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We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We
present various approximations that describe the behavior of an appropriately defined order parameter past the
transition and generalize recent results for the critical coupling strength. We find that, under appropriate
conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the
adjacency matrix. We show how, with an additional assumption, a mean-field approximation recently proposed
is recovered from our results. We test our theory with numerical simulations and find that it describes the
transition when our assumptions are satisfied. We find that our theory describes the transition well in situations
in which the mean-field approximation fails. We study the finite-size effects caused by nodes with small degree
and find that they cause the critical coupling strength to increase.
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I. INTRODUCTION

In recent years, the importance of networks in different
fields has become increasingly clearf1–3g. It has been ob-
served that many real-world networks possess topologies
which introduce important effects on the processes taking
place on them. One of the most interesting and important of
these processes is the synchronization of coupled dynamical
systems. Synchronization is found in fields ranging from
physics to biologyf4,5g and in many cases involves a large
network of dynamical systems. The structure of this network
plays a crucial role in determining the synchronization of the
coupled elements.

Kuramoto f6g proposed and exactly solved a model for
the synchronization of all-to-all uniformly coupled phase os-
cillators. His model and solution have become a guide as to
how the coupling strength and the properties of the oscilla-
tors se.g., their natural frequenciesd might affect their syn-
chronization, and generalizations of this basic model have
been studiedf4,7g. Some attempts to study the Kuramoto
model with networks different from the all-to-all network
have been madef8g. Networks in which the interaction
strength depends on a distance have been studied, and it has
been numerically found that a transition from incoherent to
coherent behavior occurs at a critical value of the coupling
strengthf9g. The Kuramoto model in networks without glo-
bal coupling has recently started to receive attention. It was
numerically observedf10g that a transition is also present in
scale-free networks. Very recently, a mean-field theory to
determine the transition to synchronization in more general
networks has been proposedf11,12g. The mean-field theory
result is that the critical coupling strengthkmf is determined
by the Kuramoto valuek0, rescaled appropriately by the first

two moments of the degree distribution of the nodes in the
network:kmf=k0kdl / kd2l, where

kdql =
1

N
o
n=1

N

dn
q, s1d

the degreedn of node n is the number of connections be-
tween noden and other nodes of the network, andN is the
number of nodes in the network.

In this paper we go beyond the mean-field approximation,
obtaining a better estimate of the critical coupling strength.
We also describe the behavior of a suitably defined order
parameter past the transition. We show how our results re-
duce to those of the mean-field theory when an additional
assumption is introduced and present examples in different
regimes. We find that in some regimes the mean-field ap-
proximation does not provide an adequate description of the
transition, whereas our more general estimate does. We also
show how our results explain observations for networks with
distance-dependent interaction strength. We study finite-size
effects caused mainly by nodes of small degree and find that
the transition point is shifted to larger values of the coupling
strength when these effects are taken into account.

This paper is organized as follows. In Sec. II we present
our theory and discuss the mean-field approach. In Sec. III
we present numerical examples for different situations and
test the different approximations. In Sec. IV we discuss the
case of networks with nonuniform coupling strength. In Sec.
V we present a linear analysis of the problem. In Sec. VI we
consider finite-size effects caused primarily by nodes with a
small number of connections. Finally, we conclude in Sec.
VII. Some calculations are relegated to Appendixes A, B,
and C.*Electronic address: juanga@math.umd.edu
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II. SELF-CONSISTENT ANALYSIS

As shown by Kuramotof6g, the dynamics of weakly
coupled, nearly identical limit cycle oscillators can, under
certain conditions, be approximated by an equation for the
phasesun of the form

u̇n = vn + o
m=1

N

Vnmsum − und, s2d

wherevn is the natural frequency of the oscillatorn, N is the
total number of oscillators, andVnm is a periodic function
depending on the original equations of motion. The all-to-all
Kuramoto model assumes thatVnmsum−und=sk/Ndsinsum

−und, where k represents an overall coupling strength. In
order to incorporate the presence of a heterogeneous net-
work, we assume thatVnmsum−und=kAnm sinsum−und, where
Anmù0 are the elements of anN3N adjacency matrixA de-
termining the connectivity of the network. Therefore, we
study the system

u̇n = vn + ko
m=1

N

Anm sinsum − und. s3d

For specificity, we will primarily consider the case where
the Anm are either 0snodesn andm are not connectedd or 1
snodesn and m are connected, and all connections have
equal strengthd. We assume that the network is undirected, so
that Anm=Amn. We assume also that, for eachn, the corre-
spondingvn is independently chosen from a known oscilla-
tion frequency probability distributiongsvd. We assume that
gsvd is symmetric about a single local maximumscf. Sec.
Vd, which without loss of generality we can take to be at
v=0. sIf the mean frequency isv0Þ0, we make the change
of coordinates that shifts eachvn by v0 and eachun by v0t.d
In this case, synchronization will occur at frequency 0; i.e.,
un will remain approximately constant for synchronized
nodes.

We define a positive real-valued local order parameterrn
by

rne
icn ; o

m=1

N

Anmkeiumlt, s4d

wherek¯lt denotes a time average. In terms ofrn, Eq. s3d
can be rewritten as

u̇n = vn − krn sinsun − cnd − khnstd, s5d

where the termhnstd takes into account time fluctuations and
is given by hn=Imhe−iunomAnmskeiumlt−eiumdj, where “Im”
stands for the imaginary part. Since we regardhn as a sum of
dn approximately uncorrelated termsswheredn is the degree
of noden given bydn=omAnmd, we expecthn to be of order
Îdn. Substantially above the transition, due to the synchroni-
zation of the phases, the quantityrn<omAnmkeiumlt is Osdnd.
Thus, if we assume thatdn@1, substantially above the tran-
sition the termhn can be neglected with respect torn. How-
ever, just above the transition to coherence, the number of
oscillators that are phase locked is smallssee belowd, and so

the term rn is also small. We need the number of locked
oscillators to be large enough so that we can neglecthn, but
in cases where we use perturbative methods, we also require
that the number of locked oscillators be small enough that
the perturbative methods are still valid. We therefore do not
expect the perturbative methods to agree perfectly just at the
transition point.fIndeed in the classical Kuramotosall-to-alld
model a similar reservation holds for finite networks, as there
areOsN−1/2d fluctuations ofkom=1

N eium for k below its critical
transition value.g In Sec. VI we will investigate the effects of
the time fluctuating termhn in Eq. s5d, but for now, we ne-
glect it.

