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Related to the often applied cooperation models of social dilemmas, we deal with scenarios in which defection dominates

cooperation, but an intermediate fraction of cooperators, that is, “partial cooperation,” would maximize the overall performance of

a group of individuals. Of course, such a solution comes at the expense of cooperators that do not profit from the overall maximum.

However, because there are mechanisms accounting for mutual benefits after repeated interactions or through evolutionary

mechanisms, such situations can constitute “dilemmas” of partial cooperation. Among the 12 ordinally distinct, symmetrical 2 × 2

games, three (barely considered) variants are correspondents of such dilemmas. Whereas some previous studies investigated

particular instances of such games, we here provide the unifying framework and concisely relate it to the broad literature on

cooperation in social dilemmas. Complementing our argumentation, we study the evolution of partial cooperation by deriving the

respective conditions under which coexistence of cooperators and defectors, that is, partial cooperation, can be a stable outcome

of evolutionary dynamics in these scenarios. Finally, we discuss the relevance of such models for research on the large biodiversity

and variation in cooperative efforts both in biological and social systems.
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The emergence and maintenance of cooperative behavior in com-

petitive environments is a withstanding question in biology, eco-

nomics, and social sciences, but it also attracts much attention

from mathematicians and physicists. Game theory (von Neumann

and Morgenstern 1953) and particularly evolutionary game theory

(Taylor and Jonker 1978; Maynard Smith 1982; Friedman 1991;

Nowak and May 1992; Hofbauer and Sigmund 1998; Szabó and

Fáth 2007), has proven to be a powerful tool for describing and

investigating such real-life conflicts. Certainly, one of the most im-

portant solution concepts of such conflicts (represented in games)

is that of the Nash equilibrium (Nash 1950), where no player has

an incentive to unilaterally deviate from this state. If there is such

an equilibrium solution that is not Pareto efficient, that is, another

solution is better for at least one player of the game and not worse

for any other player, one speaks of a “social dilemma” situation

(Dawes 1980; Macy and Flache 2002; Hauert et al. 2006). Due

to its interdisciplinary relevance, the field of evolutionary game

theory has been applied to innumerous investigations regarding

the “evolution of cooperation” in biology (Maynard Smith 1982;

Nowak 2006; Ackermann et al. 2008), social sciences (Fehr and

Fischbacher 2003; Henrich 2003), and economics (Kreps et al.

2001; Gintis 2005). The most simple, yet powerful way of ana-

lyzing cooperation dilemmas is through symmetrical 2 × 2 games,

where two individuals can either cooperate (C) or defect (D). This

can be best illustrated by a payoff matrix like the following ones:

⎛
⎝

C D

C b − c −c

D b 0

⎞
⎠

⎛
⎝

C D

C R S

D T P

⎞
⎠, (1)

where, due to symmetry, payoffs are given only for the row-

individual. A specific configuration of the Prisoner’s Dilemma

game is often used as standard cooperation model in evolutionary

biology (left matrix in eq. 1). Compared are two genotypes or

genetically encoded behaviors that are subject to evolutionary

selection. A behavior is called cooperative if individuals endow

a reproductive fitness benefit b (the evolutionary equivalent of

payoff) to other individuals at a certain fitness cost c to themselves
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(b > c > 0). The noncooperative counter-part is called defective

as individuals will receive b from cooperators, but do not act

cooperatively.

In the present article, we consider a more general universe of

situations by applying the right parameterization of equation (1).

This implies that a general definition of the cooperative act is

more difficult, because one and the same act might have opposing

fitness consequences for the other individual. Mainly for illus-

trative reasons, the choice in this work (which will be further

discussed below) is to impose T > S. However, it is important

to notice that this is a naming convention for the binary choices

in this article and not meant to semantically redefine the notion

of cooperation. We use the different symmetrical 2 × 2 games as

basis for repeated and evolutionary games. In our argumentation

on a specific subclass of games, we show the existence of a co-

operation dilemma both in “classical” game theory (with a fixed

set of players) as well as in evolutionary game theory (population

dynamics). The specific kind of dilemma discussed here has to

be distinguished from the one of the Prisoner’s Dilemma (and

other well known social dilemmas). In particular, we focus on

scenarios in which partial cooperation plays an important role.

