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Abstract
Pathogenic microorganisms entail enormous problems for humans, livestock, and crop plants. A better understanding of 
the different infection strategies of the pathogens enables us to derive optimal treatments to mitigate infectious diseases or 
develop vaccinations preventing the occurrence of infections altogether. In this review, we highlight the current trends in 
mathematical modeling approaches and related methods used for understanding host–pathogen interactions. Since these 
interactions can be described on vastly different temporal and spatial scales as well as abstraction levels, a variety of com-
putational and mathematical approaches are presented. Particular emphasis is placed on dynamic optimization, game theory, 
and spatial modeling, as they are attracting more and more interest in systems biology. Furthermore, these approaches are 
often combined to illuminate the complexities of the interactions between pathogens and their host. We also discuss the 
phenomena of molecular mimicry and crypsis as well as the interplay between defense and counter defense. As a conclu-
sion, we provide an overview of method characteristics to assist non-experts in their decision for modeling approaches and 
interdisciplinary understanding.

Keywords Dynamic optimization · Game theory · Agent-based modeling · Equation-based modeling · Host–pathogen 
interactions · Crypsis

Introduction

Pathogenic organisms have been an immense burden since 
the beginning of civilization and still continue to afflict us 
through deadly infectious diseases that affect humans, ani-
mals, or plants. Even today, in a world where we have devel-
oped advanced antibiotics designed to specifically target and 
suppress pathogens, microbial pathogens continue to be a 
leading cause of disease that causes major loss of human 
lives, crops, and livestock. For example, human infections 

are estimated to cause over 8 million deaths in 2019 [90] and 
plant pathogens are responsible for a 20–30 % yield loss of 
major food crops [108]. While many infectious diseases have 
practically been eradicated, new problems such as antibiot-
ics resistance have emerged, which considerably increase 
the clinical and economical burden [131]. Besides bacteria 
and viruses, pathogenic fungi such as Candida albicans or 
Aspergillus fumigatus are an underestimated threat [18].

In conjunction with experimental and clinical inves-
tigations, computational and mathematical approaches 
have turned out to be highly valuable in understanding and 
diagnosing host–pathogen interactions (HPI) and devising 
optimal therapies [9, 30, 109]. Furthermore, computational 
modeling of biological conditions can save time and money 
compared to wet lab experiments, and can simulate certain 
processes that are hardly realizable in experiment [21].

Computational approaches have led to several success 
stories already. They have been very helpful in predicting, 
assessing, and controlling epidemics [117]. To that end, epi-
demiological models are used. On the micro host–pathogen 
level considered in this review, for example, the metabolism 
of Trypanosoma brucei, the causative agent of the sleeping 
disease, was analyzed by mathematical modeling. That led to 
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the prediction that glucose transport is a promising drug tar-
get without collateral damage to the host [3], as has indeed 
been confirmed in experiment [51].

In the present review, we give an overview of computa-
tional approaches describing HPI, with a special reference 
to dynamic optimization, evolutionary game theory, and the 
modeling of spatial phenomena. The following aspects are 
covered, in this order, in the sections “Dynamics of infec-
tion and optimization”, “Costs and benefits”, “Molecular 
mimicry and crypsis”, “Spatial properties”, and “Defense, 
counter defense and counter-counter defense”: the dynamics 
of infection, costs, and benefits of HPI as described by game 
theory, molecular crypsis of pathogens, spatial properties, 
and the levels of defense interactions. As the name suggests, 
dynamic optimization is based on optimality principles [38], 
which are in line with Darwin’s concept of ’survival of the 
fittest’. Also game theory is based on that concept, the idea 
being that each ’player’ evolves such as to maximize its 
fitness [57, 59]. However, as the counterparts in the game 
interfere, they may hinder each other to attain optimal states.

The question arises why various computational methods 
are applied. In some cases, simple optimization (rather than 
game theory) is sufficient, notably if the tendencies of the 
’players’ (e.g., organisms) to increase their fitness are not in 
conflict with each other. Many processes can be described 
by alternative methods. For example, the interplay of alleles 
can often be described both by population genetics and game 
theory [60]. It depends on the aim of study which method 
is most suitable [26] or may be, to some extent, a matter of 
taste. This will be discussed in more detail in the section 
“Conclusion and outlook”.

Dynamics of infection and optimization

During the interaction of host and pathogens, speed and tim-
ing are crucial for both to survive. Therefore, the method of 
dynamic optimization is valuable to describe and understand 
infection processes. Originating from engineering, dynamic 
optimization, also called optimal control (closed-loop prob-
lems), describes biological systems by an ordinary differen-
tial equation (ODE) system whose behavior is influenced by 
control or decision variables [5, 80]. On a molecular level, 
host and pathogenic cells, for example, use enzyme levels 
(as changed by gene expression, etc.) to control the flux in 
metabolic pathways and respond to environmental changes 
[37, 38, 73]. In models of HPI, often cells and their behav-
iors like proliferation or recruitment are viewed as control 
variables. These control variables are then optimized with 
regard to an objective function to get a time-optimal strategy 
controlling the behavior of the biological system (see Fig. 1). 
While there are many models of infections and HPI using 
ODEs [35], dynamic optimization is less frequently used to 
study host–pathogen systems.