With hn neglected in Eq.s5d, oscillators with uvnuøkrn
become locked; i.e., for these oscillatorsun settles at a value
for which

sinsun − cnd = vn/skrnd. s6d

sIn general there are two suchun; the one closest tocn is
stable.d Then

rn = o
m=1

N

Anmkeisum−cndlt = o
uvmuøkrm

Anmeisum−cnd

+ o
uvmu.krm

Anmkeisum−cndlt. s7d

In order to proceed further, we will introduce the follow-
ing assumption.

Assumption 1: We assume the existence of solutionsrn,cn
that are statistically independent ofvn.

This is a nontrivial assumption; however, it is reasonable
if most of noden’s neighbors have reasonably large degree,
so that they are not strongly affected by the value ofvn. And
as we show below, such a solution can be found in a self-
consistent manner. Using a milder version of assumption 1,
we show in Appendix A that the sum over the unlocked
oscillators in Eq.s7d can be neglected. Therefore, only the
locked oscillators remain in the sum, and we get from Eq.s7d
using Eq.s6d, sincern is by definition real,

rn = ReH o
uvmuøkrm

Anmeisum−cmdeiscm−cndJ
= o

uvmuøkrm

Anm cosscm − cndÎ1 −S vm

krm
D2

− o
uvmuøkrm

Anm sinscm − cndS vm

krm
D , s8d

where “Re” represents the real part. For the imaginary part of
Eq. s7d, we get

0 = o
uvmuøkrm

Anm cosscm − cndS vm

krm
D

+ o
uvmuøkrm

Anm sinscm − cndÎ1 −S vm

krm
D2

. s9d

Using assumption 1, the contribution of the last term in
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the real part equations8d can be neglected because of the
symmetry ofgsvd about 0. We thus obtain the approximation

rn = o
uvmuøkrm

Anm cosscm − cndÎ1 −S vm

krm
D2

. s10d

Since we are interested in the transition to coherence, we
look for the solution of Eq.s10d that yields the smallest
critical couplingk. The smallest critical coupling is obtained
when the cosine in Eq.s10d is 1. sNote that both the number
of terms in the sum and their size decrease ask decreases.
Hence, a smallerk corresponds to a larger value of the co-
sine.d We therefore will look for solutions for whichcn
−cm=0—i.e.,cn does not depend onn—and without loss of
generality, we will takecn;0. Note that this is a consistent
condition in the sense that the imaginary part equations9d is
satisfied: the first term vanishes in the limit of a large number
of connections per node due to the symmetry around 0 of
gsvd and the second due to our assumed form thatcn does
not depend onn.

Equations10d then reduces to

rn = o
uvmuøkrm

AnmÎ1 −S vm

krm
D2

. s11d

If the particular collection of frequenciesvn is known, this
equation can be solved numerically. We will refer to this
approximation, based on neglecting the time fluctuations in
Eq. s5d, as thetime-averaged theorysTATd. We now define
an order parameterr by

r =

o
n=1

N

rn

o
n=1

N

dn

, s12d

wheredn is the degree of noden defined bydn=om=1
N Anm.

Note that r =on=1
N dnkeiunlt /on=1

N dn coincides with the order
parameter used in Refs.f11,12g.

If the number of connections per node is large, the par-
ticular collection of frequencies of the neighbors of a given
node will likely be a faithful sample of the frequency distri-
butiongsvd. Assuming this is the case and using assumption
1, we approximate the sum in Eq.s11d as

rn = o
m

AnmE
−krm

krm

gsvdÎ1 −S v

krm
D2

dv s13d

or, introducingz;v / skrmd,

rn = ko
m

AnmrmE
−1

1

gszkrmdÎ1 − z2 dz. s14d

This equation is one of our main results. It is analogous to
Eq. s13d in Ref. f11g and Eq.s6d in Ref. f12g, but as opposed
to including only information of the degree distribution of
the network, it depends on the adjacency matrix, which com-
pletely describes the topology of the network. Equations14d

determines implicitly the order parameterr as a function of
the networkAnm, the frequency distributiongsvd, and the
coupling constantk. We will refer to this approximation as
the frequency distribution approximationsFDAd. As with the
TAT approximations11d, nonlinear matrix equations14d can
be solved numerically and the order parameterr computed
from rn using Eq.s12d.

We will now study the implications of Eq.s14d by using
approximation schemes in different regimes in order to ob-
tain explicit expressions for the order parameter and the criti-
cal coupling strength.

A. Perturbation theory

From the discussion above, coherent behavior is charac-
terized by a nonzero value ofrn. We determine the critical
value of k by letting rn→0+. The first-order approximation
gszkrmd<gs0d in Eq. s14d produces

rn
s0d =

k

k0
o
m

Anmrm
s0d, s15d

wherek0;2/fpgs0dg. Since we are interested in the transi-
tion to coherence, the smallestk satisfying Eq.s15d is of
interest. We thus identify the critical transition value ofk0/k
with the largest eigenvaluel of the adjacency matrixA, ob-
taining

kc =
k0

l
. s16d

sIn the caseAnm;1 of all-to-all coupling,l=N−1.d Also rm
s0d

is proportional to themth component of the eigenvectoru
=fu1,u2, . . . ,uNgT associated with this eigenvalue. Note that
this is consistent with assumption 1, sincern depends only on
network propertiessi.e., the matrixAd and is thus indepen-
dent of vn. Equations16d is one of our main results. It de-
termines when the transition to coherence occurs in terms of
the largest eigenvaluel of the adjacency matrixA.

