
Lecture: 1; Introduction

Collective Dynamics of Financial Markets:
Time series and Networks

Lecture slides

Anindya S. Chakrabarti

Economics area
Indian Institute of Management Ahmedabad

email id: anindyac@iima.ac.in

December 7, 2024

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 1 / 113



Lecture: 1; Introduction

Outline

Some details about the sequence:

1 Introduction to time series

2 Modelling autocorrelation. ARMA processes

3 Stationarity, Vector AR, Granger Causality

4 Nonstationarity, Unit roots, random walk

5 Volatility clustering, Introduction to ARCH-GARCH models

6 Financial networks

7 Spectral analysis
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Lecture: 1; Introduction Example

Some examples:

Let us consider the following:

Company sales.

Stock market analysis.

Inventory studies.

Inflation forecasting.

Weather prediction.

Population growth.
...
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Temperature time series

Figure: Temperature time series in Delhi over the last century in every January.
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Rainfall time series

Figure: Rainfall in Kolkata over the last century.
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GDP growth rate time series

Figure: Growth rate of Indian GDP.
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Quantity of currency (held by public) time series

Figure: Quantity of currency held by public in India.
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Reliance share price time series

Figure: Reliance share price evoution.
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Reliance volume traded time series

Figure: Reliance volume traded evoution.
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Correlation ̸= Causation!

Figure: Figure taken from https://www.tylervigen.com/spurious-correlations
compiled by Tyler Vigen.
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Properties

Main observed properties of time series:

Trend

Fluctuations

Seasonal variations

We model the time-series (with or without trend) with random variables.
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Lecture: 1; Introduction Asymptotic distribution theory

Some definitions

We have N observations: y1, y2 ...yN .

Say, we have constructed an estimate of some population-specific
parameters (vector). let us call it θ̂.

Goal

We want to know how correct is θ̂ as a description of the true data
generating process with parameters θ.

The literature has developed asymptotic theory i.e, N → ∞.
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Persistence and volatility

Figure: What is the difference between these two figures?
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Strong stationarity

Strong stationarity

A stochastic process {xt} is strongly stationary if the joint probability
distribution function of {xt−τ , . . . , xt , . . . , xt+τ} is independent of the time
point t for all τ .
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Weak stationarity

Weak stationarity

A stochastic process {xt} is weakly stationary if the first two moments
E (xt) and E (x2t ) are finite and the lagged correlation E (xtxτ ) is finite and
depends only on the lag τ .

Such processes are also called covariance stationary processes.
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White Noise

The building block of time series models is the white noise process. Let us
assume:

εt ∼ i.i.d N(0, σ2
ε). (1)

Then, the implications of this assumption would be:

E (εt) = E (εt |ε1, ε2, ..., εt−1) = 0

E (εtεt−j) = Cov(εtεt−j) = 0

Var(εt) = Var(εt |ε1, ε2, ..., εt−1) = σ2
ε
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White Noise

Basic ideas:

White noise

Lack of serial correlation

Conditional homoskedasticity
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Examples

Example of data: Quantities which non-trivially depend on their own
history.

GDP growth rates.

firm size growth rates.

temperature.

. . .
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How to build an ARMA model?

Class of models created by taking linear combinations of white noise.

AR(1):
xt = ϕxt−1 + εt (2)

MA(1):
xt = θεt−1 + εt (3)

AR(p):

xt =

p∑
i=1

ϕixt−i + εt (4)

MA(q):

xt =

q∑
j=0

θjεt−j (5)
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How to build an ARMA model?

Most general form:

ARMA(p, q):

xt =

p∑
i=1

ϕixt−i +

q∑
j=1

θjεt−j + εt (6)

Without loss of generalization, we assume that x̄ = 0. If required, we can
always introduce a constant term in the following way:

xt − x̄ = ϕ(xt−1 − x̄) + εt (7)

which again follows AR(1) process with a constant. Nothing changes
fundamentally.
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Choice of representation

We have seen two representations, AR and MA. Which one is more
desirable?

There is mathematical rule. It’s more about convenience.

For finding unconditional moments, MA process is desirable.