Commonly, dynamic optimization is used for the analysis 
of transmission dynamics and epidemiology by extending 
the popular Susceptible-Infected-Recovered models [35, 
113]. Although these models are valuable to obtain strate-
gies controlling the spread of infections, we want to empha-
size, in this review, dynamic optimization models describing 
infection processes and HPI within the host.

Dynamic optimization problems focusing on within-
host dynamics are formulated in two main fields of appli-
cation. In the first field, parts of the immune response 

Fig. 1  Basic concept of dynamic optimization illustrated by a simple 
host–pathogen system. A system, in the depicted example the growth 
of pathogens (green) and their phagocytosis by immune cells (blue), 
is described by state variables [x(t)]. The behavior of the system is 
influenced by control variables [u(t)], for example the recruitment of 
immune cells (red) to combat the pathogen. The control variable is 

optimized with regard to an objective function to find, for example, 
the optimal time course of recruitment of immune cells to minimize 
the pathogen load. Such time courses often show a switch-like behav-
ior between upper and lower bounds (the so-called bang–bang con-
trol)
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itself are described by control variables. Defense strate-
gies against pathogens are determined which maximize the 
health of the host and minimize the number of pathogens 
(see the example in Fig. 1). This idea was applied already 
more than 40 years ago by Perelson and colleagues in a 
series of publications studying the optimization of prolif-
eration and differentiation of lymphocytes [98–100]. Later, 
Shudo and Iwasa postulated two dynamic optimization 
problems for these processes. First, they investigated the 
dynamic optimization of different defense options of the 
host, which differ in their ability to inhibit the growth of 
the pathogen, damage to host cells, or their time delay 
[115]. In a subsequent work, the immune response was 
viewed as an optimizing problem where the number and 
proliferation of immune cells is optimized while control-
ling pathogenic cells and minimizing tissue damage by 
immune cells [116].

Recently, Dühring et al. [29] applied dynamic optimiza-
tion to the question of macrophage replication during their 
interaction with C. albicans and could provide evidence that 
immediate phagocytosis of fungal cells is mostly preferred 
over replication to increase immune cell number first. This 
supports the recommendation ’hit hard and hit fast’ of Paul 
Ehrlich stated a hundred years ago about the combat against 
microbes [34]. This characteristic is disclosed by nearly all 
dynamic optimization models of the immune response and 
is generically illustrated in Fig. 1. It shows that pathogens 
are best controlled by a quick and strong response. The 
increase in immune cells is then due to (fast) recruitment 
rather than (slow) proliferation. Mathematically, this can 
be easily explained by the non-linear exponential growth of 
pathogens. Due to this fast growth, also the effort to clear the 
pathogen would rise exponentially with time if applied later.

Empirically, the strategy ‘hit hard and hit fast’ has been 
proven to be of advantage for several reasons. First, a high 
average steady-state concentration of antimicrobial drugs 
enables a shorter antibiotic treatment and prevents genera-
tion of resistant strains [84]. Second, antibiotics are admin-
istered with a higher initial dose, the so-called loading dose. 
The loading dose is given to rapidly achieve an effective 
drug concentration in the blood and tissues, and underlines 
the importance of a quick response [86]. Additionally, a fast 
and strong response reduces peak microbial load and, there-
fore, lowers the risk of a septic shock [76].

Similar ideas are investigated in the second main field 
of models using dynamic optimization. Here, Stengel et al. 
[121, 122] introduced dynamic models to determine time-
optimal medical treatment strategies for an arbitrary patho-
gen. In that and subsequent work, the idea is to determine a 
time-optimal treatment schedule of using antibiotics, anti-
virals, etc., and also the optimal choice of different options, 
notably antimicrobials, healing factors, or immune enhance-
ments [120–122].

Studies determining the time-optimal dosing strategies 
can help to reduce host damage, e.g., by sparing the com-
mensal microbiome during the antibiotic treatment [97], 
while keeping a fast and strong intervention against patho-
gens. More recently, the modulation of inflammation during 
infection was investigated by multiple authors, who deter-
mined optimal dosing schedules of mediators for pro- or 
anti-inflammation [6, 24, 138].

All of the models discussed above focus on the optimiza-
tion of the host’s health status. However, dynamic optimiza-
tion can also be applied to understand the evolution of viru-
lence as shown by Ebert and Weisser [31], who determined 
the optimal time point to kill the host from the viewpoint 
of a parasite.

In addition to the stand-alone models, dynamic optimi-
zation has emerged as a valuable approach in multi-scale 
modeling to complement other models with different scale 
or scope [109]. An example is the model of Chen et al. [20], 
which extends the idea of optimal treatment scheduling pro-
posed by Stengel et al. [121]. This leads to a dynamic game-
theoretical model. That work as well as the above-mentioned 
publication on the dynamics of macrophage replication and 
C. albicans evasion strategies [29] show that the combina-
tion of dynamic optimization and game theory is valuable 
to gain insights into the dynamics and evolutionary aspects 
of HPI. Moreover, aggregation of dynamic optimization 
with agent-based models describing the control of popula-
tion dynamics in a 2D (e.g., on a lung epithelium) or 3D 
environment illustrates the potential for multi-scale models 
of infections using both approaches [2, 39].