In order to assess how the order parameterr given by Eq.
s12d grows ask grows fromkc, we must take into account
thatgszkrmd in Eq. s14d is not constant. Forkrn smallssee the
discussion at the end of Sec. II Bd, the second-order approxi-
mation yields

rn = ko
m

AnmrmE
−1

1 Sgs0d +
1

2
g9s0dszkrmd2DÎ1 − z2 dz.

s17d

Defining a;−pg9s0dk0/16, we get

rn =
k

kcl
o
m

Anmsrm − ak2rm
3 d. s18d

We consider perturbations from the first-order critical values
as follows:

ONSET OF SYNCHRONIZATION IN LARGE NETWORKS… PHYSICAL REVIEW E 71, 036151s2005d

036151-3



rn = rn
s0d + drn, s19d

wheredrn! rn
s0d!1 ask→kc. Inserting this into Eq.s18d and

canceling terms of orderrn
s0d, the leading-order terms remain-

ing are

drn =
k

kcl
o
m

Anmdrm −
ak3

kcl
o
m

Anmsrm
s0dd3 +

k − kc

kcl
o
m

Anmrm
s0d.

s20d

In order for Eq.s20d to have a solution fordrn, it must satisfy
a solubility condition. This condition can be obtained by
multiplying by rn

s0d, summing overn, and using Eq.s15d and
the assumed symmetryAnm=Amn to obtain

o
m

srm
s0dd4

o
m

srm
s0dd2

=
k − kc

ak3 . s21d

In terms of u, the normalized eigenvector ofA associated
with the eigenvaluel, the square of the order parameterr
can be expressed as

r2 = S h1

ak0
2DS k

kc
− 1DS k

kc
D−3

s22d

for k/kc.1, where

h1 ;
kul2l2

Nkdl2ku4l
. s23d

Equationss22d ands23d describe the behavior of the order
parameter near the transition in terms ofl and its associated
eigenvector. We will refer to them as theperturbation theory
sPTd.

The presence of the termku4l in Eq. s23d suggests that the
expansion ofg to second order might fail when there are a
few components of the eigenvectoru that are much larger
than the rest. This occurs when the degree distribution is
highly heterogeneous. We formulate more precisely this con-
straint in the discussion at the end of Sec. II B.

B. Mean-field theory

In this section we describe an approximation that works in
some regimes and has the advantage of greater analytical
tractability. In this section we also recover some of the re-
sults in Refs.f11,12g. Here we assume thatrn is proportional
to dn, rn~dn. The assumption consists in treating the average

rn

dn
=

1

dn
Uo

m=1

N

AnmkeiumltU , s24d

which depends onn, as if it were a constant independent of
n. Following Refs.f11,12g, we call this themean-fieldsMFd
approximation. It is also equivalent, near the transition, to
assuming that the eigenvector associated with the largest ei-
genvaluel satisfiesun~dn. We will discuss later the range of
validity of this assumption. Note that this form forrn is again
consistent with our assumption 1 thatrn is independent of

vn. The ratiorn/dn coincides under this approximation with
the order parameterr defined in Eq.s12d.

Summing overn and substitutingrn=rdn in Eq. s14d, we
obtain

o
m=1

N

dm = ko
m=1

N

dm
2E

−1

1

gszkrdmdÎ1 − z2 dz, s25d

which coincides with Eq.s13d in Ref. f11g. As we approach
the transition from above,r →0+, the first-order approxima-
tion is gszkrdmd<gs0d, from which we obtain

k ; kmf = k0
kdl
kd2l

, s26d

the main result of Ref.f11g.
In the limit N→`, we can replacekdql as defined by Eq.

s1d by

kdql` =E dqpsdddd, s27d

where psdd is the probability distribution function for the
degree. Note that, from Eq.s1d, kdql is always well defined
for finite N, but that Eq.s27d indicates thatkdql` diverges for
power-law degree distributionspsdd~d−g if gøq+1. We
also note that many real networks have approximate power
law psdd with g,3 ssee Ref. f1gd. On the basis that
kd2l` / kdl`=` for 2øgø3, Ichinomiyaf11g notes that, from
Eq. s26d, kmf→0 as N→`—i.e., predicts that in the limit
N→` there is no threshold for coherent oscillations when
2øgø3. As will become evident, our numerical experi-
ments, although forN@1, are often not well approximated
by theN→` limit, in particular for g,3.

The mean-field approximation can be pushed further to
second order by expandinggszkrdmd<gs0d+ 1

2g9s0dszkrdmd2

in Eq. s25d, obtaining, providedkrdm is small,

1 =
k

kmf
+ k3r2 p

16
g9s0d

o
m=1

N

dm
4

o
m=1

N

dm

, s28d

so that

r2 = S h2

ak0
2DS k

kmf
− 1DS k

kmf
D−3

s29d

for k/kc.1, where

h2 ;
kd2l3

kd4lkdl2 . s30d

In expandingg to second order, it was assumed thatkdm is
small. The termkd4l in Eq. s30d suggests that the conditions
under which the expansion ofg is appropriate are those un-
der whichkd4l` is finite. In fact, Lee showsf12g that for a
power-law distribution of the degrees,psdd~d−g, the above
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expansion is appropriate forg.5. For 3øgø5, he obtains
in the limit N→` that r scales near the transition asr
~ sk/kmf−1d1/sg−3d. A similar situation occurs in the perturba-
tion theory fEqs. s22d and s23dg, which was also based on
expandingg to second order. According to the previous dis-
cussion, we will only use the expression forr obtained from
the perturbation theory for situations in whichkd4l` is finite.
The critical coupling strength in Eq.s16d, on the other hand,
does not have this restriction.

The expressions in Eqs.s23d and s30d can be shown to
coincide under the approximationun~dn. The treatment in
Sec. II A does not assume thatrn/dn is independent ofn, and
we will show in Sec. III that there are significant cases where
it gives better results for the critical coupling strength than
the mean-field approximation.