If we need a representation of dependence on past values (which is
more intuitive; e.g. higher gdp growth leads to higher gdp growth),
then AR process is desirable.
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AR(1) to MA(∞) by recursive substitution

Here, we show that one can go from one representation to the other very
easily. Let’s say

xt = ϕxt−1 + εt where |ϕ| < 1. (8)

Using lag operator, we can expand on the expression:

(1− ϕL)xt = εt

xt =
εt

(1− ϕL)

= (1 + ϕL+ ϕ2L2 + ϕ3L3 + . . .)εt

= εt + ϕεt−1 + ϕ2εt−2 + . . .

=
∞∑
j=0

ϕjϵt−j . (9)
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AR(1) to MA(∞) by recursive substitution

If the process started finite t periods back, we can expand it as:

xt = ϕxt−1 + εt

= ϕ2xt−2 + ϕϵt−1 + εt

= ϕtx0 +
t−1∑
j=0

ϕjεt−j . (10)

If we assume that the process started infinite periods ago, then we have

xt =
∞∑
j=0

ϕjεt−j . (11)
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Example: Expanding series with lag polynomials

Let’s consider an AR(2) process given by

xt = ϕ2xt−2 + ϕ1xt−1 + εt . (12)

This can be rewritten as

(1− ϕ1L− ϕ2L
2)xt = εt (13)

which in turn can be expressed as (assuming invertibility)

xt =
εt

(1− ϕ1L− ϕ2L2)
. (14)
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Representation

ACF is a fundamental representation of the ARMA process.

Note that ARMA description is not unique as we can switch between
AR, MA and ARMA representation.

Since the autocorrelation function is fundamental, we look for a
representation of that.

Not any set of numbers 1, ρ1, ρ2, ..., will represent a valid ACF.
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Autocovariance

We will denote autocovariance by

γj = Cov(xt , xt−j). (15)

Note that here the time index t doesn’t matter as covariance across j time
points will be the same for all time points t.
The j-lag autocovariance can be written as

γj = E (xtxt−j). (16)
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Autocovariance

Note that 0-lag autocorrelation is just the variance:

γ0 = Var(xt). (17)

Autocorrelation function

Now we can define the autocorrelation function (a.c.f.) as

ρj =
γj
γ0

. (18)
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Example: ACF for AR(1) process

AR(1):

Consider a process xt = ϕxt−1 + εt . Therefore,

γ0 = var(xt) =
σ2
ϵ

1− ϕ
(19)

γ1 = E (xtxt−1) =
(ϕσ2

ϵ )

(1− ϕ)
= ϕγ0 (20)

γ2 = E ((ϕxt−1 + εt)xt−2) = ϕ2E (x2t−2) = ϕ2γ0 (21)
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Example: ACF for AR(1) process

We can easily derive the autocorrelation function as

ρ1 = ϕ (22)

ρ2 = ϕ2 (23)
...

ρj = ϕj ∀ j > 0. (24)
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Wold Decomposition Theorem

Theorem

Any mean zero covariance stationary process xt can be represented in the
form:

xt =
∞∑
j=0

θjϵt−j + ηt (25)

1. ϵt ≡ xt − P(xt |xt−1, xt−2, ...)

2. P(ϵt |xt−1, xt−2, ...) = 0, E (ϵtxt−j) = 0, E (ϵt = 0), E (ϵ2t ) = σ2
ϵ ,

E (ϵtϵs) = 0 for all t ̸= s

3. All the roots of θ(L) are on or outside the unit circle, i.e. (unless
there is a unit root) the MA polynomial is invertible.
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Theorem

Any mean zero covariance stationary process xt can be represented in the
form:

xt =
∞∑
j=0

θjϵt−j + ηt (26)

4.
∑∞

j=0 θ
2
j < ∞, θ0 = 1

5. {θj} and {ϵs} are unique.

6. ηt is linearly deterministic, i.e. ηt = P(ηt |xt−1, ..)
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Properties of ACF and PACF

Process ACF (ρ(h)) PACF (π(h))

AR(p) infinite; dampened
exponential or si-
nusoidal waves

finite; π(h) = 0 for
h > p

MA(q) finite; ρ(h) = 0 for
h > q

infinite dampened
exponential or si-
nusoidal waves

ARMA(p, q) as AR(p) for h > q as MA(q) for h >
p
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Estimation of ARMA process

Goal:

We have a series of observations X1, X2, . . . ,XT . We want to fit an
ARMA(p, q) to these observations.

we rely on a fundamental result.

Basic framework

A stationary data generating process can be approximated by
ARMA(p, q) process.
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Estimation of ARMA process

What we would like to do:

First, we need to determine the order (p and q) of the process.