Despite the presented successful application of dynamic 
optimization to HPI, an even closer integration with experi-
mental data as well as more concrete suggestions for clinical 
applications are worthwhile. A similar point was made by 
Eftimie et al. [33], highlighting optimal control as a valuable 
mathematical approach in immunology, which can improve 
clinical intervention strategies. A role model is the applica-
tion of optimal control to the management of diabetes, where 
dose regime optimization is realized not only in silico but 
also in clinical trials [43, 83].

Costs and benefits

In the evolution of HPI, the costs and benefits of the 
employed strategies determine the fitness of both host and 
pathogen. As a mathematical description, game theory [46, 
57] has proven to be of great value, and describes the dif-
ference between benefits and costs of strategies in a payoff 
matrix [11, 59, 127]. Based on this, stable solutions (sets of 
strategies) can be calculated, which are called Nash equilib-
ria and are predictions for evolutionarily favorable strategies. 
The generalization of that concept is called evolutionarily 
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stable strategy (ESS) [46, 57]. Game theory can provide 
insights into the evolution of interaction phenomena like 
the persistence of a pathogen. Nevertheless, most models 
are small and comprehensible, and the solutions are easily 
obtainable. While the payoffs are often difficult to quan-
tify exactly, it is often sufficient to define the order relations 
between them to determine the Nash equilibria. A drawback 
of the approach is that the high level of abstraction can ham-
per a direct experimental validation.

In the following, we summarize different types of games 
and show their applications to HPIs. Typically, host and 
pathogens are considered as players with different strate-
gies and unequal payoffs resulting in asymmetric games (see 
Table 1). Most models in game theory consider two possible 
strategies for each player. Accordingly, many game-theo-
retical models describing HPI are asymmetric two-player 
two-strategy games.

Intuitive strategies for host and pathogenic cells are either 
aggressive or non-aggressive against the other cell type. This 
is also referred to as attack and silence or as ’killer’ and 
’diplomat’, respectively (see Tables 1 and 2). As one of the 
first game-theoretical models of HPI, Renaud and de Meeüs 
[106] found that there is always the ESS in which pathogen 
and host are aggressive (attack against host and suppression 
of pathogen, respectively). Only for some parameter values, 
the ’diplomat’ strategy is a solution as well. That is, ’war’ 
is always a stable situation, while ’peace’ is an additional 
stable situation (implying bistability) only under certain con-
ditions, notably if T

P
< R

P
 and S

H
< R

H
 in Table 2 (notation 

according to Prisoner’s Dilemma: R, Reward for mutual 
cooperation; T, Temptation to defect; S, Sucker’s payoff; 
P, Punishment for mutual defection). This implies that the 
cost of virulence (pathogen) and the cost of resistance (host) 
exceed the loss due to hosting the pathogen.

Other asymmetric models focus on intracellular and per-
sistent bacteria and gain insights into evolutionary advan-
tages of attenuated virulence [124] or localization [36] as 
strategies of pathogenic bacteria. The opportunistic fungal 
pathogen C. albicans aroused attention due to its medical 
relevance and morphological switch from yeast-like to fila-
mentous growth during infection. Interestingly, this was first 
studied by symmetric games (which are easier to analyze) 
between fungal cells, with the immune cells being con-
sidered as a constant environment [61, 128] (see Table 1). 
More recent studies, however, describe asymmetric games 
between host and pathogenic fungal cells and focus on cer-
tain experimental aspects like expression of transcription 
factors [127] for filamentous growth or evasion strategies 
resulting in non-lytic expulsion [29].

In addition, symmetric games of pathogens competing 
within a host are described by continuous strategies and 
enable Nash equilibria to be calculated and predictions for 
optimal growth rates [17] or toxin production of pathogens 
[95] to be made. The latter is also described as an N-player 
game with two strategies for producing a host cell wall toxin 
or to cheat and results in a Volunteer’s Dilemma [95]. On the 
other side, games between hosts facing pathogens can also 
be modeled by N-player games. For example, some models 
describe the overuse of antibiotics resulting in a Tragedy of 

Table 1  Types of host–pathogen 
games

Table 2  Example of a general payoff matrix for games between host 
and pathogen cells. Adapted from [106] with notation according to 
Prisoner’s Dilemma: R Reward for mutual cooperation, T Temptation 
to defect, S Sucker’s payoff, and P Punishment for mutual defection
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the Commons [41, 105]. This can be used to draw conclu-
sions for the prescription of antibiotics.

To better explain the biodiversity of pathogens or the 
host’s microbiome, models with three players and/or three 
strategies are defined. For example, Wu and Ross [135] 
investigated the asymmetric game of two types of commen-
sals (sensitive or non-sensitive to antibiotics) and a patho-
genic bacterial species. That model explains the common 
observation that supporting commensal bacteria can alone 
be effective to eradicate pathogenic bacteria in the gut of a 
host. Another interesting perspective was investigated by 
Morozov and Best [87], who used game theory to model 
the interplay of predators, prey, and pathogens infecting the 
prey.