C. Summary of approximations and range of validity

In the previous sections, we developed different approxi-
mations to find the critical coupling constant and the behav-
ior of the order parameter past the transition. Here we sum-
marize the different approximations and the assumptions
used in obtaining them. All the approximations mentioned
above assume that the number of connections per node is
very large. This allowed us, among other things, to neglect
the time fluctuating termhnstd in Eq. s5d. We will discuss the
effect of this term in Sec. VI.

The most fundamental approximation is given by Eq.
s11d. This equation can be solved numerically if the fre-
quency of each oscillator and the adjacency matrix is known.
This is the TAT. Assuming that the local mean fieldrn is
statistically independent of the frequencyvn, the FDA given
by Eq. s14d is obtained. This equation can also be solved
numerically, but only knowledge of the probability distribu-
tion for the frequencies and the adjacency matrix is required.
Obtained by expanding the FDA approximation near the
transition point, the PT describes the behavior of the order
parameter in terms of the largest eigenvalue of the adjacency
matrix and its associated eigenvector in networks where the
degree distribution is relatively homogeneous, more pre-
cisely whenkd4l` is finite. Takingrn in the FDA approxima-
tion to be proportional to the degree,rn~dn, leads to the MF
theory. Table I summarizes the different approximations,
their abbreviations, and their corresponding equations. The
diagram in Fig. 1 indicates the assumptions leading to each
approximation.

The mean-field theory requires only knowledge of the fre-
quency distribution and the degree distribution of the net-

work, and thus it requires less information than the other
approximations. However, it can produce misleading results
if not used carefully. The mean-field approximation has the
added assumption that the eigenvectoru of A associated with
the largest eigenvaluel satisfiesun~dn ssince, close to the
transition,rn<und. While correlations might existf13g, these
two quantities are in general not proportional. Further, the
mean-field approximation implies thatl<kd2l / kdl, a result
that, although a good approximation in some cases, is not
always true. Asymptotic forms for the largest eigenvalue in
random networks with given degree distributions are dis-
cussed and a sufficient condition forl<kd2l / kdl to be valid
is presented inf14g as follows. Letdmax be the maximum
expected degree of the network. Ifkd2l / kdl.Îdmax ln N,
thenl<kd2l / kdl almost surely asN→`. We note also that,
if the degree distribution is tightly distributed around its
mean, so thatÎkd2l,kdl,dmax@ sln Nd2, the condition for
the validity of l<kd2l / kdl is satisfied. If insteadÎdmax

. skd2l / kdldsln Nd2, then almost surely the largest eigenvalue
is l<Îdmax asN→` f14g. We will show that, indeed, to the
extent that the approximationl<kd2l / kdl does not hold, the
results from the numerical simulation of Eq.s3d agree with
the critical coupling strength as determined by the eigen-
value of the adjacency matrix, rather than by the quantity
kd2l / kdl.

The asymptotic regimes described inf14g are not avail-
able with the relatively small networkssN,5000d we are
restricted to study due to limited computational resources
ssee the end of Appendix Bd. Also, finite but large networks
are also interesting from an applied point of view. Thus, we
numerically compare both approximations in order to illus-
trate the possible discrepancies between them in particular
cases. Figure 2 was obtained usingsfor each gd a single
random realization of a network where the degreesdn are
drawn from a power-law degree distribution with power-law
exponentg swith dnùd0=20d and withN=5000 nodesssee
Sec. III for details on how the networks are generatedd. We
plot kd2l / kdl andl as a function ofg.

For the parameters used in the plot,kd2l / kdl coincides
with the largest eigenvaluel for values ofg greater than 3.
This suggests that the mean-field result for the critical cou-
pling strengthkmf is valid for N=5000 andg.3. This is
consistent with our numerical experiments in Sec. III. We
show in Appendix B, however, that forg.3 the mean-field
approximation kd2l / kdl underestimatesl for sufficiently

TABLE I. Approximations considered, their abbreviation, and
their corresponding equations.

Approximation Abbreviation Equation

Time-averaged theory TAT s11d
Frequency distribution

approximation
FDA s14d

Perturbation theory PT s22d and s23d
Mean-field theory MF s25d

FIG. 1. Different approximations and the assumptions leading to
them. See text for details.
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large N stoo large for us to simulated. In fact, asN→`, l
diverges whilekd2l / kdl remains finite. Thus, the critical cou-
pling constant obtained from our theory approaches zero as
N→`, while the one obtained from the mean-field theory
remains constant. This suggests that the few nodes with high
degree are able, for large enoughN, to synchronize the net-
work and that these nodes are not taken into account by the
mean-field theory.

For g,3, we observe from Fig. 2 thatl is less than
kd2l / kdl when N=5000. Thus, in this range, the mean-field
theory predicts a transition for a coupling constant that is
smaller than that predicted by the perturbative approach. In
the next section we will show, for a numerical example in
this regime, that the transition occurs for a larger coupling
than that predicted by the mean-field theory.

III. EXAMPLES

In order to test the results in Sec. II, we choose a distri-
bution for the natural frequencies given bygsvd=s3/4ds1
−v2d for −1,v,1 andgsvd=0 otherwise. In order to gen-
erate the network, we specify a degree distribution and we
use the “configuration” modelse.g., Sec. 4.2.1 of Ref.f1g
and references thereind to generate a random network real-
ization with the specified degree distribution:sid we first gen-
erate adegree sequenceby assigning a degreedn to each
noden according to the given distribution;sii d imagining that
each noden is givendn spokes sticking out of it, we choose
pairs of spoke ends at random and connect them.