Then we need to find the values of the coefficients.

Also, need to identify the error term variance.
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Box-Jenkins methodology (1976)

The basic recursive model selection technique works as follows:

Identify the model

Estimate the coefficients or parameters.

Perform diagnostics of the fitted model.

If the model fails the tests, go to the first step.

If the model seems satisfactory, one can make predictions.
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Model identification

First, check stationarity of data X1, X2, . . . ,XT .

Visual inspection.

Statistical tests for stationarity (Dickey-Fuller, Phillips-Perron etc.).

Transform the data to achieve stationarity.

For example, GDP per capita (Gt) can be non-stationary but the
growth rate (gt = log(Gt)− log(Gt−1)) can be stationary.
Sometimes, more than one round of difference operator can be required
to achieve stationarity.
There is an idea of fractional difference as well (we will skip the
discussion here).
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Model identification

The net step is to select the orders p and q.

Compute empirical ACF and PACF (software will do it for you).

This gives you an idea about MA and AR order, respectively.

One can utilize more sophisticated statistical criteria as well.
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Estimate the parameter vector

Once we fix the orders, we know the number of parameters to be
estimated.

Ordinary least square can be applied.

Maximum likelihood estimation can be applied.
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Perform diagnostics on the model and use it for prediction

next, we check for autocorrelation in the residuals.

Ljung-Box test.

If the residuals do not have any autocorrelation, then the model is
good.

Else, we need to modify.

If the model is good to go,

we can use it for prediction.
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Lecture: 2; Modeling: Theory and Estimation Details of the techniques

Estimation of the lag orders

There are obviously two errors that we have to be careful about.

We can pick large p and q: Model overfits the data → High
in-sample fit but poor out-of sample performance.

We can pick small p and q: Model underfits the data → Low
in-sample fit but better out-of sample performance.

Either way it is bad since the maximum likelihood estimator would not be
consistent.

We can use ACF and PACF. But such visual inspection may not be
very accurate.

We can use information criteria.
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Information criteria

This is a standard tool for model selection. We want to minimize the
information criterion to come up with a better model.

If we over-parameterize, then the in-sample fit has to necessarily
increase.

Let us denote the fit of the model by the variance of the residuals
(σ̂2

p,q).

We penalize higher values of p and q and correct for σ̂2
p,q.
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Lecture: 2; Modeling: Theory and Estimation Information Criteria

Information criteria (standard procedures)

Main objective: Minimize information criterion IC with respect to p and q
where

Akaike IC AIC (p, q)= log(σ̂2
p,q) +

2
T

(
p + q

)
.

Bayesian or Schwarz IC BIC (p, q) = log(σ̂2
p,q) +

log(T )
T

(
p + q

)
.

Hannan-Quinn IC HQIC (p, q): log(σ̂2
p,q) +

2(log(log(T )))
T

(
p + q

)
.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 46 / 113



Lecture: 2; Modeling: Theory and Estimation Information Criteria

Information criteria (standard procedures)

General rule:

BIC and HQIC penalizes over-parameterization more than AIC and hence
typically economizes on the number of parameters.

However, AIC might pick a better model (closer to the true data
generating process) in small samples.

Rule of thumb:

You can use all of them. None of these clearly dominates others. AIC and
BIC are more popular than HQIC.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 47 / 113



Lecture: 2; Modeling: Theory and Estimation Estimation

Estimation of AR(p) process

Let us say we have a model of the form:

xt =

p∑
i=1

ϕixt−i + εt (27)

We want to estimate ϕ1, ϕ2, ...ϕp.

We can use Yule-Walker estimators.

However, here we discuss more standard OLS procedure.
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Estimation of AR(p) process

Consider an equation

xt = c +

p∑
i=1

ϕixt−i + εt (28)

Say, xt is the endogenous variable,

xt−1, xt−2, ...xt−p are exogenous variables,

ϕ1, ϕ2, ...ϕp are coefficients,

ϵt is the error term.
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Estimation of AR(p) process

In matrix form, we can write


Xp+1

Xp+2
...

XT

 =


1 Xp Xp−1 Xp−2 . . . X1

1 Xp+1 Xp Xp−1 . . . X2
...

...
...

... . . .
...