Partial cooperation means that, at a given time, only a part of

the individuals apply the cooperative action, whereas the rest of

the individuals do not, that is, the population of players partially

consists of cooperators, and partially of defectors (1 cooperator

and 1 defector in the two-person games).

In evolutionary biology, partial cooperation is particularly

relevant when genetic behavior is expressed through varying phe-

notypes, that is, when one and the same genetic basis can produce

different behaviors. A good example are social insects, where

a part of the population (workers) contributes to the welfare of

the population, but cannot reproduce themselves. In more gen-

eral, phenotypic plasticity (Via and Lande 1985) and phenotypic

noise (Ozbudak et al. 2002; Ackermann et al. 2008) might lead

to differences in the contributions to reproductive fitness, that,

from a theoretical perspective, does not necessarily lead to an

equilibrium state. Another, often cited example is single meerkats

(but also other mammals) observing the environment and giving

alarm calls in case of danger, whereas other individuals share food

(Clutton-Brock et al. 1999).

Partial cooperation naturally arises in games in which the

Nash equilibria are (C, D) and (D, C). However, in this article, we

will focus on whether max (2R, 2P) > S + T , or if this inequality

is reversed. Verifying this inequality yields the system-optimal

outcome in the sense of Schelling’s collective total (Schelling

1978), that is, the solution of the game that yields the highest

possible overall payoff. In a wide range of the literature, where

game theory is applied to research on cooperation, the impor-

tance of this system optimum is neglected and mostly the cases

in which S + T is system optimal are excluded from the investi-

gations. In our view, thereby, a specific subclass of symmetrical

2 × 2 games received too little scientific attention, although these

games are shown to exhibit interesting strategical conflicts in

repeated and evolutionary games. We explicitly derive this sub-

class of games and introduce it as “partial cooperation dilemmas”

(PCDs). The three members of this class are the games “Route

Choice,” “Deadlock,” and “Prisoner’s Dilemma,” but all three

games are exclusively with the specification S + T > max (2R,

2P). In repeated setups of these games, a suitable, Pareto-efficient

solution is turn-taking (Duncan 1972; Neill 2003; Browning and

Colman 2004; Helbing et al. 2005; Tanimoto and Sagara 2007),

that is, an anticoordination of the players (where one player takes

the opposite decision of the other) and a permanent flipping be-

tween decision alternatives of both players. Despite its efficiency,

this alternating behavior is not an equilibrium state in finitely re-

peated games, that is, players are permanently tempted to leave

this solution. Hence, we find a cooperation dilemma in repeated

games. In evolutionary terms, the most successful population of

individuals would consist of cooperators (that provide help to oth-

ers) and defectors (that only receive help), but such a coexistence

is not a fixed point of the evolutionary dynamics. This constitutes

the evolutionary dilemma of cooperation.

Note that we are not the first to deal with the particular games.

However, the games Deadlock and Route Choice are, with rare

exceptions (Helbing et al. 2005; Kaplan and Ruffle 2007; Stark

et al. 2008), almost completely neglected in literature so far. One

reason might be the choice of payoff values and the respective

conclusion of Rapoport (1967) that was, for example, applied to

investigations regarding the evolution of turn-taking behavior only

in the archetype games (Browning and Colman 2004), but not to

one of the PCDs. Most surprisingly, even the third member of this

class, the prominent Prisoner’s Dilemma with the specification

S + T > 2R, is, despite some exceptions (e.g., Schüβler 1986;

Kreps et al. 2001; Neill 2003), often explicitly excluded from the

scientific investigations, although it is recognized as equivalent

cooperation problem (see also May 1987). We conjecture that

PCDs are able to serve as distinct and relevant models in the

different scientific fields applying (evolutionary) game theory.

Symmetrical 2 × 2 games
A game is defined by the number of players, their set of strategies,

the sequence of decisions to be taken by the players, and the pay-

offs for all players and for every possible strategy-combination.

The class of games described here is one of the simplest: two

players decide between two alternative strategies. The strategi-

cal situation is identical for both players, that is, the one for the

row-player in the matrices of equation (1). After they decided

simultaneously, they receive a payoff depending on their own

strategy and the strategy of the other player.