We consider a fixed number of nodes,N=2000, and the
following networks with uniform coupling strengthsi.e.,
Anm=1 or 0d: sid the degrees are uniformly distributed be-
tween 50 and 149, andsii d the probability of having a degree
d is given bypsdd~d−g if 50ødø2000 andpsdd=0 other-
wise, whereg is taken to be 2, 2.5, 3, and 4.fOur choice
psdd=0 for d,50 ensures that there are no nodes of small
degree and suggests that our approximation of neglecting the
noiselike, fluctuating quantityhn in Eq. s5d is valid. We re-
turn to this issue in Sec. VI.g

The initial conditions for Eq.s3d are chosen randomly in
the intervalf0,2pg and Eq.s3d is integrated forward in time
until a stationary state is reachedsstationary state here means
stationary in a statistical sense; i.e., the solution might be

time dependent but its statistical properties remain con-
stant in timed. From the values ofunstd obtained for a
given k, the order parameterr is estimated as r
<uom=1

N dmkeiumlt /om=1
N dmu, where the time average is taken

after the system reaches the stationary state.sClose to the
transition, the time needed to reach the stationary state is
very long, so that it is difficult to estimate the real value ofr.
This problem also exists in the classical Kuramoto all-to-all
model.d The value ofk is then increased and the system is
allowed to relax to a stationary state, and the process is re-
peated for increasing values ofk.

In Fig. 3 we show the results for the network with a
uniform degree distribution as described abovefnetworksidg.
We plot r2 from numerical solution the full system in Eq.s3d
strianglesd, the theoretical prediction from the time-averaged
theory ssolid lined, and the prediction from the mean-field
theory slong-dashed lined and from the perturbation theory
sshort-dashed lined ssee Table Id as a function ofk/kc, where
kc is given by Eq.s16d. The frequency distribution approxi-
mation agrees with the time-averaged theory, so we do not
include it in the plot. In this case, all the theoretical predic-
tions provide good approximations to the observed numerical
results. The time-averaged theory reproduces remarkably
well the numerical observations. Even the irregular behavior
near the transition is taken into account by the time-averaged
theory. The mean-field theory is in this case a good approxi-
mation, providing a fair description of the order parameter
past the transition. The perturbation theory is valid in this
case up tok/kc<1.3.

The results for the networks with power-law degree dis-
tributions fnetworkssii dg are shown in Figs. 4sad, 4sbd, 4scd,
and 4sdd for g=2, 2.5, 3, and 4, respectively. The order pa-
rameterr2 from numerical solution of the full system in Eq.
s3d strianglesd, the time-averaged theoryssolid lined, the fre-
quency distribution approximationsstarsd, and the mean-field
theory slong-dashed lined are plotted as a function ofk/kc.
We do not show the perturbation theory since in all these
casesg,5 and so we do not expect the perturbative theory
to be valid asN→`.

The time-averaged theory agrees best with the numerical
simulations in all cases. The frequency distribution approxi-
mation also agrees well in all cases, though it predicts a

FIG. 2. Largest eigenvaluel sdiamondsd andkd2l / kdl sstarsd as
a function ofg for N=5000 andd0=20.

FIG. 3. Order parameterr2 obtained from numerical solution of
Eq. s3d strianglesd, time-averaged theoryssolid lined, mean-field
theory slong-dashed lined, and perturbation theorysshort-dashed
lined as a function ofk/kc for network sid, with the degree of the
nodes uniformly distributed inh50,…,149j. All curves are obtained
using the same single random network realization.
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sharper transition than actually occurs. The mean-field ap-
proximation agrees closely with the frequency distribution
approximation forg=4 and, away from the transition, for
g=3. However, forg=2 andg=2.5, it deviates greatly from
the other approximations and from the numerical simulation.
The critical coupling strengths predicted by the mean-field
theory and by the perturbation theory are very close forg
=4, but the mean-field theory predicts a transition at about
10% smaller coupling forg=3, about 20% smaller forg
=2.5, and about 40% smaller forg=2. Since the transition in
the numerical simulation is not so well defined, both ap-
proximations are reasonable forg=3, but for g=2 and g
=2.5 the critical coupling strength predicted by the mean-
field approximation is clearly too small.

In the past years, it has been discovered that many real-
world networks have degree distributions which are power

laws with exponents between 2 and 3.5f1,2,15g. In order to
accurately predict the critical coupling strength across this
range of exponents, the critical coupling constant given by
kc=k0/l determined by the largest eigenvalue of the adja-
cency matrix should be used. The behavior of the order pa-
rameter can be estimated using the time-averaged theory or
the frequency distribution approximation. These two ap-
proximations were found to be consistently accurate for the
range of exponents and values of the coupling constant stud-
ied. For the value ofN used, the mean-field theory works
well in predicting the critical coupling strength and the be-
havior of the order parameter if one is interested in values of
g larger than 3.

Tables II and III present the results of comparing the the-
oretical predictions with the numerical integration of Eq.s3d
for different networks. Table II compares the observed criti-
cal coupling strength with the theoretical estimate. If both
are close, the entry is “G,” and otherwise “NG.” Table III
compares the predicted behavior of the order parameter past
the transition with the observed one. If the corresponding
entry in Table II is “NG,” no comparison is attempted. The
entries are the range ofk/kc over which the corresponding
theoretical prediction agrees with the numerical simulation.

FIG. 4. Order parameterr2 obtained from numerical solution of
Eq. s3d strianglesd, time-averaged theoryssolid lined, frequency dis-
tribution approximationsstarsd, and mean-field theoryslong-dashed
lined as a function ofk/kc for degree distributions given bypsdd
~d−g if 50ødø2000 andpsdd=0 otherwise, withsad g=2, sbd g
=2.5, scd g=3, andsdd g=4. All curves in each figure are obtained
using the same single random network realization.

TABLE II. Comparison of the predicted critical coupling
strength versus the observed one for the different approximations
scolumnsd and different networkssrowsd. If the critical coupling
strength is predicted by a given approximation for a certain net-
work, the corresponding entry is marked “G.” Otherwise, “NG” is
entered.