1 XT−1 XT−2 XT−3 . . . XT−p

×


c
ϕ1
...
ϕp

+


up+1

up+2
...
uT


(29)

Let us write it in a more convenient form

Y = Xβ + ϵ. (30)
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Estimation of AR(p) process

Clearly the OLS estimator is

β̂OLS = (X ′X )−1X ′Y . (31)

Now we may estimate the error variance by finding the residuals

ϵ̂ = Y − X β̂OLS , (32)

and construct

σ̂2 =
ϵ̂′ϵ̂

T − p
. (33)
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Estimation of AR(p) process

Some technical issues:

regressors are correlated with error terms

the origin of the observation [X1, X2, . . . , Xp] affect the OLS
estimates.

Result

For AR(p) models, β̂OLS is consistent and asymtotically efficient.

Note

For ARMA(p, q) models, β̂OLS can not be estimated since the error terms
are not observable.
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Estimation of ARMA(p, q) process

We utilize maximum likelihood estimation.

Consistent.

Asymptotically efficient.

Asymptotically Normally distributed.

Robust against deviation from assumption of normality of the
data-generating process.
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Estimation of ARMA(p, q) process

Let us say we have a model of the form:

xt =

p∑
i=1

ϕixt−i +

q∑
j=1

θjεt−j + εt (34)

with normally distributed white noise ϵt i.e., ϵt ∼ N(0, σ2).

Log-likelihood function: Consider the starting values

X0 ≡ [x0 x−1 . . . x−p+1]
′

ϵ0 ≡ [ϵ0 ϵ−1 . . . ϵ−p+1]
′. (35)
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Estimation of ARMA(p, q) process

Exact Gaussian likelihood of x = (x1, x2, . . . , xT )
′ is given by

L(β|x) = (2π)−T/2|Γ(β)|−1/2exp

(
−1

2
x ′Γ(β)−1x

)
(36)

where Γ(β) = E (xx ′) is the T × T covariance matrix of x which is a
function of β.
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Lecture: 2; Modeling: Theory and Estimation Estimation

Estimation of ARMA(p, q) process

The conditional loglikelihood function is given by

L(β|x0, ϵ0) = −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

ϵ2t
2σ2

. (37)

L(β|x0, ϵ0) is a nonlinear function of β.

We resort to numerical techniques to maximize the likelihood
function.

All softwares/programming languages (R, matlab, python, stata etc)
have these kind of programs inbuilt.
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Vector autoregression model

Vector autoregression models are objects that follows the following
structure:

X1t = ϕ1
11X1,t−1 + ϕ1

12X1,t−2 + ...+ ϕ1
21X2,t−1 + ...+ ϵ1t

X2t = ϕ2
11X1,t−1 + ϕ2

12X1,t−2 + ...+ ϕ2
21X2,t−1 + ...+ ϵ2t

...

Xnt = ϕn
11X1,t−1 + ϕn

12X1,t−2 + ...+ ϕn
21X2,t−1 + ...+ ϵnt . (38)
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Why VAR representation is useful?

The idea is that any ARMA(p,q) process can be projected in to an AR(1)
process which is essentially VAR. For an example, consider the following
ARMA(2,1) process:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϵt + θ1ϵt−1 (39) Xt

Xt−1

ϵt

 =

ϕ1 ϕ2 θ1
1 0 0
0 0 0

Xt−1

Xt−2

ϵt−1

+

1
0
1

 [ϵt ]. (40)
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Why VAR representation is useful?

This expression can be written as:

xt = Θxt−1 + Γwt (41)

where

Γ =

σϵ
0
σϵ

 (42)

and wt captures the normalized noise with E (wtw
′
t) = I .
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Granger Causality

Causality: If an event A takes place regularly after another event B, then
the preceding event may cause the event that follows.

Definition

x1t Granger causes x2t if x1t has a predictive component for x2t , given past
relaizations of x2t .
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Lecture: 2; Modeling: Theory and Estimation Granger Causality

Granger Causality

Consider a bivariate VAR:

x1t = θ11(L)x1,t−1 + θ12(L)x2,t−1 + ϵ1t

x2t = θ21(L)x1,t−1 + θ22(L)x2,t−1 + ϵ2t . (43)
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Lecture: 2; Modeling: Theory and Estimation Granger Causality

Granger Causality

Suppose x1 Granger causes x2, but not the other way round. Then

x1t = θ11(L)x1,t−1 + ϵ1t

x2t = θ21(L)x1,t−1 + θ22(L)x2,t−1 + ϵ2t . (44)
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Lecture: 2; Modeling: Theory and Estimation Prediction

Summary of predictive algorithm

Steps:

Given an ARMA(p, q) system, convert it into a VAR(1) model:

xt = Θxt−1 + Γwt . (45)

Use the following formulae:

Et(xt+τ ) = Θτxt (46)

and

vart(xt+τ ) =
τ−1∑
j=0

ΘjΓΓ′(Θj)′. (47)

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 63 / 113



Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Impulse Response function

IRF is a very intuitive and easy way to understand the structure of a VAR
model.