EVOLUTION AUGUST 2010 2 4 5 9
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Because we elaborate on different symmetrical 2 × 2 games,

it is important to define which strategy is regarded “cooperative”

and which “defective” in a general way. For the sake of convenient

readability, we use the following simplification throughout this

article:

Let us only consider an encounter of different strategies lead-

ing to the payoffs S and T (“partial cooperation”). In such a sit-

uation, the strategy which yields the lower payoff is regarded the

cooperative strategy (C), and the other one the defective strat-

egy (D).

In the games in which it makes sense to speak of cooperative

behavior, this simplification yields the correct naming of strate-

gies. For the other games, it is maybe the most useful way to

name the strategies likewise. In all the cases, cooperation means

to risk losing against the other player and defecting means holding

the chance to end up with a higher payoff than the other. There-

fore, this approach puts more weight on a player’s relative payoff

with respect to the coplayer’s payoff. With these specifications in

mind, we use the same variables commonly used for the Prisoner’s

Dilemma game for any symmetrical 2 × 2 game.

We assume that the absolute payoff values are not decisive

for the strategical situation, but only the ranking of them (we will

qualify this point later on). Because we defined T > S, which

eliminates equivalent rankings, one can discern 12 ordinally dis-

tinct games. Figure 1 conveniently visualizes the phase space of

symmetrical 2 × 2 games in a coordinate system and includes

exemplary payoff matrices.

Each of the 12 rectangular or triangular parcels of the co-

ordinate system (separated by full lines) host one ordinal pay-

off ranking. There, we find the prominent games such as the

Prisoner’s Dilemma and the Chicken game, which is also of-

ten called “Hawk-Dove” game or “Snowdrift” game. Comple-

mented by Leader and Battle-of-the sexes, these are the four

archetypes of Rapoport (1967) (“Martyr,” “Exploiter,” “Hero,”

and “Leader”). Harmony is also referred to as “By-Product Mu-

tualism.” The game of Route Choice reflects important character-

istics of (vehicular- or data-) traffic systems and was named and

experimentally investigated in (Helbing et al. 2005; Stark et al.

2008). The name Own Goal was chosen arbitrarily to not leave

one parcel empty. The game is trivial as any deviation from the

dominant strategy hurts the deviant most. The names of the other

games are taken from the literature (see e.g., Skyrms 2004; Szabó

and Fáth 2007).

PCD in Repeated Games
PARTIAL COOPERATION IN REPEATED GAMES

Taking turns, originally describing the sequential form of hu-

man conversation (Duncan 1972), has a considerable impact on

Figure 1. Classification of symmetrical 2 × 2 games according to

payoff ranking and system-optimal solutions. Two-dimensionality

is achieved by fixing T > S and classifying ordinal differences only.

Parcels separated by solid lines denote different rankings of the

payoff values. The dashed lines divide the whole space in two

regions according to whether partial cooperation is system opti-

mal (dark-grey background) or not. Social dilemma games have a

red background color. For each area a respective payoff matrix (in

form of the left matrix in eq. (1), with T > S) is given. Red payoff

matrices denote “partial cooperation dilemmas.”

repeated games, too. Here, it means that players anticoordinate

their actions over time such that both take different decisions,

but switch their decisions in an alternating manner. This is also

called “alternating cooperation” (Helbing et al. 2005; Stark et al.

2008), “alternating reciprocity” (Browning and Colman 2004),

or “ST-reciprocity” (Tanimoto and Sagara 2007). The games in

the dark-gray area of Figure 1 are the ones with the system-

optimal solutions in partial cooperation, that is one of the players

profits more than the other. We call this area turn-taking phase

as, in repeated games, taking turns would strengthen the rele-

vance of this solutions because of the fairness with respect to

the equal average payoffs (see also Bornstein et al. 1997; Neill

2003; Browning and Colman 2004; Helbing et al. 2005; Stark

et al. 2008). In games outside the dark-gray region or exactly

on the dashed lines, an equal distribution of payoffs is provided

by the system-optimal solution, that is, a unique strategy leads

to equal and system-optimal payoffs both in one-shot and re-

peated games. Because there is a significant difference between

games with the same payoff ranking depending on whether they

are within or outside the turn-taking phase, it is important to ad-

dress them precisely. For the Prisoner’s Dilemma game with S +
T > 2R, the name “Turn-Taking Dilemma” was already proposed

2 4 6 0 EVOLUTION AUGUST 2010
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(Neill 2003). Accordingly, we will speak of the “TT-Chicken, TT-

Route Choice, and the TT-Deadlock” for the respective games in

the turn-taking phase.