Furthermore, an emerging trend in modeling HPI is to 
extend and represent game-theoretical models with graphs 
and lattices adding spatial and stochastic characteristics. 
With these multi-scale models using methods of agent-based 
modeling, the invasion of bacteria [72] and lung infections 
by A. fumigatus have been modeled [104].

Molecular mimicry and crypsis

An important aspect in HPI is the multicellularity of the 
host. Moreover, hosts usually harbor not only their own cells 
but also non-self cells. As the specialized compartments are 
highly interdependent, hosts usually provide common goods 
to all of their cells, for example, using the blood stream. This 
strategy is very effective, but susceptible to parasitism or the 
Tragedy of the Commons. To prevent this, hosts developed 
mechanisms for discrimination of damaged self cells as well 
as parasitic (or pathogenic) non-self cells from intact self 
cells and beneficial non-self cells and for restricting any non-
self cells using the common goods. Beneficial non-self cells 
are hosted on the interface to the outside, e.g., the skin or 
the lumen of the gut, providing mutualistic protection and 
nutrition [28, 45, 110].

Protection inside the host is ensured by specialized cell 
lineages and their interactions, forming the immune system. 
In vertebrates, this system can be divided into innate immu-
nity, detecting generic characteristics of non-self cells and 
tagging these cells, and adaptive immunity, which responds 
specifically to particular pathogens [91]. Both mechanisms 
rely on signals which, after interpretation by possibly several 
parts of the immune system, lead to an immune response. 
For example, vertebrates have developed a system in which 
each cell entering the blood stream is tagged non-specifically 
with complement factors like complement component 3b 
(C3b) [93]. Those tagging complement factors are inacti-
vated specifically on intact self cells by inhibiting comple-
ment factors like factor H. If a phagocyte detects sufficient 
amounts of tagging complement factors on the surface of a 

cell, it will remove the cell. In contrast, if pathogens are able 
to remove the signal from their surfaces themselves, they 
could avoid attack.

To model HPI, it is thus important that the host has to 
classify the player types based on signals prior to interac-
tion (e.g., self vs. non-self) to decide the optimal response 
strategy (e.g., attack or ’diplomat’ behavior [106]). This 
discrimination is prone to errors, since individuals imitat-
ing self-signals (mimicry) or preventing non-self-signals 
(crypsis) could dupe the host into using a non-desirable 
strategy. In HPI, both mimicry (e.g., resemblance of viruses 
to self-antigens) and crypsis (e.g., complement evasion by 
fungi and bacteria) occur. Molecular crypsis is achieved by 
several pathogenic fungi such as C. albicans and bacteria in 
that they are able to bind human factor H or other comple-
ment regulators on their surface. In this context, not only 
the evasion of pathogens is problematic but, because of the 
indistinguishability between self and non-self, also autore-
activity may arise [136].

Since mimicry and crypsis may occur whenever there is 
signal perception or communication involved, the type of 
mathematical model used has to be chosen depending on 
the concrete modeled system. Most commonly, theoretical 
descriptions distinguish between three entities: a model, a 
dupe, and a mimic [58]. Note the double meaning of the 
word ’model’ here: It refers to the mathematical description 
and to the template imitated by the mimic. The dupe learns 
the model based on the presence or absence of one or more 
characterizing signals. Due to noise in the perception system 
and diversity of the signal within the species, the perceived 
signal is usually modeled approximately using a Gaussian 
distribution [58, 133]. The closer the mimic resembles the 
model, the more the distributions will overlap, making it 
more difficult for the dupe to distinguish them. In agent-
based models, signals could be inferred from explicit traits.

Given the signals, it is next important to define interac-
tions between the three entities and the respective conse-
quences on their fitness. This includes, for example, whether 
the model is attractive or should be avoided by the dupe. 
Also, the costs of erroneous classification as false positives 
or false negatives are very relevant. The classification task 
can then be modeled using any classifier, for example opti-
mization of a classification threshold with respect to a fit-
ness function or training of a neural network based on the 
previous interactions.

Perfect resemblance of the model signals by the mimic 
is possible in principle, no matter how sophisticated the 
classifier is, but may never be achieved. This is because the 
dupe and mimic constantly adapt and there is always an arms 
race in identifying and hiding, being attacked and evading 
[77, 81]. For example, in the case of complement evasion, 
most microorganisms are able to remove complement factors 
(which would identify them as pathogens) by utilizing the 
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host-protecting complement factor H [137]. The host can 
make this adaption harder using polymorphous protection 
molecules, i.e., two different alleles of factor H and factor 
H-like molecules in addition.

In the case of adaptive immunity, pathogens could 
potentially mimic the serotype of self cells perfectly. 
Again, polymorphisms make adaption for pathogens 
more difficult. For example, the AB0 blood group poly-
morphism may protect against molecular mimicry (here 
on a population level), as pathogens mimicking type A 
antigens will not be able to survive in type B hosts [22]. 
Such mechanisms use the fact that pathogens usually trans-
mit via several hosts, while host cells are not meant to 
migrate between hosts. On the other hand, the presence of 
mimicking pathogens will sensitize opposing types against 
each other, with great influence in transplantology. For 
example, a pathogen mimicking type A will induce anti-A 
antibodies in types B and 0.

