegna, 1999], [Gower, 1966],
[Pozzi et al., 2013], [Sharma et al., 2017], [Tumminello et al., 2010],
[Plerou et al., 2002]

[Acemoglu et al., 2012], [Acemoglu et al., 2016]
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Basic setup

Vector autoregression model for volatility

Reduced-form vector autoregression models (σt = Φσt−1 + ϵt):

σ1t = ϕ1
11σ1,t−1 + ϕ1

21σ2,t−1 + ...+ ϵ1t

σ2t = ϕ2
11σ1,t−1 + ϕ2

21σ2,t−1 + ...+ ϵ2t
...

σnt = ϕn
11σ1,t−1 + ϕn

21σ2,t−1 + ...+ ϵnt . (21)

We will estimate a structural version of it.
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Basic setup

VAR

Consider the following model:

yt = A∗
1yt−1 + A∗

2yt−2 + . . .+ A∗
pyt−p + ut (22)

where all matrices {A∗
i }i=1,...,p contain structural coefficients. The noise

term is not orthonormal: E (utu
T
t ) = Σ.

Identify the model (Sims’ orthogonalization):

1 Conduct a Cholesky decomposition of Σ.

2 Order the stocks according to their centrality.
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Basic setup

Identification criteria from the topology of the network

Definition

For a given network G = (V ,E ) with adjacency matrix A, we define
eigenvector centrality to be a vector ceig which solves

Aceig = λceig (23)

where λ is chosen to be the maximum eigenvalue λmax of the adjacency
matrix A.
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Basic setup

Eigenspectra outside the domain of Marchenko-Pastur
distribution

Random matrix theory that provides an upper bound to the spectral radius
of a correlation matrix generated from N random time series of length T
(Wishart matrices).

Theorem (from [Marčenko and Pastur, 1967])

Let N → ∞ and T → ∞ with Q ≡ N/T > 1. Consider a Wishart matrix
W = XX ′ where X ∼ N(0, I ). The upper bound on the modulus of the
maximum eigenvalue of W is given by

λu.b. =

(
1 +

1√
Q

)2

. (24)

We verified it empirically that λu.b < λ1, the maximum eigenvalue.
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Basic setup

Proposed algorithm

Here, we provide a step-by-step algorithm to construct the asset network
and characterize the shock propagation mechanism.

1 Sample: N number of return series over T time periods.

2 Latent volatility: GARCH(p, q)

3 Dimension reduction: LASSO model to find maximally connected
component.

4 Identification: Realized correlation network’s eigenvector centrality.

5 Estimation: VAR with identification through centrality.

6 Ripple effects: Through estimated impulse response functions.

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 48 / 59



Basic setup

Visualization: Constructing hierarchical network

We have a sample correlation matrix {ρij}. Use the metric

dij =
√

2(1− ρij) (25)

to construct two distance matrices Dr and Dσ respectively from the two
correlation matrices Γr and Γσ.

MST

We can study the shock propagation in the backdrop of the minimum
spanning tree.
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Empirical demonstration Sectoral shock propagation

Ripples on financial network (2014-17): Financial sector

Figure: Within sector volatility shock propagation: Goldman Sachs is the
epicenter.
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Empirical demonstration Sectoral shock propagation

Ripples on financial network (2014-17): Industrial sector

Figure: Within sector volatility shock propagation: Honeywell is the epicenter.
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Empirical demonstration Market-wide shock propagation

Ripples on financial network (2006-09)

Figure: Volatility shock propagation: Goldman Sachs is the epicenter.
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Empirical demonstration Market-wide shock propagation

Ripples on financial network (2010-13)

Figure: Volatility shock propagation: Goldman Sachs is the epicenter.
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Empirical demonstration Market-wide shock propagation

Ripples on financial network (2014-17)

Figure: Volatility shock propagation: Goldman Sachs is the epicenter.

Anindya S. Chakrabarti (IIMA) Time series and Networks December 7, 2024 54 / 59



Empirical demonstration Summary

Ripples on financial network

Summary:

Provide a visual laboratory to analyze shock propagation on financial
networks.

To find an unique ordering of firms based on network topology.

This serves as identification criteria for the shock propagation.

Helps us to analyze within sector as well as across sector propagation.

Extensions:

Sectoral shock spill-over.
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Empirical demonstration Summary
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Empirical demonstration Summary
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Empirical demonstration Summary
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Empirical demonstration Summary

A few more relevant papers
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