Partial cooperation in repeated games can also mean to apply

an interior mixed strategy. That means a player randomizes its de-

cisions and applies a probability to cooperate. This allows for any

individual level of cooperation, but does not bear the possibility

to anticoordinate with other players over time. We will refer back

to this form of partial cooperation in an example later on.

FROM SOCIAL DILEMMAS TO PCD

Following the arguments by Macy and Flache (2002), a so-

cial dilemma (Dawes 1980) is present if there exists a Nash-

equilibrium, which is not Pareto-efficient. This is certainly true

for the Prisoner’s Dilemma and the Chicken game, where there

are only Pareto-dominated equilibria. Additionally, this holds for

Stag Hunt and Pure Coordination I, where the game dynamics

might get stuck in an inefficient equilibrium. Social dilemmas are

indicated by a red background color in Figure 1.

In this article, we investigate another type of dilemma that

is there only in repeated games, but not in the one-shot game.

In repeated versions of a symmetrical 2 × 2 game, the sufficient

condition for a dilemma is that, in the underlying one-shot game,

there is a Nash equilibrium that is not system optimal. In addition

to the social dilemmas, this is true for the games Turn-Taking

Dilemma, TT-Route Choice, and TT-Deadlock, that is, each game

with S + T > max (2R, 2P). Whereas this variant of the Prisoner’s

Dilemma can also be seen as a social dilemma, the other two one-

shot games do not hold a dilemma because their Nash equilibria

are strict and Pareto efficient. Therefore, in the classification of

Rapoport, the payoff rankings of these two games are assessed

“almost trivial.”

However, in repeated setups of all the three games, players

might take turns to persistently exploit the system optimum while

sharing the payoffs evenly among each other. Of course, such a

solution would imply a Pareto-improvement compared to the per-

sistently played one-shot Nash equilibrium (itself the only Nash

equilibrium of the definitely repeated game), hence the dilemma.

This can be best illustrated by the payoff matrix for a twice played

symmetrical 2 × 2 game

⎛
⎜⎜⎜⎜⎜⎜⎝

CC CD DC DD

CC 2R R + S S + R 2S

CD R + T R + P S + T S + P

DC T + R T + S P + R P + S

DD 2T T + P P + T 2P

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

The three games (TT-Dilemma, TT-Route Choice, and TT-

Deadlock) have in common that T > R and P > S. It fol-

lows that the solution (DD, DD) is the unique and strict Nash

equilibrium. In contrast to the one-shot game, this strict equi-

librium is Pareto-dominated by the solutions (CD, DC) and

(DC, CD), because there both players receive S + T > 2P. It

is worth noticing that the repeated Turn-Taking Dilemma pos-

sesses a particularly interesting feature: its Nash equilibrium is

twice Pareto-dominated. Hence, there are three solutions of in-

terest: (1) the strict equilibrium, (2) mutual cooperation without

anticoordination efforts required, but still Pareto-dominated by

(3) turn-taking, which is Pareto-efficient, but requires temporal

anticoordination.

We call this dilemma situation PCD, because an efficient

solution requires partial cooperation instead of full cooperation.

Whereas here we only use the pure possibility of taking-turns as

argument to illustrate the existence of a social dilemma in repeated

games, we refer to other works that investigate how turn-taking

can emerge and be maintained (Neill 2003; Browning and Colman

2004; Helbing et al. 2005; Kaplan and Ruffle 2007; Stark et al.

2008; Tanimoto 2008). Interestingly enough, turn-taking in re-

peated games of PCD combines the game theoretical problems of

cooperation and anticoordination (see also Neill 2003). A similar

argument holds for another form of partial cooperation, namely

interior mixed strategies. Although they are not as efficient as co-

ordinated turn-taking, a Pareto-improvement can still be achieved

(the next section contains a corresponding quantification). PCDs

are indicated by red payoff matrices in Figure 1.