While mimicry has been intensely analyzed by math-
ematical modeling in the case of higher animals [58, 119], 
only a few modeling studies on camouflage by microor-
ganisms have been published so far. The term ’molecular 
mimicry’ had been introduced by Damian in 1964 [22]. 
Recently, Lang et al. used signaling theory and ODEs to 
describe and analyze the attack decision by the host in the 
case of molecular crypsis [77]. That decision is non-triv-
ial, because the two criteria of minimizing false negatives 
(foreign cells erroneously recognized as self) and minimiz-
ing false positives (own cells erroneously recognized as 
foreign) cannot be met simultaneously. The model identi-
fied relative pathogen abundance to be the predominant 
factor influencing successful molecular crypsis. If patho-
gen cells attain a quantitative advantage over host cells, 
even autoreactivity may occur. An alternative approach 
uses game theory [60]. It can nicely describe the trade-
off between auto-immunity (e.g., age-dependent macula 
degeneration) and susceptibility to bacterial infections as 
well as the dimorphism of the factor H gene.

By plausibility arguments, the qualitative depend-
ence of fitness on the investment into crypsis can easily 
be derived (Fig. 2). At low values of investment, fitness 
decreases practically linearly due to costs involved and 
because there is no benefit yet when the extent of crypsis 
is low. For example, a snake being purely black or purely 
red has achieved half of the coloring of poisonous snakes 
having black and red stripes but does not practically have 
any mimicry effect. Thus, there is a local maximum at 
zero investment. The global maximum is reached at a 
certain high investment if mimicry is efficient enough. 
A curve shape similar to that shown in Fig.  2 could 
indeed be obtained by numerical simulation of mimicry 
by C. albicans (Fig. 5 in [77]). In Fig. 2, the curve goes 
down beyond the global maximum based on the plausible 

assumption that an investment that is too high, takes away 
too much from the resources. It is an interesting open 
question how the global maximum could be attained in 
evolution as it is difficult to explain by small-scale muta-
tions (micro-evolution). A possible solution is horizontal 
gene transfer, although this would not explain how the trait 
emerged in the first place.

Spatial properties

There are two main approaches commonly used to model 
and simulate spatio-temporal dynamics: (i) a top-down 
equation-based modeling (EBM) approach and (ii) a bottom-
up agent-based modeling (ABM) approach (also known as 
individual-based modeling). Each of these approaches has 
its own weaknesses and strengths depending on the ques-
tions to be answered and the hypotheses to be validated. 
The most widely used top-down approaches are differential 
equations-based: either ordinary (ODEs), partial (PDEs), 
stochastic (SDEs), or delay differential equations (DDEs). 
Another type is formed by discrete models such as differ-
ence equations.

ODE modeling is used, for example, to describe meta-
bolic processes in pathogens [3]. The ODE or discrete mod-
els generally ignore the topology, while PDEs consider the 
spatial distribution to some extent (e.g., diffusion but not 
geometry of molecules). EBM does not deal with single enti-
ties but rather with describing populations by estimating the 
mean behavior at a macroscopic level [3, 62, 64, 69, 70, 88]. 
It uses a set of equations that are based on the relationships 
among observables. Solving these equations particularly in 
higher dimensions is based on numerical techniques, which 
reproduce the dynamics of variables (population densi-
ties, concentrations, etc.) over time. EBM has been widely 

Investment into crypsis/defense 

Fi
tn
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s

Fig. 2  Qualitative dependence of fitness on the investment into 
crypsis or defense. The dashed arrow indicates the local maximum; 
solid arrow and blue dot: global maximum. The local maximum can 
be reached without additional investment. With a low amount of 
investment, the costs are higher than the benefit, which results in a 
decrease of fitness. Only a high investment is effective and leads to 
the global maximum. For further explanations, see section "Molecu-
lar mimicry and crypsis" and Lang et al. [77]
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employed to study the dynamics of bacteria [19, 88], fungi 
[79], viruses (for review, see [8, 12, 25, 52, 101, 139]), and 
has also been applied to other areas such as cell division 
mechanisms (e.g., [53, 63, 65–67, 129, 130]).

The bottom-up approach, including ABM or cellular 
automata (CA) such as the famous ’Game of life’ [42], 
works at a microscopic level [13, 14, 118]. Both ABM and 
CA are suitable methods to simulate the behavior of a sys-
tem in a spatio-temporal manner. However, CA are grid-
based and do not allow a free movement in space as the (usu-
ally) lattice-free ABM does [14, 21, 96, 118]. Thus, ABM 
can be considered as an extension or generalization of CA 
[26, 96]. In the unconventional ABM approach, individual 
independent agents are defined (such as fungal, bacterial, or 
human cells) with interaction rules [7, 13, 21, 44, 96, 118]. 
Individual interactions (usually between nearest neighbors) 
are simulated rather than global conditions [7, 21, 30, 114].