Degree distribution TAT FDA MF PT

psdd uniform in h50,…,149j G G G G

psdd~d−g, g=2 G G NG G

psdd~d−g, g=2.5 G G NG G

psdd~d−g, g=3 G G G G

psdd~d−g, g=4 G G G G

TABLE III. Comparison of the predicted behavior of the order
parameter versus the observed one for the different approximations
scolumnsd and different networkssrowsd. If the behavior is correctly
predicted by a given approximation for a certain network, the cor-
responding entry contains the range ofk/kc afterk/kc=1 for which
the approximation works well. A “1” indicates that the agreement
possibly persists for larger values ofk. When “NG” appears in the
corresponding entry in Table II, no comparison is attempted and a
“2” is entered. A “2” is entered when the perturbation theory is
inapplicablesg,5d; see Sec. II B.

psdd TAT FDA MF PT

psdd uniform in h50,…,149j 0.5+ 0.5+ 0.5+ 0.3

psdd~d−g, g=2 0.7+ 0.7+ - -

psdd~d−g, g=2.5 0.5+ 0.5+ - -

psdd~d−g, g=3 0.7+ 0.7+ 0.7+ -

psdd~d−g, g=4 0.7+ 0.7+ 0.7+ -
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IV. NONUNIFORM COUPLING STRENGTH

So far, our examples have assumed that the coupling
strength is uniformsi.e., all the entries of the adjacency ma-
trix A have been taken to be 0 or 1d. However, considering
that the degree of a node is defined asdn;omAnm, our re-
sults carry through to the more general case of nonuniform
coupling. As an example of this situation, we apply our re-
sults to the case treated in Ref.f9g of a distance-dependent
interaction strength. Assume that the nodesn are equidis-
tantly located on a circle and the matrix elements are given
by

Anm= fsun − mud, s31d

whereun−mu represents distance moduloN se.g., u1−Nu=1d,
fs0d=0, and f ù0. Then each row ofA has the same sum
l=omAnm, and f1,1, . . . ,1gT is an eigenvector with eigen-
valuel. By the Gershgorin circle theoremf16g seach eigen-
values of A satisfies, for somen, us−AnnuøomÞnuAnmud, this
is the largest eigenvaluessinceAnn=0d and thus determines
the transition to synchrony as described in the previous sec-
tion. This scaling factor has been proposed before, by anal-
ogy to spin systems, to determine the transition to coherence
in the case of a power-law decaying interaction strength
fsxd=x−g f9g.

V. LINEAR STABILITY APPROACH

Partly as a precursor to the next sectionsSec. VId, in this
section we discuss another approach that has the advantage
of providing information on the dynamics of the system. We
study the linear stability of the incoherent state by a method
similar to that used in Ref.f17g. We assume that in the inco-
herent state the solution to Eq.s3d is given approximately by

un
0 = vnt + fn, s32d

wherefn is a random initial condition. We introduce infini-
tesimal perturbations to this state by

un = un
0 + dn. s33d

In Appendix C, we assume that the perturbations grow as a
function of time asest and obtain the eigenvalue equation

bn =
k

2 o
m=1

N
Anmbm

s− ivm
. s34d

We look for solutionsbn of this equation that are independent
of the frequenciesvn ssimilar to assumption 1d. Under this
assumption, replacingss− ivnd−1 in Eq. s34d with its ex-
pected value, we get

bn =
k

2
K 1

s− iv
Lo

m=1

N

Anmbm, s35d

where

K 1

s− iv
L =E

−`

` gsvddv

s− iv
s36d

and the integration contour is defined in the causal sense

fi.e., for Ressd.0 it is along the real axis, and for Ressd
ø0 it passes above the polev=−isg. We thus obtain the
dispersion relation

1 =
kl

2
E gsvddv

s− iv
, s37d

where, as in Sec. II,l is the largest eigenvalue of the adja-
cency matrixA. Except for the presence of the eigenvaluel,
this is the known dispersion relation for the stability of the
incoherent state of the Kuramoto modelf7g. Under our as-
sumption thatgsvd is even and decreases monotonically
away from 0sSec. IId, an unstablefRessd.0g solution of Eq.
s37d is realf18g snote that, sinceA is symmetric,l is reald. In
order to find the critical coupling, we lets→0+, ss− ivd−1

→ iPs1/vd+pdsvd. Since gsvd is symmetric, kss− ivd−1l
→pgs0d. According to Eq.s35d, the critical coupling is then
given by

kc =
k0

l
, s38d

in agreement with the nonlinear approach.fWe note, how-
ever, that, ifgsvd has multiple maxima, then the first insta-
bility can occur at ImssdÞ0 at a value ofk below that given
by Eq. s38d. This is why we have assumed thatgsvd de-
creases monotonically away fromv=0.g

VI. EFFECT OF FLUCTUATIONS

So far we have neglected the effect of the small fluctua-
tions due to the finite number of connections per node. In our
examples, we have presented networks that do not have
nodes with small degree. However, in many networks there
is a large fraction of the nodes with small degree; in all our
examples in Sec. III there were no nodes with degree less
than 50 fpsdd=0 for d,50g. For example, scale-free net-
works generated using the Barabási-Albert methodf2g some-
times have parameters so thatkdl=6.

In developing our theory, we neglected the time variations
in Eq. s5d and worked thereafter with the average value of
the phase of the locked oscillators. In order to gain insight
into the effect of these fluctuations, we will treat the time
fluctuations as a noise term.

The theory we present is heuristic and may be thought of
as an expansion giving a small lowest-order correction to the
linear stability approach of Sec. V for large but finitekdl. On
the other hand, later in this section, we will apply this theory
to numerical examples where the finite-size effect is not
small, and we will find that the theory is still useful in that it
correctly indicates the trend of the numerical observations.