PCD in Evolutionary Games
So far, we have derived the notion of PCD games with respect to

their relevance for repeated interactions. In the following, we will

argue that this classification is also meaningful in evolutionary

game theory. Particularly in evolutionary biology, the evolution

of cooperation under natural selection remains a not fully under-

stood, scientific topic. Here, cooperation means that an individual

has a genetic trait that makes it help another individual at a cer-

tain cost (in terms of reproductive fitness) to itself. In the standard

model (see left matrix in eq. 1), every cooperator induces exactly

the same benefit b, independent of the number of cooperators

in the population. Qualifying this strong assumption, Hauert dis-

cussed the possibility of synergistic and discounting effects in

N-person social dilemmas (Hauert et al. 2006). Implementing

this concept into the framework of symmetrical 2 × 2 games, we

obtain the left matrix in equation (3). The parameter w determines

whether cooperation has synergistic effects (w > 1), discounting

effects (w < 1), or none of both (w = 1). By specifying γ > β =
b > 0 and β − γ = −c, we find the according implementation

of the synergy/discounting-concept into the standard cooperation

model (right matrix in eq. 3).

EVOLUTION AUGUST 2010 2 4 6 1
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⎛
⎝

C D

C (1 + w)β − γ β − γ

D β 0

⎞
⎠

⎛
⎝

C D

C wb − c −c

D b 0

⎞
⎠. (3)

The question is now: what are the different scenarios when we

consider synergistic and discounting effects of cooperation based

on the standard model? For this purpose, let us systematically

vary the parameter w: For w ∈ [(b + c)/2b, (b + c)/b], which in-

cludes w = 1, we regain the traditional Prisoner’s Dilemma game

with 2R > S + T . Hence, to a certain extent, this model cov-

ers both synergistic and discounting effects. However, increasing

w above (b + c)/b, the game effectively transforms into a Stag

Hunt game. That means if synergistic effects are strong enough,

defection is not anymore a dominant strategy. In evolutionary

terms, we derive a bistable system in which both strategies are

evolutionarily stable against each other. Most interestingly, the

remaining three possible games, generated by a discounting fac-

tor w < (b + c)/2b, are exclusively the PCDs. For w ∈ [c/b, (b +
c)/2b], we find a Turn-Taking Dilemma. For w ∈ [0, c/b], the

payoff ranking is the one of TT-Deadlock. By the same reason-

ing, we obtain that values w < 0 result in the TT-Route Choice

game. This means that in all these scenarios we address the evo-

lutionary problem of cooperation (helping behavior that induces

a fitness-benefit to the recipient and a fitness-loss to the helping

individual), but in different environmental scenarios. Note fur-

ther that the three PCDs possess a dominant strategy, just like

the standard cooperation model. When, for example, considering

replicator dynamics (strategies that are more successful than aver-

age increase their share in the population, see e.g., Hofbauer and

Sigmund 1998; Taylor and Jonker 1978) in infinite, well mixed

populations (interactions occur between random individuals), a

stable population would consist of defectors only. However, what

makes these games worth considering besides the standard co-

operation model is that too many cooperators may reduce overall

fitness. For example, a group (be it in the sense of group selection,

spatial clusters, or similar) consisting of cooperators only is not

the most successful group, but one in which cooperators and de-

fectors coexist persistently would have the highest group fitness.

Let us quantify the fitness of a group as the expected payoff π of

a random interaction between two group members

π = 2x2 R + 2x (1 − x) (S + T ) + 2 (1 − x)2 P. (4)

In this equation, x is the frequency of cooperators in the

group. π has its maximum at

x∗ = 2P − (S + T )

2[(R + P) − (S + T )]
, (5)

where 0 < x∗ < 1, because S + T > max [2R, 2P, (R + P)] by

the definition of PCDs. Let us remark that the value of x∗ also

corresponds to a mutually optimal mixed strategy, that is, if ev-

ery player cooperates with probability to the amount of x∗, the

outcome is system-optimal and characterized by equal expected

payoffs. This is in contrast to the individually optimal strategy,

which is x = 0. For the Prisoner’s Dilemma, x∗ = 1, that is, only

full cooperation would be mutually optimal. Due to the fact that x∗

is intermediate in PCDs, the conceptual difference to “classical”

social dilemmas becomes obvious: we do not ask the question

how cooperation can achieve evolutionary stability, but how an

“efficient” coexistence of strategies can stabilize (compare to gen-

eral results in finite systems Antal and Scheuring 2006). In fact,

similar questions are addressed by many researchers seeking for

explanations regarding the huge biodiversity (Kerr et al. 2002;

Doebeli et al. 2004; Reichenbach et al. 2007) and variation in co-

operation (Kurzban and Houser 2005) and helping efforts (Field

et al. 2006). The game “rock-paper-scissors,” where three strate-

gies dominate each other in a cyclic fashion, is then most often

used as paradigmatic model (Czaran et al. 2002; Kerr et al. 2002;

Reichenbach et al. 2007). However, this game requires at least

three strategies and may straight-forwardly promote coexistence

(see also Claussen and Traulsen 2008). Contrarily, PCDs could be

used to investigate the emergence of coexistence states where evo-

lutionary dynamics is expected to drive the system into dominance

of only one specific behavior (in line with the considerations in

Imhof et al. 2005).

