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The largest eigenvalue of the adjacency matrix of a network plays an important role in several network
processes �e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equi-
libria of network coupled systems�. In this paper we develop approximations to the largest eigenvalue of
adjacency matrices and discuss the relationships between these approximations. Numerical experiments on
simulated networks are used to test our results.
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I. INTRODUCTION

In recent years, there has been much interest in the study
of the structure of networks arising from real world systems
�1�. Another concern has been dynamical processes taking
place on networks, and the impact of network structure on
such dynamics. The largest eigenvalue of the network adja-
cency matrix has emerged as a key quantity important for the
study of a variety of different dynamical network processes.
For example, large ensembles of heterogeneous dynamical
systems can undergo a transition to synchronization as the
coupling strength k between the systems is increased. For a
large class of networks and dynamical systems, the value of
k at which the transition to synchronization takes place is
given by kc=k0 /�, where k0 depends only on the dynamics
of the uncoupled dynamical systems and � is the largest
eigenvalue of the network adjacency matrix �2�. The largest
eigenvalue � is also important in percolation on directed net-
works �3�, linear stability of the fixed points of systems of
network-coupled ordinary differential equations �4�, and sev-
eral other examples in physics and chemistry �5,6�. In this
paper we study methods of obtaining approximations to � for
the case of large complex networks.

We consider a network as a directed graph with N nodes,
and we associate to it an N�N adjacency matrix whose el-
ements Aij are one if there is a directed edge from i to j and
zero otherwise. �We require no self-edges Aii=0 but allow
bidirectional edges Aij =Aji=1.� We denote the largest eigen-
value of A by � �assuming that the graph is connected, the
eigenvalue of A with the largest magnitude is unique, real,
and positive by the Perron-Frobenius theorem �6��. Further-
more, we note that it is often the case that the largest eigen-
value is well separated from the second largest eigenvalue
�see Fig. 1�.

The properties of � have been studied in the context of
small or regular graphs �5� and in classical Erdös-Renyi ran-
dom graphs �7�. However, the structure of real world net-
works is usually more complex, as demonstrated by the fact

that the degree distribution in a large number of examples
has been found to be highly heterogeneous �often following a
power law �8��, where the out-degree and in-degree of a node
i are defined by di

out=� j=1
N Aij and di

in=� j=1
N Aji. The “degree

distributions” P�din ,dout�, Pin�din�=�doutP�din ,dout�, and
Pout�dout�=�dinP�din ,dout� are defined as the probabilities that
a randomly chosen node has degree din and dout, din, and dout,
respectively. If A=AT we say the graph is undirected. For an
undirected graph each edge serves as both an in and an out
edge for each of the two nodes it joins, and for each node i
we have di

in=di
out�di. Thus in the undirected case we write

P�d� to denote the corresponding degree distribution. The
effect of the degree distribution on the largest eigenvalue of
the adjacency matrix has been explored recently by Chung et
al. �9�, who considered a particular ensemble of random un-
correlated, undirected networks whose number of nodes N is
large �see also Refs. �10–15��. Here, by uncorrelated we
mean that we regard the network to be a random draw from
some ensemble of networks for which the joint probability
distribution of the node degrees Q�d1 ,d2 , . . . ,dN� factors
Q�d1 ,d2 , . . . ,dN�= P�d1�P�d2� , . . . , P�dN�. Chung et al. found
that in the limit N→� these networks yield an expected
largest eigenvalue that is determined by the ratio �̂ of the
second to first moment of the average degree distribution

�̂ = �d2�/�d� , �1�

where �x�=N−1�i=1
N xi, and by the expected largest degree

d̄max �the maximum degree in the network averaged over
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FIG. 1. All the eigenvalues of a randomly generated adjacency
matrix are shown plotted in the complex plane for a case where
N=500 and Aij =1 with probability p=0.1 and Aij =0 otherwise. We
see that, aside from the largest eigenvalue �	49.9, all the other
eigenvalues are contained within a disk of radius 7. �Furthermore,
as N increases with p fixed, it is found that � scales as N, but the
disk radius scales as N1/2.�
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many network realizations�. Specifically, they found that

� 	
�̂ �̂ � d̄max ln N ,

�d̄max
�d̄max � �̂ ln2 N .