It captures how shock propagates from one variable to another.

Provides an idea about how shocks diffues over time.

Useful for model validation (e.g. DSGE models).
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Impulse response function: Basic idea

Consider a simple AR(1) process:

xt = ϕxt−1 + ϵt . (48)

Imagine that x0 = 0 and ϵt is given an unit shock. Then x responds as the
following:

t : 1 2 3 4 . . .

ϵt : 1 0 0 0 . . .

xt : 1 ϕ ϕ2 ϕ3 . . . (49)
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Impulse response function: Basic idea

Note that by inversion, we get

xt = (1 + ϕL+ ...+ ϕnLn + ...)ϵt . (50)

Therefore, the series of MA coefficients constitute the impulse response
function.

IRF

The coefficients of MA representation of an ARMA process constitutes the
corresponding IRF.
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Impulse response function: Basic idea

As an example, consider an MA(2) process:

xt = (1 + γ1L+ γ2L
2)ϵt . (51)

The IRF is:

t : 1 2 3 4 . . .

ϵt : 1 0 0 0 . . .

xt : 1 γ1 γ2 0 . . . (52)
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Impulse response function

Generally, consider a VAR(1) process:

Xt = ΘXt−1 + Γϵt . (53)

Then the impulse response function is given as

t : 1 2 3 4 . . .

ϵt : 1 0 0 0 . . .

Xt : Γ ΘΓ Θ2Γ Θ3Γ . . . (54)
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

Problems of impulse response function

They are generally non-unique. Not part of the present discussion.
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Lecture: 2; Modeling: Theory and Estimation Impulse Response Function

More on VAR

VAR models are quite useful.

They are agnostic to the theory.

Provides a summary of lagged correlation between multiple variables
at one go.

Can provide an idea about causality (in the Granger sense).

We can use theoretical restrictions to identify VAR models.
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GARCH Volatility and Fluctuations

Modeling the second moment

We will introduce the GARCH class of models.
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GARCH Volatility and Fluctuations

What does financial data look like?

Figure: S&P 500 index. Growing trend with occasional downswings.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 72 / 113



GARCH Volatility and Fluctuations

Do we care about price or return?

Return is the most important factor.

rt = log(pt)− log(pt−1). (55)
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GARCH Volatility and Fluctuations

What does financial data look like?

Figure: S&P 500 index fluctuations.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 74 / 113



GARCH Volatility and Fluctuations

Some interesting properties

What can we read from the data?

Lots of movement! Wild swings are observed.

Average return is close to zero.

level of return seems to have no relationship over time. A good return
today does not indicate a good return tomorrow.

Volatile periods tend to cluster.

Market has ‘memory’ in volatility!
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GARCH Volatility and Fluctuations

How to measure ‘memory’?

We need some tools.

Definition (Autocorrelation)

Autocorrelation (or serial correlation) is the correlation of a time series
with a delayed copy of itself as a function of delay (also called lag).

Formally, the expression is

R(τ) =
E ((Xt − µ)(Xt+τ − µ))

σ2
. (56)

Intuition: It is just like cross-correlation!

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 76 / 113



GARCH Volatility and Fluctuations

What does financial data look like?

Figure: S&P 500 index: Autocorrelations (left: rt , right: r
2
t ).
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GARCH Volatility and Fluctuations

How to make sense of it?

We have a model called GARCH (Generalized Autoregressive Conditional
Heteroscedastic) that allows you to find out how volatile a market is.

A simple example of GARCH(1,1) is as follows:

rt = σtϵt

σ2
t = ω + ασ2

t−1 + βr2t−1. (57)

where ϵt is an independent standard normal random variable.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 78 / 113



GARCH Volatility and Fluctuations

What does financial data look like?