Evolution of Partial Cooperation
As a first step to investigate the possibility of stable coexistence

in PCDs, let us consider the “Five rules for the Evolution of Co-

operation” (Nowak 2006), that is, five evolutionary concepts that,

under certain circumstances, can effectively change the strategi-

cal situation (the game) compared to a single, binary interaction.

The five concepts are direct and indirect reciprocity, kin selection,

group selection, and network reciprocity (refer to the Discussion

of this article to find some comments on criticisms related with

these concepts). In Nowak (2006), these concepts are valuably

simplified by implementing them into the standard cooperation

model. In a subsequent work, these mechanisms were applied to

an arbitrary Prisoner’s Dilemma game and, among others, the con-

ditions for stability of coexistence within this payoff ranking was

derived (Taylor and Nowak 2007). It is found that the concepts of

kin selection, group selection, and network reciprocity can lead to

stable coexistence if S + T > R + P, that is, in the discounting re-

gion (w < 1). Direct and indirect reciprocity cannot lead to stable

coexistence. But do these results also hold for discounting factors

beyond the Turn-Taking Dilemma? As derived in Nowak (2006),

we can illustrate the effects of kin selection, group selection, and

network reciprocity on a symmetrical 2 × 2 game

2 4 6 2 EVOLUTION AUGUST 2010
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⎛
⎝

C D

C (1 + r )R S + rT

D T + rS (1 + r )P

⎞
⎠

⎛
⎝

C D

C (n + m)R nS + mR

D nT + mP (n + m)P

⎞
⎠

⎛
⎝

C D

C R S + H

D T − H P

⎞
⎠, (6)

where r is the relatedness coefficient (mostly defined as proba-

bility of two individuals sharing a gene, i.e., r ∈ [0, 1]), n, m are

group size and number of groups, respectively, and H = [(k +
1)(R − P) + S − T]/[(k + 1)(k − 2)], with the degree of the

network k > 2 (note that these results are obtained in the limit of

weak selection). Evolutionary dynamics lead to stable coexistence

of behaviors if none of the behaviors is evolutionarily stable. The

conditions, under which this is fulfilled in the payoff rankings of

the three PCDs, can be found in Table 1, repeating and extending

the results of Taylor and Nowak (2007). If a condition cannot be

met in the respective payoff matrix, this impossibility of stable

coexistence is indicated by dashes. For group selection, this hap-

pens because m/(m + n) can only vary between 0 and 1, thereby

violating the according (not shown) conditions. At first glance,

this result seems surprising as a mixed group of cooperators and

defectors performs better than a group of defectors. However,

this mechanism bases on individual reproduction and not on the

reproduction of groups. Because, in contrast to the Turn-Taking

Dilemma, a cooperator in any group is less fit than a defector in

any group, higher-level selection favors defection (compare with

Traulsen and Nowak (2006)). For network reciprocity, the con-

dition to be hold is the same for all three games, that is, the one

displayed for the TT-Dilemma. In networks with k > 2, FD is

always positive in the games TT-Deadlock and TT-Route Choice,

Table 1. Conditions for stable coexistence of strategies in the

three partial cooperation dilemma games (TT-Dilemma (TT-D),

TT-Deadlock (TT-DL), TT-Route Choice (TT-RC)) for kin selection

(KS, with relatedness r), group selection (GS, with group size n

and number of groups m), and network reciprocity (NR, where

FD=k2(P−S)−k(R−S)+S+T−R−P, FC=k2(P−S)−k(R−S)+S+T−R−P

and k>2 denotes the number of neighbors per individual in the

network). Direct and indirect reciprocity cannot lead to stable

coexistence.