� �2�

Some previous results for dynamical processes in networks

have been stated in terms of the quantity �̂, for example, the
synchronization threshold in the mean-field theory of
coupled oscillators in networks �2,16,17� and the network
percolation and epidemic spreading thresholds �18,19�.

Real world networks often have some amount of edge
degree correlations �20�, i.e., a node of a given degree is
more likely to be connected to nodes with certain other de-
grees than would be expected on the basis of chance. Net-
works in which high degree nodes connect preferentially to
high �low� degree nodes, and vice versa, are called assorta-
tive �disassortative�. Such correlations can affect dynamical
processes on networks, as has been demonstrated, for ex-
ample, in epidemic spreading models and percolation
�21–23�.

We also emphasize that the in- and out-degrees at a node
can have different distributions �i.e., Pin�din�� Pout�dout��, as
has been noted for some corporate information and genetic
networks �24,25�, and that there are potential correlations
between the in and out degrees at the same node, which can
also significantly affect the largest eigenvalue. We call these
correlations node degree correlations.

The rest of this paper is organized as follows. Section II
reviews the characterization of degree correlations. Section
III develops the theory of the maximum eigenvalue � for the
case of networks that satisfy a certain Markovian property.
Some of the considerations of Sec. III are similar to theory in
previous papers, where, however, those previous consider-
ations were application specific, and the more general appli-
cability to the largest eigenvalue was not apparent. Section
IV tests our results on numerical constructions of network
adjacency matrices of different types.

II. DEGREE CORRELATIONS

A. Node degree correlations

As we discussed in the Introduction, we define P�din ,dout�
as the probability that a randomly chosen node has in-degree
din and out-degree dout. As we shall see later, for networks
without edge degree correlations, a first order approximation
to the eigenvalue �, generalizing Eq. �1�, is given by

�̂ = �dindout�/�d� , �3�

where �¯� denotes an average over nodes and �d� means
either �di

in� or �di
out�, which are equal: �di

in�=N−1�idi
in

=N−1�i,jAij = �di
out�. If di

in and di
out are independent, the largest

eigenvalue is approximately given by �̂= �d�, and if di
in and

di
out are perfectly correlated, so that di

in=di
out�di �e.g., as in

an undirected network�, the largest eigenvalue is approxi-

mately �̂= �d2� / �d�. We see that correlations between din and
dout can crucially affect the eigenvalue, especially if the sec-
ond moment of either degree distribution diverges with in-

creasing N, while the first moment converges: in such a case
independence leads to a finite eigenvalue estimate, and per-
fect correlation to a diverging eigenvalue estimate.

In order to quantify the correlations between din and dout

at a node, we define the node degree correlation coefficient

� � �dindout�/�d�2. �4�

Note that if there are no correlations �=1 and � is larger
�smaller� than 1 for positive �negative� correlations. In terms

of the correlation coefficient, �̂ is given by

�̂ = ��d� . �5�

For undirected networks, A is a symmetric positive matrix,
and thus its largest eigenvalue satisfies

� �
qTAq

qTq
�6�

for any N vector q. Choosing the components of q to be zero
for nodes not connected to the node of largest degree dmax, to
be one for nodes connected to the node of largest degree, and
�dmax for the node of largest degree, Eq. �6� yields

� � �dmax. �7�

If �dmax��̂, the mean-field approximation �3� must be incor-
rect. Thus, for undirected networks we use as a heuristic
alternative to the mean-field approximation

� 	 max�̂,�dmax� , �8�

which is consistent with both of the regimes considered in
the rigorous result �2�. (We remark, however, that Eq. �8�
holds in principle only if the ratio �̂ /�dmax or its inverse is
large enough �see Eq. �2��). One way of viewing Eq. �8� is
that Eq. �6� implies that � is at least as large as the maximum
eigenvalue of any subnetwork of the original network �by a
subnetwork we mean one obtained by deleting edges of the
original network�. Considering a subnetwork consisting of
the node of maximum degree and the nodes connecting to it,
shown in Fig. 2�a�, Eq. �7� corresponds to the fact that �dmax
is the maximum eigenvalue of this star network. The regime
�	�dmax in Eq. �8� applies to networks whose largest eigen-
value is dominated by the node with largest degree.