The behavior of the complete system arises from all local 
behaviors of the entities involved. This can lead to emer-
gent properties of the system, which are not immediately 
seen from the local interactions. Even with simple rules, 
very complex spatio-temporal patterns can arise, as can 
already be seen in the ’Game of Life’. By ABM, the dynam-
ics of different agents within a (complex) system can be 
analyzed and the impact of different initial settings can be 
investigated over time [7, 13, 21, 44, 118]. These bottom-up 
approaches are usually easier to implement than top-down 
approaches, because it is more comprehensible to describe 
the behavior of each individual agent than that of the whole 
system. Also, it can be adapted more flexibly to changing 
conditions and stochastic factors can easily be included in 
the rules [7, 13, 26, 96, 118]. A further advantage is that 
the results can be visualized nicely, for example, in colorful 
videos. Thus, ABM is a very powerful method to describe 
HPI and becomes increasingly important for the scientific 
community.

The power of ABM has its prize: Depending on the size 
of the system, ABM can be significantly more computa-
tionally expensive compared to EBM. Furthermore, ABM 
is often a stochastic rather than deterministic approach [7, 
44, 96, 114, 118]. Consequently, it is not sufficient to run a 
simulation only once, but multiple simulations are required. 
The rules of the agents have to be realistic and can be gained 
from experiments, which become more and more available. 
However, this is not possible for all parameters and can lead 
to unknown values. Parameter estimation might be time con-
suming and may change the model outcome dramatically 
[26, 30, 118]. Taken together, ABM allows modeling with a 
higher spatial resolution over a longer time period compared 
to EBM, but it requires more detailed information about the 
system of interest and it is computationally more expensive. 
Without detailed knowledge, it might be too abstract for a 

certain application or may lack complex interaction mecha-
nisms [96].

ABM has been applied across a wide range of disciplines 
including cell biology, population dynamics, epidemiology, 
and immunology [14, 21, 96, 117]. Many agent-based frame-
works were developed (for review, see [1, 7, 15, 118]). Some 
famous examples are iDynoMics [78], MASON [82], Net-
Logo [132], and BSim [48, 85] which are user-friendly and 
can also be used by non-modelers. In addition, framework-
independent implementations are used for ABM to simulate 
HPI [23, 102, 123]. NetLogo [21, 132] is one example for a 
modeling framework with its own programming language, 
with ‘turtles’ that represent agents and ‘patches’ that repre-
sent points in the simulation space. It can be applied easily 
to many different questions and has widely been utilized for 
HPI modeling [27, 89, 96, 112, 125]. NetLogo allows users 
to write their own extensions. However, it cannot incorpo-
rate formal rule-based languages such as BNGL (BioNetGen 
language) [10] or Kappa [16], nor molecular structure and 
geometry (for details, see [47, 49, 50, 54, 55, 71, 126]). 
In addition, it is challenging to handle very large network 
models or very low concentrations of agents with stochastic 
rules [68, 74, 75].

In the following, we provide a toy example using Net-
Logo to illustrate the ABM approach (see Fig. 3). Mac-
rophages in interaction with a pathogenic species are mod-
eled in a defined space. When macrophages recognize a 
pathogen, they try to phagocytose it. If the pathogen has 
too little energy to resist, it is taken up by the macrophage. 
In the implemented model (see Fig. 3), the user can define 
certain values for the number of individuals per species, its 
energy resources, and speed of movement. With these cho-
sen parameter settings, the model can be initialized and run, 
and the movement of the agents can be visualized during the 
simulation. The time behavior of the energy level and num-
ber of species is monitored in different plots (see Fig. 3b). 
The simulated behavior can be extracted and processed or 
compared in further steps. In our example, it shows that the 
process of HPI is energy-consuming for both macrophages 
and pathogens. It depends on the number of macrophages 
how well pathogens can be phagocytosed.

Tokarski et al. implemented a related model using Net-
Logo, which shows that a communication between the 
immune cells (neutrophils in that case) is beneficial during 
HPI [125]. That model also indicated that hunting by neutro-
phils in clusters (like wolves in a wolfpack) is only beneficial 
if also the fungal pathogens occur in clusters. Otherwise, 
too much of the area remains uncovered by the neutrophils.

In another ABM, the movement of human alveolar mac-
rophages searching A. fumigatus spores on the lung epithe-
lium was modeled [102]. The model predicted that randomly 
migrating macrophages fail to find the spore before the start 
of germination, whereas guidance by chemotactic signals 
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enables a safe and successful discovery of the pathogen in 
time (for an extended model, see [9, 103]). A further study 
about inhaled A. fumigatus spores considers a broader view 
of the lung tissue and immune cells [89]. This model focuses 
on the role of iron for both fungal and host cells, and shows 
that iron is a critical factor for fungal growth [89].

Bacterial infection has been investigated for Pseudomonas 
aeruginosa in the gut. It has been shown that an unbalanced 
gut flora can lead to increased virulence of P. aeruginosa 
and ABM was used to understand mechanisms of HPI [112, 
123]. For example, Stern et al. used this approach to analyze 
the binding of the bacterium to the epithelium and suggest 

that integrin–laminin associations play an important role for 
bacterial virulence [123]. Furthermore, the infection of the 
intestinal tract by Clostridium difficile has been described by 
ABM to observe the efficiency of treatments against this bacte-
rium [96]. The inflammation process in humans was in general 
formulated by ABM by Dong et al. They show that ABM is 
very suitable to describe complex systems, and model the host 
response and observe specific signaling, such as NF-� B [27]. 
The NF-� B pathway was investigated using ABM in other 
studies and reviewed by Williams et al. [134].