Like in Sec. V, we consider perturbations to the incoher-
ent state described by Eq.s32d. As an approximation,
we regard the coupling term in Eq.s3d, fnstd
;kom=1

N Anm sinsum−und, as a noise term. In addition to
growing linearly with time, the phase of the oscillatorn will
diffuse under the influence of this noise. We assume that
unstd=fn+vnt+Wnstd, whereWnstd is a random walk such
that kWnstdl=0 andkWmstdWnstdl=2Dnmt, andfn is an initial

RESTREPO, OTT, AND HUNT PHYSICAL REVIEW E71, 036151s2005d

036151-8



condition, which we assume to be randomly drawn from
f0,2pd. sIn this section, byk¯l we mean an expected
value—i.e., an ensemble average, rather than an average over
t or n.d

By using the linear approach of Sec. V, the diffusion co-
efficientsDnm will give us information on how the critical
coupling strength differs from Eq.s38d. The diffusion coef-
ficientsDnm are given by

Dnm=E
0

`

kfnst + t/2dfmst − t/2dldt

=E
0

`

o
j ,k

Anjksinsu j
+ − un

+dAmksinsuk
− − um

− dldt, s39d

where 1 s2d indicates evaluation att+t /2 st−t /2d. Con-
sider first the casenÞm. The contribution of the terms with
h j ,njÞ hk,mj vanishes after the integration, and we obtain,
using the symmetry ofA,

Dnm=
k2

2
Anm

2 ksinsum
+ − un

+dsinsun
− − um

− dl. s40d

We now introduce our aforementioned assumption that
unstd−vnt is a random walk plus a random initial condition,
unstd=fn+vnt+Wnstd. Using the identity sinsxdsinsyd
=fcossx−yd−cossx+ydg /2 and averaging over the initial
phasesfn we get

Dnm= −
k2

2
E

0

`

Anm
2 kcossDWm − DWn + vmntdldt, s41d

where DWn;Wn
+−Wn

− and vmn;vm−vn. We now use the
fact that for a Gaussian random variablex with variances2

we have kcossxdl=Rekeixl=Reseikxl−s2/2d. In our case,kxl
=vmnt ands2=ksDWm−DWnd2l=2sDn+Dm−2Dnmdt, where
Dn;Dnn. After using this to compute the expected value and
performing the integration, we obtain, fornÞm,

Dnm= −
k2

2
Anm

2 Dn + Dm − 2Dnm

sDn + Dm − 2Dnmd2 + vmn
2 . s42d

If n=m, the calculation proceeds along the same lines, but
the nonvanishing terms in Eq.s39d are those for whichk= j .
Together with Eq.s42d, this results in

Dn = − o
mÞn

Dnm. s43d

In principle, Eqs.s42d ands43d can be solved forDn as a
function ofk if the frequencies and the adjacency matrix are
known.

In order to relate the diffusion coefficients to the critical
coupling constant, we resort to the linear analysis of Sec. V.
When noise is introduced in the linear approach, Eq.s34d for
the growth rates generalizes, as shown at the end of Appen-
dix C, to

bn =
k

2 o
m=1

N
Anmbm

s+ Dm − ivm
. s44d

Since Ressd.0 corresponds to instability of the incoherent
state, it is expected that the effect of the noise as reflected by
positiveDm is to shift the transition point so that the critical
coupling constant is larger.

In order to solve for the growth rates for a given value of
k, we rewrite Eq.s44d as

b =
k

2
DssdAb, s45d

whereb is the vector with componentshbnj, Dssd is the di-
agonal matrixDssd;diaghss+Dm− ivmd−1j, andA is the ad-
jacency matrix. The characteristic equation is

detS k

2
DssdA − ID = 0, s46d

whereI is theN3N identity matrix. This implies

detS k

2
A − Dssd−1D = 0 s47d

or

detS k

2
A − diaghDm − ivmj − sID = 0; s48d

that is, the growth rates is an eigenvalue of the matrix
Mskd;sk/2dA−diaghDm− ivmj.

For a given value ofk, Eqs.s42d and s43d can be solved
iteratively. We have found that, by starting from an initial
guess for the values ofDnm and repeatedly evaluating the
right-hand side of Eq.s42d in order to get the next approxi-
mation to the values ofDnm, convergence is achieved to a
solution that is independent of the initial guess if the condi-
tion Dn.0 is imposed. When the values ofDnm have been
found for a given value ofk, the relevant growth rate is
calculated as the largest real part of the eigenvalues of the
matrix Mskd defined above.

As an example, we consider three networks with the de-
gree of all nodesd given byd=100 in the first,d=50 in the
second, andd=20 in the third one. In order to solve numeri-
cally the coupled equations, we work with a small number of
nodes,N=500.

In Fig. 5 we show the results for a realization of the three
networks. The order parameterr2 obtained from numerical
solution of Eq.s3d ssolid linesd and the growth rate obtained
from Eqs.s42d, s43d, ands48d sdashed linesd are plotted as a
function of k/kc. The arrows indicate which network corre-
sponds to the given curve. We observe that, as the connec-
tions per node are decreased, the transition point shifts to
larger values of the coupling constant. This trend is repro-
duced by the growth rate curves, which are displaced to the
right for smaller values of the degree.

We emphasize that the theory we described above is ap-
plicable to networks for whichkdl is large but finite. How-
ever, in Fig. 5 we applied the theory to cases in whichkdl is
not very large. Although we do not expect the theory to be
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valid in this case, we find that it correctly describes the trend
present in the numerical observations—i.e., a shifting of the
transition to coherence to larger values of the critical cou-
pling as nodes of small degree become important.

VII. DISCUSSION

A transition to coherence in large networks of coupled
oscillators should be expected at a critical value of the cou-
pling strength which is determined by the largest eigenvalue
of the adjacency matrix of the network and its associated
eigenvector. In the all-to-all case, the largest eigenvalue is
N−1<N and thus the Kuramoto resultkc=k0/N is recov-
ered. The largest eigenvalue of the adjacency matrix of a
network is of both theoretical and practical importance, and
thus its properties have been studied in some detailf13,14g.
We remark that our analysis allows the case of nonuniform
interaction strengths by introducing continuous values in the
entries of the adjacency matrixA.