Figure: S&P 500 index: Latent volatility.
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GARCH Volatility and Fluctuations

GARCH(p,q) process

Let us define the following process:

yk = σkεk

σ2
k = w +

p∑
i=1

αiy
2
k−i +

q∑
j=1

βjσ
2
k−j (58)

We assume that

w > 0

αi ≥ 0

βi ≥ 0

Note:

No structural reason behind the above model. But you will see that it is
very useful.
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GARCH Volatility and Fluctuations

GARCH(p, q) process

Other assumptions:

{εi} is IID, E (ε0) = 0, E (ε20) = 1.

(
∑p

i αi +
∑q

j βj) < 1 for uniqueness and stationarity.

Question

Why stationarity even if fluctuations depend on the level of volatility time
dependent?
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Non-stationarity Trend- and Difference-stationary Processes

Stationarity

Experience with real-world data, however, soon convinces one
that both stationarity and Gaussianity are fairy tales invented for
the amusement of undergraduates. (Thomson 1994)

Thomson, D.J. 1994. Jackknifing multiple-window spectra. In:
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, VI, 73-76

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 82 / 113



Non-stationarity Trend- and Difference-stationary Processes

Recall the Definitions

Definition (Strong stationarity:)

A strictly/strongly stationary stochastic process is one where the joint
statistical distribution of Xt1 , . . . , Xtl is the same as the joint statistical
distribution of Xt1+τ , . . . , Xtl+τ for all l and τ .

Definition (Weak stationarity:)

A weakly stationary stochastic process is one of which

the mean E (xt) = c where c is independent of time,

the variance var(xt) = σ2 where σ is independent of time,

and finally, the covariance cov(xt , xt−l) = γ(l) i.e., it depends only on
the lag l .
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Non-stationarity Trend- and Difference-stationary Processes

Wold Decomposition Theorem

Theorem

Any mean zero covariance stationary process xt can be represented in the
form:

xt =
∞∑
j=0

θjϵt−j + ηt (59)

1. ϵt ≡ xt − P(xt |xt−1, xt−2, ...)

2. P(ϵt |xt−1, xt−2, ...) = 0, E (ϵtxt−j) = 0, E (ϵt = 0), E (ϵ2t ) = σ2
ϵ ,

E (ϵtϵs) = 0 for all t ̸= s

3. All the roots of θ(L) are on or outside the unit circle, i.e. (unless
there is a unit root) the MA polynomial is invertible.
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Non-stationarity Trend- and Difference-stationary Processes

Theorem

Any mean zero covariance stationary process xt can be represented in the
form:

xt =
∞∑
j=0

θjϵt−j + ηt (60)

4.
∑∞

j=0 θ
2
j < ∞, θ0 = 1

5. {θj} and {ϵs} are unique.

6. ηt is linearly deterministic, i.e. ηt = P(ηt |xt−1, ..)
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Non-stationarity Trend- and Difference-stationary Processes

Non-stationarity

Non-stationarity might arise in the following ways.

Deterministic trend (or trend stationarity)

Regime shift in level

Change in variance

Unit roots (stochastic trend)
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Non-stationarity Trend- and Difference-stationary Processes

Trend stationarity

Definition (Trend stationarity:)

A process {Xt} is called trend stationary if

Xt = f (t) + ϵt (61)

where ϵt is a stationary process.
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Non-stationarity Trend- and Difference-stationary Processes

Trend stationarity

Example:

Let us say zt is stationary AR(1) process

zt = ρzt−1 + ϵt . (62)

Let us assume that process xt has the following form

xt = a+ b.t + c .t2 + zt . (63)

Then xt is a trend stationary process.
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Non-stationarity Trend- and Difference-stationary Processes

Difference stationarity

Definition (Difference stationarity:)

A process xt is called difference stationary if

∆pxt = ϵt (64)

where ϵt is stationary for some p.
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Non-stationarity Trend- and Difference-stationary Processes

AR process with unit root

Consider the following process:

xt = xt−1 + ϵt . (65)

The characteristic polynomial is θ(z) = 1− z . Therefore, it has a unit
root, θ(1) = 0.