TT-D TT-DL TT-RC

KS
P−S

T −P
<r<

T −R

R−S
r>

P−S

T −P

GS
P−S

R−S
<

m

m+n
<

T −R

T −P
– –

NR FD<0<FC – –

because S + T > R + P and P > max (R, S), thereby violating the

condition. This result is rather intuitive as, in contrast to the TT-

Dilemma, a cluster of cooperators performs worse than a cluster

of defectors. Only for kin selection, there is a range of r leading to

stable coexistence in all three games of PCDs (direct and indirect

reciprocity are left out of the discussion because in none of the

scenarios stable coexistence of strategies can emerge).

Discussion
Related to the well-known subclass of social dilemmas, we speak

of a dilemma in repeated games if equilibrium play might lead

to a solution that is not system optimal. Among the symmet-

rical 2 × 2 games, this is additionally true for variants of the

Prisoner’s Dilemma, the Route-Choice game, and Deadlock that

lie within the “turn-taking phase.” We call them PCDs because

these games bear a dilemma situation both in repeated and evo-

lutionary games that can only be resolved by partial cooperation.

In repeated games, partial cooperation might be realized by co-

ordinated turn-taking or the application of intermediate mixed

strategies. Both variants are forms of (partial) cooperation that

yield a payoff improvement for both players (compared to the

strict Nash equilibrium in definitely repeated games).

In evolutionary biology, where individual payoff gains con-

tribute to the reproductive fitness of its genotype, another form of

partial cooperation plays an important role: stable coexistence of

cooperative and noncooperative strategies. A genotype that main-

tains such a coexistence (think of different roles in ant colonies

or the differentiation in eukaryotic microorganisms and similar

forms of cooperation, see Wingreen and Levin 2006) might be

advantageous, but it remains a challenge for evolutionary biol-

ogists to completely understand how such forms are protected

against “cheating,” that is, other organisms that profit from co-

operation but contribute less cooperation themselves, or how the

efficient level of phenotypic variation can be maintained. There-

fore, in evolutionary game theory, PCDs are even relevant when

considering one-shot games, that is, interactions without the pos-

sibility of turn-taking or similar, memory-dependent strategies.

Whereas instances of PCDs have been discussed in previous

works (Schüβler 1986; Kreps et al. 2001; Neill 2003; Helbing et al.

2005; Kaplan and Ruffle 2007; Stark et al. 2008), we here provide

a concise conceptualization of the general kind of dilemma. For

symmetrical 2 × 2 games, we show that PCD games translate to

the standard model of biological cooperation when considering

discounting effects of helping efforts. Consequently, we derive

the conditions for stable coexistence dependent on the strength of

evolutionary mechanisms at work, thereby complementing recent

findings (Taylor and Nowak 2007). We find that only kin selec-

tion can explain the maintenance of partial cooperation when a

dilemma of partial cooperation is present. Group selection and
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network reciprocity are not able to resolve such kind of dilemma.

We are convinced that there is room for new thoughts on realistic

mechanisms that are able to explain diversity in a wide range of

evolutionary scenarios, especially in PCDs.

Some concepts that are applied in this work have been and

still are subject to a scientific dispute. In particular, the multi-

level selection approach (leading to the group selection concept)

(Traulsen and Nowak 2006) and the role of spatial structure (lead-

ing to the network reciprocity concept) is sometimes proposed to

be identical to kin selection (see particularly Lehmann and Keller

(2006), West et al. (2007) and references therein). In our view, it

is semantically rather productive than misleading to distinguish

between different sources of indirect fitness benefits. In situations

in which differences in genetical relatedness can be cancelled out,

the mechanism to explain why cooperation is selected for should

not be “kin selection.” Apart from this semantic argument, in

this work it quantitatively proved valid to distinguish between the

concepts: they transform the dilemma in different ways and lead

to differing results (see (Traulsen 2010) for more mathematics on

this issue).

Although widely neglected by the literature so far, the games

exhibiting a PCD could widen the range of models describing

complex scenarios of reality without increasing the complexity of

the model (they base on a simple symmetrical 2 × 2 game). Our

conjecture is that applying the idea of PCDs into respective models

and experimental setups will lead to new and relevant insight

regarding the evolution of cooperation in biological systems and

human society. In particular, we reckon advances in investigations

on the huge biodiversity, phenotypic variation, and heterogeneity

of social behaviors in nature.
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