Fig. 3  Toy example of HPI formalized as an agent-based model. 
a Individuals of macrophages (blue) phagocytose the pathogens 
(orange) when they are touching each other and the latter have too 

little energy to resist. b Screenshot of the simulation using NetLogo. 
During the simulation, the energy of macrophages and pathogens and 
the number of individuals are plotted
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Defense, counter defense, and counter–
counter defense

In many parasitic interactions, the host organisms protect 
themselves by toxic compounds (defense chemicals) or 
other mechanisms such as mechanical barriers (e.g., skin), 
fever, pH changes, etc. Many of the pathogens, in turn, 
produce enzymes degrading the defense chemicals, which 
can be considered as a counter defense (a.k.a. evasion 
mechanisms). Examples are provided by the HPI between 
the human innate immune system and the pathogenic fun-
gus C. albicans [30]. For example, immune cells produce 
various reactive oxygen species (ROS). C. albicans and 
many other pathogens, in turn, can detoxify the ROS by 
superoxide dismutases (SODs) [40]. All intracellular path-
ogens, like Plasmodium sp., also deflect defense to escape 
the humoral immunity of the host.

Interesting analogs can be found in plants. For example, 
the tomato plant produces tomatine to defend itself against 
the tomato-wilt fungus Fusarium oxysporum f. sp. lycoper-
sici [94]. Tomatin is a glycoalkaloid with antimicrobial and 
insectidical properties. As a counter defense, the fungus pro-
duces tomatinase [94]. Another similar example is the oat 
plant which produces avenacin, a saponin which is mainly 
produced in the roots and provides defense against the fungal 
pathogen Gaeumannomyces graminis var. avenae by binding 
to sterols in the fungal cell membrane. The fungus responds 
by producing avenacinase, an enzyme that degrades avenacin 
[92].

Counter defenses represent the secondary phase of the 
HPI, i.e., they depend on the primary phase to be of any use 
at all. Thus, it might be risky to invest resources towards a 
robust counter defense without having a prior knowledge 
about the likelihood that the host will exhibit a formida-
ble defense. Game theory and, more generally, operations 
research are powerful tools that can help to assess the costs 
and benefits of such interactions and the coevolution of host 
and parasite.

Clearly, the dependence of fitness on the investment into 
defense (or higher levels such as counter defense) is simi-
lar to that shown in Fig. 2. Again, a low extent of defense 
is practically useless, while it inflicts costs. For example, 
a toxin at low concentrations has (nearly) no effect. An 

interesting question is under which conditions it pays, dur-
ing evolution, to establish a counter–counter defense rather 
than to intensify or widen an existing defense [30, 111].

Let us consider a game among a host and a pathogen 
where the cost of defense and counter defense is four units of 
resources. We assume that the pathogen has already played 
attack, and thus, the host starts the game with a damage of 
two units, i.e., the cost is twice as much as the damage. The 
pathogen has invaded the host successfully and, therefore, 
enjoys a reward of two units. The host can either choose to 
respond with a defense or choose to do nothing. The patho-
gen on the other hand can choose to do nothing or esca-
late the interaction to a further level by a counter defense. 
The payoffs for each of these strategies are summarized in 
Table 3.

In the scenario where both players choose the non-peace-
ful strategy, i.e., the host chooses to defend itself and the 
pathogen responds with a counter defense, both incur a cost 
of four units. In the absence of defense, counter defense 
only costs the pathogen four units of resources. In a scenario 
where the pathogen does not respond to a defense of the 
host, the host incurs a cost of four units. When both players 
choose to show no response, the host has a damage of two 
units from the attack, while the pathogen, having invaded 
the host, enjoys a reward of two units as per assumption. 
Clearly, choosing the peaceful ‘no response’ strategy by both 
players seems the least costly choice. This is also the Nash 
equilibrium, since neither player has an incentive to change 
strategy unilaterally.

Let us now consider a scenario where the cost is only 
one unit, i.e., the damage is twice as expensive as the cost. 
The resulting payoff matrix is depicted in Table 4 and shows 
that the host has an advantage in playing defense, since it 
gives a better payoff than when none of the players show any 
response. However, the pathogen has an incentive to respond 
with a counter defense, implying that the host obtains the 
worst payoff possible. Thus, the host is likely to choose no 
response again, leading to a cycle. There is no pure Nash 
equilibrium for the game.

The shuffle through the strategies could occur, for exam-
ple, through gain and loss of function in various genes 
responsible for (counter)defense. Moreover, it is worth not-
ing that the above approach is based on a discretization to 
two strategies only on each side. In reality, the amount of the 

Table 3  Payoff matrix of a game between host and parasite with 
defense and counter defense. Payoffs are such that the cost of defense 
is twice as much as the damage. The Nash equilibrium is underlined

Table 4  Payoff matrix of the defense/ counter defense game as in 
Table 3 but with the cost being half of the damage. This game pos-
sesses no pure Nash equilibrium
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defense chemical and the counter defense (e.g., degrading 
enzyme) can be chosen in a continuous way. A mixed Nash 
equilibrium could then mean that a certain percentage of the 
full amount is produced.