By backward substitution, we get

xt = x0 + ϵ1 + . . .+ ϵt . (66)

Important point:

Effect of any shock remains. Property of mean reversion is absent.
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Non-stationarity Trend- and Difference-stationary Processes

AR process with unit root

From the above expression,

var(xt) = tσ2. (67)

Also, the covariance is given by (assume t ≥ s)

E ((xt − x0)(xt−s − x0)|x0) = E ((ϵ1 + ϵ2 + . . .+ ϵt)(ϵ1 + ϵ2 + . . .+ ϵt−s))|x0)
= (t − s)σ2. (68)

Autocorrelation is given by

ρ(xt , xt−s |x0) =
cov(xt , xt−s |x0)√
V (xt |x0)V (xt−s |x0)

=
(t − s)σ2√
tσ2(t − s)σ2

=

√
t − s

t
. (69)
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Non-stationarity Trend- and Difference-stationary Processes

Random walk with a drift

Consider a process:
xt = δ + xt−1 + ϵt . (70)

By backward substitution, we get

xt = x0 + δt +
t∑

j=1

ϵt . (71)
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Non-stationarity Trend- and Difference-stationary Processes

Unit root testing

Estimate an autoregressive model and test whether there is an unit root or
not.

Note:

The asymptotic distribution for a unit root test is non-standard. It does
not converge to normal distribution.
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Non-stationarity Trend- and Difference-stationary Processes

Dickey-Fuller test

Consider an AR(1) model

xt = ρxt−1 + ϵt . (72)

Hypothesis test is conducted on

H0 : ρ = 1 against H1 : ρ ∈ (−1, 1). (73)

Dicky-Fuller test:

The DF test statistic is simply the t − ratio

t̂ =
ρ̂− 1

se(ρ̂)
. (74)

Dicky-Fuller distribution is simulated (and it is not normally distributed).
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Non-stationarity Trend- and Difference-stationary Processes

Dickey-Fuller test

Note that the process
xt = ρxt−1 + ϵt . (75)

can be written as
∆xt = πxt−1 + ϵt . (76)

where π = ρ− 1.

Therefore, the hypothesis test can also be conducted on

H0 : π = 0 against H1 : π ∈ (−2, 0). (77)

The DF test statistic in this case is

t̂ =
π̂

se(π̂)
. (78)
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Non-stationarity Trend- and Difference-stationary Processes

Augmented Dickey-Fuller test

Suppose we have an AR(p) process:

xt = ρ1xt−1 + ρ2xt−2 + . . .+ ρpxt−p + ϵt . (79)

This can be rewritten as

∆xt = πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt (80)

where π, θ1, θ2, . . . θp−1 are defined suitably. Therefore, the hypothesis
test can also be conducted on

H0 : π = 0 against H1 : π ∈ (−2, 0). (81)

The DF test statistic in this case is

t̂ =
π̂

se(π̂)
. (82)
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Non-stationarity Trend- and Difference-stationary Processes

Augmented Dickey-Fuller test with a constant term

Suppose we have an AR(p) process:

∆xt = δ + πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt (83)

We can still check

H0 : π = 0 against H1 : π ∈ (−2, 0) (84)

with same distribution of t-ratio. However, that incorporate a
deterministic trend due to δ. A better option is to test

H0 : π = δ = 0. (85)

The joint hypothesis can be tested by a LR test,

LR(π = δ = 0) = −2(log L0 − log L1) (86)

where LR statistic follows DF 2
c under the null hypothesis.
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Non-stationarity Trend- and Difference-stationary Processes

Augmented Dickey-Fuller test with a trend term

Suppose we have an AR(p) process:

∆xt = δ + γt + πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt (87)

We can still check

H0 : π = 0 against H1 : π ∈ (−2, 0) (88)

with same distribution of t-ratio. A better option is to test

H0 : π = γ = 0. (89)

The joint hypothesis can be tested by a LR test,

LR(π = δ = 0) = −2(log L0 − log L1) (90)

where LR statistic follows DF 2
l under the null hypothesis.
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Non-stationarity Trend- and Difference-stationary Processes

Summary of the tests (borrowed from Morten Nyboe
Tabor’s notes)

Model DF LR

∆xt = πxt−1 + ϵt DFl DF 2
l

∆xt = πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt DF DF 2

∆xt = δ + πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt DFc DF 2
c

∆xt = δ + γt + πxt−1 + θ1∆xt−1 + . . .+ θp−1∆xt−p+1 + ϵt DFl DF 2
l

Hypothesis testing:

For the ADF test:

H0 : π = 0 against H1 : π ∈ (−2, 0) (91)

For the likelihood ratio (LR) test:

H0 : π = 0 or H0 : π = δ = 0 or H0 : π = γ = 0. (92)
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Non-stationarity Trend- and Difference-stationary Processes

Other tests

There is a host of other tests that you can use.