We now contrast the above situation for undirected net-
works with what can happen for directed networks. We first
note that the reasoning leading to Eq. �8� may not hold. For
example, Eq. �6� no longer applies, and a node with many in

(a) (b)

FIG. 2. Undirected �a� and directed �b� star networks illustrating
the fact that, in the directed case, a node with many in and out edges
does not necessarily constitute a subnetwork with a large eigenvalue
�see text�.
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and out edges does not necessarily make a subnetwork with
large eigenvalue. Regarding the latter point, consider Fig.
2�b� as compared to Fig. 2�a�. This directed network has all
its eigenvalues zero, because no pair of in and out edges
connects the same two nodes.

B. Edge degree correlations

For our subsequent analysis it is useful to introduce an
edge degree correlation coefficient � characterizing the cor-
relation between the in-degree at node i and the out-degree at
node j, where a directed edge goes from i to j,

� � �di
indj

out�e/�di
in�e�dj

out�e, �9�

with �Qij�e denoting an average over edges

�Qij�e � �
i,j

AijQij/�
i,j

Aij . �10�

Using Eq. �10� we have

�di
in�e = �

i,j
Aijdi

in/�
i,j

Aij = �
i

di
outdi

in/�
i,j

Aij = �doutdin�/�d�

�11�

and so

� =
�di

indj
out�e

�2�d�2 . �12�

�Our definition of the edge degree correlation coefficient � is
related to but slightly different from that of Newman �20�:
we use the degrees di

in and di
out, rather than the excess de-

grees di
in−1 and di

out−1. The qualitative behavior is not af-
fected, and in most of our examples the degrees are typically
large so that the difference is not important. On a directed
edge from node i to node j, we consider the product of the
in-degree at node i with the out-degree at node j, i.e., we sum
Aijdi

indj
out instead of Aijdi

outdj
in. This will be convenient later

and allows a natural interpretation of the numerator of � as
described below. Finally, our normalization is such that no
correlations correspond to �=1 instead of zero.�

We note that the term �i,jAijdi
indj

out that appears in the
definition of �di

indj
out�e is the number of directed paths of

length three, i.e., the number of edges of the form
n→ i→ j→m. Similarly, �di

in�eN�d�= �dj
out�eN�d�=N�dindout�

=�kdk
outdk

in=�i,j,kAikAkj is the number of paths of length 2,
N�d� is the number of paths of length 1 �or the number of
edges�, and N is the number of paths of length 0. Accord-
ingly, let us write �i,jAijdi

indj
out�n3, N�dindout��n2, N�d�

�n1, and N�n0. With this notation, the coefficients � and �
can be rewritten as

� =
n2n0

n1
2 , �13�

� =
n3n1

n2
2 . �14�

As an example of this interpretation, we note that for net-
works with uncorrelated in- and out-degrees, the number of

paths of length two is n2	n1�d�=n1
2 /n0, and so �	1. For

networks where there are no edge degree correlations, the
number of paths of length 3, n3, can be obtained from the
number of paths of length 2, n2, times the average branching
ratio given by n2 /n1, and thus �	1 for such networks.

III. LARGEST EIGENVALUE OF MARKOVIAN
NETWORKS

A. Formulation

For generality, in this section we allow different types of
network nodes, where we specify the node type by an index
�=1,2 , . . . ,M, where M is the total number of possible node
types �e.g., in the case of social networks connecting people,
� might label sex, race, social class, etc.�. Furthermore, we
introduce the quantity

z = �din,dout,�� , �15�

which we refer to as the degree. With this definition, we use
P�z� to denote the degree distribution, i.e., P�z� is the prob-
ability that a randomly chosen node has degree z. This im-
plies, for example, that

�
din,dout

P�z� = N�/N , �16�

where N� is the number of nodes of type � and N=��N�.
�While our numerical examples in Sec. IV are for the case of
a single node type M =1 the subsequent considerations in the
present section do not have this restriction.�

We consider a particular class of networks for which the
only nontrivial correlations are between nodes that are di-
rectly connected by a single edge. Such Markovian networks
have been considered in previous works on epidemic spread-
ing and percolation �18,19,21,23�. Under this assumption, if
we define P�z� �z� to be the probability that a randomly cho-
sen node with degree z points to a node with degree z�, then
if we choose a random outward path of length 2 from a node
with degree z, the probability that the first hop ends on a
node with degree z� and the second on a node with degree z�
is by this assumption

P�z�,z��z� = P�z��z��P�z��z� .

Let 	z
�m� be the expected number of directed paths of length

m whose starting node has degree z. Using the assumption
that the network is Markovian, we can express 	z

�m+1� in
terms of 	z

�m� as

	z
�m+1� = dout�

z�

P�z��z�	z�
�m�. �17�

The number of paths of length m grows, in the limit of large
m, as the largest eigenvalue �, 	z

�m��	z�
m �5�. Therefore, we

can associate to Eq. �17� the eigenvalue problem

�C	z = dout�
z�

P�z��z�	z� �18�

or
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�C	z = C	z, �19�

where C is the dmax
out dmax

in �dmax
out dmax

in matrix with entries
Czz�=doutP�z� �z�, and we seek its largest eigenvalue �C and
its corresponding eigenfunction 	z. The eigenfunction 	z de-
termines how the number of directed paths starting at a node
with degree z depends on z. As we shall see, when there are
no edge degree correlations ��=1�, 	z is proportional to the
out-degree 	z
dout. We consider �C to be an approximation
to � that is more accurate than the mean-field result in that it
includes correlations between connected nodes �	�C. Addi-
tionally, an approximation uC to the right eigenvector u of A
can be obtained in terms of 	z in a similar way

�uC�i = 	zi
�20�

and an analogous expression holds for the left eigenvector v
of A, using the left eigenvector of the matrix with entries
doutP�z� �z� instead of 	z. We will refer to Eqs. �18� and �20�
as the Markovian approximation.

In the Markovian approximation, the matrix C captures
the properties of the matrix A. This correspondence arises
because the largest eigenvalue � is determined only by the
rate of growth of the number of directed paths. Under the
Markovian approximation, the average number of directed
paths depends only on the way nodes with different degrees
z, z� are connected to each other. This information is con-
tained in the entries of C, Czz�=doutP�z� �z�, the expected
number of edges pointing from a node of degree z to a node
of degree z�. As shown in our analysis, the information con-
tained in the matrix C is enough to determine �.

B. � expansion

While in many cases Eq. �18� can be solved directly, it is
also of interest to explore approximations to its solution.
Thus, we will here expand Eq. �18� about a zeroth order
approximation in which edge degree correlations are ne-
glected and in which the first order correction gives the per-
turbation to the uncorrelated case due to a small amount of
edge degree correlations. In particular, we will be interested
in zeroth order and first order approximations to the largest
eigenvalue of A and to the corresponding right and left
eigenvectors u and v, where

Au = �u and vTA = �vT. �21�

Following previously used terminology, we refer to the ze-
roth order approximation as the mean-field theory.

When there are no edge degree correlations, the probabil-
ity that an edge outgoing from a node with degree z points to
a node with degree z�, P�z� �z� becomes independent of z.
This probability is proportional to the fraction of edges in-
coming into nodes of degree z�:

P�z��z� = P̂�z�� = �din��P�z��/�d� . �22�

Notice that P̂�z� is the probability that a randomly chosen
link points to a node of degree z. We will expand Eq. �18�
about the uncorrelated case. For this purpose, we will write

P�z��z� = P̂�z�� + ��P�z��z� , �23�

where

�P�z��z� = P�z��z� − P̂�z�� �24�

and � is an expansion parameter that we formally consider
small, although, in reality, �=1. Introducing expansions for
�C and 	z,

�C = �̂ + ��� + ¯ , �25�

	z = 	̂z + ��	z + ¯ . �26�

Expanding Eq. �18� to zero order in �, we obtain

	̂z = dout �27�

and

�̂ = �dindout�/�d� . �28�

Thus in the zeroth order approximation, the right eigenvector
of A has components

ui = di
out. �29�

To obtain the left eigenvector, we follow the same steps as
above but with A replaced by AT. This interchanges the roles
of din and dout, thus yielding

vi = di
in �30�

for the left eigenvector.
Expanding to first order in �, we obtain

�̂�	z + ��	̂z = dout�
z�

P̂�z���	z� + dout�
z�

�P�z��z�	̂z�.