By the traditional approach of game theory used here, 
it cannot be decided whether a self-sustained oscillation in 
time between the two choices arises or the strategies are cho-
sen with a certain probabilities in a stochastic way as in the 
famous rock–scissors–paper game [46] or only part of the 
defense/counter defense is realized. One way of answering 
that question is using ODEs, as was used for modeling the 
rock–scissors–paper game among bacteria [88].

Conclusion and outlook

In recent years, mathematical and computational 
approaches have successfully been applied to study HPI 
from various angles. In synergy with experimental work, 
in silico models of HPI led to a better understanding of 
virulence factors and their evolution, a disentanglement of 
the complex immune response and suggestions for novel 
or improved antibiotic treatments.

For the future, we see several trends impacting the mod-
eling of HPI. First, the implementation and simulation of 
models like agent-based and dynamic optimization models 
is becoming more and more practicable for non-experts by 
user-friendly tools such as NetLogo or AMIGO2 (toolbox 
for dynamic modeling and optimization [4]). The second 
major trend is the availability and integration of vast bio-
logical data from omics approaches and imaging. These 
data allow dynamic and spatial modeling to be highly 
quantitative and to reach a better predictive power. A simi-
lar goal is pursued by multi-scale modeling, which is an 
additional important trend in models of HPI.

It is often useful to validate mathematical models by 
alternative modeling methods and frameworks [91], to 
verify that the results are not an artifact of the particu-
lar framework used. As discussed in detail by Schleicher 
et al. [109], the combination and integration of different 
approaches is valuable to exploit the large amount of bio-
logical data and complex networks of HPI. A combined 

approach often improves the applicability and value of 
mathematical models, as pointed out in Section "Defense, 
counter defense and counter-counter defense" with respect 
to game theory and ODEs [9, 19, 29, 56, 88]. Moreover, 
game-theoretical approaches can be combined with ABM, 
dynamic optimization [29], or in the form of games on 
grids or graphs [107].

Associated with numerous computational approaches, 
the challenge is to choose the appropriate modeling 
approach. While there is no definitive answer to the ques-
tion which modeling approach and method is best to model 
an HPI, one can base the decision on general method char-
acteristics (see Fig. 4). Important distinctive features of 
the mainly presented methods from game theory, dynamic 
optimization, and ABM are their capabilities to resolve 
system dynamics, spatiality, and stochasticity. This means, 
for example, that one should consider modeling an HPI by 
ABM if interaction partners occur in low numbers (sto-
chasticity) or diffusion of signaling chemicals is important 
(spatiality). While classical game theory does not resolve 
dynamics, spatiality, or stochasticity per se, it inherently 
can model coevolution, since interaction strategies are 
optimized simultaneously and not independently (as in 
dynamic optimization) or are fixed (as in ABM). Further-
more, the analysis does not require high computational 
power like ABM due to its stochastic trait. However, a 
major drawback is the higher abstraction level of biologi-
cal systems in game theory, which complicates experi-
mental validation of results in comparison to dynamic 
optimization and ABM.

As a major strength of all three discussed approaches, 
we see their accessibility to non-expert users and most 
importantly their ability to model HPI. These HPI are either 
directly implemented as interaction events in ABM, interac-
tion kinetics in dynamic optimization, or strategies in game 
theory.

Prospectively, we see the challenge that models of HPI 
will be more complex in the future due to the amount of 
experimental data. This is in contrast to the requirement that 
models should be comprehensible and minimal, so that a 
trade-off has to be found. Despite these challenges, efforts 
in mathematical and computational modeling pay off. For 

Fig. 4  Comparison of methods 
presented and discussed in 
detail in this review. Classifica-
tion (fully ✓, partially (✓), and 
not capable ✗) is based on the 
original method without special 
extensions and according to its 
application in HPI modeling as 
well as the authors’ experience
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example, spatial modeling disclosed that immune cells ben-
efit from chemotaxic signals to effectively clear pathogens 
[102, 125]. These findings now require more experimental 
work for elucidation. Furthermore, epidemiological mod-
eling of malaria shows the value of combining spatial and 
dynamic modeling to explore strategies eliminating infec-
tious diseases [32]. Further important examples have been 
discussed throughout this review. This shows the important 
value of mathematical modeling in understanding host–path-
ogen interactions.

Also in the future, modeling of HPI will be an impor-
tant complement to experimental work to simplify scientific 
procedures, to reduce (animal) experiments, and to generate 
hypotheses. We assume that the accessibility of modeling 
approaches is key to make them applicable for more scien-
tists and recommend the presented approaches which are 
usable by non-experts. Furthermore, dynamics and spatial 
observations may have a higher impact over time to describe 
more complex behavior. This can give rise to new (sub-)
approaches to model HPI.

Due to increasing computational power, the limitation of 
computation (e.g., in ABM and dynamic optimization) will 
decrease and enable a higher workload and the implementa-
tion of large-scale models. Nevertheless, the key in future 
modeling will be the integration of experimental data and 
a close collaboration of computational modelers and bio-
logical as well as medical experts. This ensures validity of 
models and decipherment of HPI.
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