Phillips-Perron test and its variants/modifications.

So far we have talked only about testing for unit roots.

KPSS test

This test enables us to check for stationarity.
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

Unit Roots in Real GNP: Do We Know, and Do We Care?
Lawrence J. Christiano, Martin Eichenbaum
NBER Working Paper No. 3130, Issued in October 1989

Abstract: No, and maybe not.
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

Power is the probability of rejecting the null hypothesis when it is incorrect.

Null hypothesis

Decision True False

Reject null type I power
Cannot reject null correct type II
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

Figure: Simulation of trend-stationary processes
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

It is extremely difficult to differentiate between trend stationary and
difference stationary series over short time scale.

Figure: Simulation of difference-stationary processes
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

It is extremely difficult to differentiate between trend stationary and
difference stationary series over short time scale.

Figure: Comparison of simulated paths of trend-stationary and difference
stationary processes.
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Non-stationarity Trend- and Difference-stationary Processes

Challenges and pitfalls

In the earlier figure we assumed a difference stationary process as follows:

∆yt = 0.5 + et + 1.4et−1 + 0.8et−2 (93)

and trend stationary process as follows:

yt = 0.3t + 0.8yt−1 + et + 0.4et−1. (94)

Replication

I have used rng(default) in matlab.
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Non-stationarity Trend- and Difference-stationary Processes

USD-INR exchange rate

Figure: USD-INR exchange rate from 1st August, 2018 to 31st July, 2019.
Panel(a): Log exchange rate; (b) log-return; (c) ∆ log-return.
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Non-stationarity Trend- and Difference-stationary Processes

USD-INR exchange rate

Code:

>> h = adftest(Exchange rate US)

>> h = 0 i.e., this test fails to reject the null hypothesis of a unit root
against the autoregressive alternative.

>> h = adftest(Exchange rate US ,′model ′,′ ARD ′,′ lags ′, 0 : 2)

>> h = 0 0 0 i.e., this test fails to reject the null hypothesis of a unit
root against the alternative with three lags with a drift term.

>> h = adftest(Exchange rate US ,′model ′,′ TS ′,′ lags ′, 0 : 2)

>> h = 0 0 0 i.e., this test fails to reject reject the null hypothesis of a
unit root against the trend-stationary alternative with three lags.
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Non-stationarity Trend- and Difference-stationary Processes

USD-INR exchange rate

Code:

>> h = adftest(return US)

>> h = 1 i.e., this test rejects the null hypothesis of a unit root
against the autoregressive alternative.

>> h = adftest(return US ,′model ′,′ ARD ′,′ lags ′, 0 : 2)

>> h = 1 1 1 i.e., this test rejects the null hypothesis of a unit root
against the alternative with three lags with a drift term.

>> h = adftest(return US ,′model ′,′ TS ′,′ lags ′, 0 : 2)

>> h = 1 1 1 i.e., this test rejects reject the null hypothesis of a unit
root against the trend-stationary alternative with three lags.
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Non-stationarity Trend- and Difference-stationary Processes

USD-INR exchange rate: Phillips-Perron test

Code:

>>
[h basic PP, pValue PP, stat PP, cValue PP, reg PP] = pptest(data US)

>> h = 0 i.e., this test fails to reject the null hypothesis of a unit root
against the autoregressive alternative.

>> pValue PP = 0.6681

>> [h basic PP, pValue PP, stat PP, cValue PP, reg PP] =
pptest(return US)

>> h = 1 i.e., this test rejects the null hypothesis of a unit root
against the autoregressive alternative.

>> pValue PP = 1.0000e − 03
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Non-stationarity Trend- and Difference-stationary Processes

USD-INR exchange rate: KPSS test for stationarity

Code:

>> [h basic kpss] = kpsstest(data US)

>> h = 1 i.e., this test rejects the trend-stationary null in favor of the
unit root alternative.

>> [h return kpss] = kpsstest(return US)

>> h = 0 i.e., this test fails to reject the trend-stationary null.

Anindya S. Chakrabarti (IIM-A) Time series December 7, 2024 111 / 113



Non-stationarity Trend- and Difference-stationary Processes
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Non-stationarity Trend- and Difference-stationary Processes
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