�31�

Multiplying by P̂�z� and summing over z we obtain, after
some simplification,

�� = ���̂�d��−1�
z,z�

�dout��doutdinP�z��z�P�z�� − �̂ . �32�

The probability that a randomly chosen edge starts at a node

with degree z is P̃�z�= �d�−1P�z�dout and, therefore, the term
�d�−1�z,z��d

out��doutdinP�z� �z�P�z� is equal to

�
z,z�

din�dout��P̃�z�P�z��z� = �di
indj

out�e. �33�

To first order, therefore, we obtain

�C 	 �̂ + �� =
�di

indj
out�e

�̂
= �̂� , �34�

where � is defined in Sec. II, and we call �= �̂� the linear
approximation.

We note that the successively more refined approxima-

tions �d�, �̂ �Eq. �5��, and the linear approximation �Eq. �34��
correspond, respectively, to n1 /n0, n2 /n1, and n3 /n2, and �
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=limk→� nk+1 /nk. We now briefly comment on the range of
validity of the expansion results. As the rigorous result Eq.
�2� shows, the mean-field result for undirected networks is
not valid when the network is dominated by the node with
maximum degree. A network in which the maximum degree
is too large compared with the bulk of the degree distribution
cannot satisfy Eq. �22�. For example, the star network of Fig.
2�a� is very degree-degree correlated because all of its outer
nodes connect only to the high degree hub node and, indeed,
application of Eq. �22� to this simple star network yields an
incorrect result. For this network, we have P�d� �d�
=�d�,dmax

�d,1+�d�,1�d,dmax
, where dmax is the degree of the

central node. This yields �C=�dmax. However, the approxi-

mation �22� yields P̂�d��=1 /2 for both d�=1 and d�=dmax,
which gives incorrect values for �d�, �d2�, and �. Our expan-
sions about an uncorrelated network therefore implicitly as-
sumed that this network was not dominated by the node with
maximum degree. A more rigorous delineation of the range
of validity of the Markovian approximation �Eq. �18�� for
correlated and/or directed networks along the lines of Ref.
�9�. is open for further research.

IV. NUMERICAL TESTS ON SIMULATED NETWORKS

In this section we numerically construct random networks
and use them to compare with the predictions of Sec. III. In
order to study the variation of the largest eigenvalue � of the
adjacency matrix A, we first construct large �N1� approxi-
mately uncorrelated networks with a given expected degree
distribution using a generalization of the random graph
model of Chung et al. �9�. First we associate to each node k

target in- and out-degrees �d̂k
in , d̂k

out�, where �kd̂k
in=�kd̂k

out

=N�d̂�. Note that the choice of target node degrees can be
made to correspond to a desired degree distribution �e.g.,
scale free or Poisson�. We then choose each element of the
adjacency matrix Aij randomly to be one with probability

d̂i
outd̂j

in / �N�d̂�� and zero otherwise �we restrict the maximum

degrees so that d̂i
outd̂j

in / �N�d̂���1�. This determines a net-
work realization with in- and out-degrees di

out=� jAij and
dj

in=�iAij. In general, �dk
in ,dk

out� can be different from the

target values �d̂k
in , d̂k

out�. Nevertheless, with high probability,
for large N, the resulting degree distribution P�din ,dout� of
this randomly chosen network will be approximately, in a
suitable sense, the target distribution �9�. In particular, the
moments �dindout� and �d� will be approximately unchanged
when calculated using either P or the target degrees. Further-
more, �	1 for N1. The network generated by this algo-
rithm is directed �i.e., A is asymmetric�; symmetric networks
can be generated by first considering only i� j and then set-
ting Aji=Aij.

Starting from an uncorrelated network generated by this
algorithm, we then rewire the connections in such a way that
the degree distribution is preserved. On doing so, the corre-
lation coefficient changes and we calculate the largest eigen-
value for different values of �. The rewiring algorithm we
use is a simplified version of that used in Ref. �22� and
consists in the iteration of the following steps. �1� Two edges

are chosen at random. Assume one connects node n to node
m and the other connects node i to node j. �2� Let

H�i, j ;n,m� = dn
indm

out + di
indj

out − dn
indj

out − di
indm

out. �35�

The two edges chosen in step 1 are replaced with two edges
connecting node n to node j and node i to node m �see Fig.
3� if sH�i , j ;n ,m��0, and are left alone otherwise. Setting
s=1 or −1 we produce assortative or disassortative networks,
respectively.

As we iterate from �=1 with s=1 �s=−1�, � steadily in-
creases �decreases�. Thus, we produce a sequence of net-
works with successively larger �smaller� �.

In Fig. 4�a� we show the largest eigenvalue � �solid line�,
the linear approximation given by Eq. �34� �dashed line�, and
the Markovian approximation �C obtained by exact diagonal-
ization of the matrix C=doutP�z� �z� in Eq. �18� �boxes� as a
function of the correlation coefficient � for an undirected

FIG. 3. Schematic representation of the rewiring algorithm.
Edges i→ j and n→m were chosen at random. When creating a
network with assortative �disassortative� correlations, they are re-
placed with edges i→m and n→ j if the resulting network has a
larger �smaller� value of �.
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FIG. 4. Largest eigenvalue � �solid line�, linear approximation
�Eq. �34�, dashed line�, and Markovian approximation �C �Eq. �18�,
boxes� for �a� an undirected network with N=25 000, �=2.5, and
�d�=100 and �b� a directed network with N=10 000, �=2.5, and
�d�=20.
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network with power law degree distribution generated as de-
scribed above with N=25 000, �d�=100, and exponent �
=2.5. In Fig. 4�b� we plot the same quantities for a directed
network with N=10 000, �d�=20, and exponent �=2.5.
When constructing the directed network, we chose the target

d̂k
in independently from d̂k

out so that there are no node degree
correlations ��=1�. In these plots there is no discernible dif-
ference between the approximation �C and the actual values
of �. We observe that the largest eigenvalue depends strongly
on the correlation coefficient: in the undirected case, it in-
creases more than three times as � varies from 0.4 to 1.7.
Also, we see that in these examples the linear approximation
works for ��−1 � �0.2, but fails for larger values of ��−1 � .
In the undirected case, � is larger than the linear approxima-
tion, which follows from Eq. �6� if we set qi=di. We also
note that in the undirected network there are strong node

degree correlations ��= �̂ / �d��2.5�, but this does not affect
the quality of the approximations.

In Fig. 5 we show the eigenvector ui for the network of

Fig. 4�b� at �	0.9 plotted against the corresponding ap-
proximation �uC�i, Eq. �20�, using an arbitrary scale. Up to a
normalization factor, there is good agreement between the
true value and its Markov estimate ��uC�i
ui�.

V. CONCLUSION

In this paper we have considered several approximations
to the largest eigenvalue of the adjacency matrix of large,
directed networks. The mean-field result �3� appears to apply
well to networks whose neighboring nodes are uncorrelated
in their degrees. The linear approximation �34� applies for
sufficiently small correlation, while the Markov model �18�
applies for arbitrarily strong degree correlations between
neighbors. The price to be paid for a more refined approxi-
mation is the requirement of greater knowledge of the net-
work �e.g., use of Eq. �18� requires knowledge of P�z� �z�
which is not required for the two other less refined approxi-
mations�.

We caution that, although we have obtained good agree-
ment between the theory and numerical results on simulated
networks, this may not necessarily carry through for real
networks encountered in practice. In particular, the Markov
assumption of Eq. �17� may not always hold �e.g., due to
community structure �26�, clustering, or edge degree corre-
lations extending over more than one edge between nodes�.
This remains a topic for further study.
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