We developed different approximations in order to de-
scribe the transition to coherence in terms of an appropriately
defined order parameter which generalizes the parameter
used in the classical Kuramoto modelf11g. See Table I and
Fig. 1 for a summary of the approximations and assumptions.
The TAT provided the most accurate description of the be-
havior of the order parameter and assumes knowledge of the
adjacency matrixAnm and the individual frequenciesvn. The
FDA also provides a good approximation but does not re-
quire knowledge of the individual frequencies. These ap-
proximations yield equations that have to be solved numeri-
cally. The time required to numerically solve these equations
is, however, much less than that required to numerically in-
tegrate the original differential equations. The PT yields ana-
lytic expressions for the order parameter when close to the
transition in terms of the largest eigenvalue of the adjacency
matrix and its associated eigenvector, but is limited to net-
works with a relatively homogeneous degree distribution.
The MF theoryf11g is obtained by introducing the additional
assumption that the components of the eigenvector associ-
ated with the largest eigenvalue are proportional to the de-
gree of the corresponding node. This does not necessarily
have to be the case when close to the transition, and because

of this extra assumption, we expect the other approximations
to more generally accurately describe the transition than the
mean-field theory. Figures 4sad and 4sbd show that for the
particular case of scale free networks withN=2000, g=2,
andg=2.5 this is the case. In general, we observed that for
low values of the exponentg ssee Fig. 4d the mean-field
approximation and the perturbative approximation yield dif-
ferent critical coupling strengths. The mean-field theory has
the advantage that analytic expressions can be computed
without the need of solving the eigenvalue problem for the
adjacency matrix and could be useful when only limited in-
formation is available about the network. However, in gen-
eral, our results suggest that one of the other approximations
mentioned above should be used.

We remark that even though the time-averaged theory, the
frequency distribution approximation and the perturbation
theory require in principle knowledge of the full matrixA,
knowledge of the degree distribution may be enough in some
cases. As in our examples, an adjacency matrixA can be
generated randomly with a given degree distribution. Our
results indicate that even this limited reconstruction of the
original network might improve the mean-field resultsssee
Sec. IIId.

Our assumptions restrict the class of networks for which
the results apply. We assumed that sufficiently near the onset
of synchronization each node is coupled to manylockedos-
cillators. In practice this implies that most nodes should have
a high degree. This is an important restriction for our theory.
In Sec. III we used networks with a minimum degree of 50.
As mentioned before, we observed that in networks with
small average degreesabout 20d, the observed critical cou-
pling was larger than the one predicted by our theory. By
including the previously neglected time fluctuations, we de-
veloped a heuristic theory in Sec. VI which correctly predicts
the trend observed in the numerical simulations. As the
nodes with small degree become important, both our theory
and the numerical observations indicate that the transition to
synchrony occurs at larger values of the coupling strength.

In conclusion, we have developed a theory predicting the
critical coupling for the transition from incoherence to coher-
ence in large networks of coupled oscillators. We found that
for a large class of networks, a transition to coherence should
be expected at a critical value of the coupling strength which
is determined by the largest eigenvalue of the adjacency ma-
trix of the network. We developed and compared various
approximations to the order parameter past the transition and
studied the effect of the fluctuations caused by finite-size
effects.

ACKNOWLEDGMENTS

This work was sponsored by ONRsPhysicsd and by NSF
sContract Nos. PHYS 0098632 and DMS 0104087d.

APPENDIX A

In this appendix we show that, using assumption 1, we
can neglect the sum over the unlocked oscillators in Eq.s7d,

FIG. 5. Order parameterr2 obtained from numerical solution of
Eq. s3d ssolid linesd and growth rate Ressd sdashed linesd for a
network with the degree of all nodesd=20, d=50, andd=100 as a
function ofk/kc. The arrows indicate which network corresponds to
the given curve.
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o
uvmu.krm

N

Anmkeiumlt. sA1d

We will follow to some extent Chap. 12 of Ref.f4g. The time
average is given by

keiumlt =E
−p

p

eiupmsuddu, sA2d

wherepmsuddu is, given the connections of nodem and its
natural frequencyvm, the probability that its phaseum lies in

the intervalsu ,u+dud. It satisfiespmsud~1/uu̇u. Including the
normalization we have, neglecting the termhm in Eq. s5d,

pmsud =
Îvm

2 − k2rm
2

2puvm − krm sinsu − cmdu
. sA3d

The sum in Eq.sA1d can be written as

o
uvmu.krm

N

Anmkeiumlt = o
uvmu.krm

N

Anm
Îvm

2 − krm
2 sgnsvmd

1

2p

3E
−p

p eiufvm + krm sinsu − cmdgdu

vm
2 − k2rm

2 sin2su − cmd
.

sA4d

The integral of the first term vanishes since the 2p-periodic
integrand changes sign under the transformationu→u+p.
We are left with

o
uvmu.krm

N

Anmkeiumlt = o
uvmu.krm

N

Anm
Îvm

2 − krm
2 krm sgnsvmd

1

2p

3E
−p

p eiu sinsu − cmddu

vm
2 − k2rm

2 sin2su − cmd
. sA5d

In this sum, sgnsvmd is independent ofvm
2 and, using as-

sumption 1, it is independent ofrn andcn as well. If there are
many terms in the sum, it will be then of orderÎdn due to the
symmetry of the frequency distribution and thus will be
small compared with the sum over the locked oscillators,
which is of orderdn fsee Eq.s11dg. Note that we did not use
here the full strength of assumption 1, since we only required
the sign ofvm to be independent ofrm andcm.

APPENDIX B

Here we show that for sufficiently largeN and a power-
law degree distribution of the degrees,psdd~d−g, the mean-
field approximationkd2l / kdl underestimatesl for g.3. We
base our argument on the results of Ref.f14g: if for a random
graphÎdmax. kd2l / kdlsln Nd2, then l,Îdmax almost surely
asN→`, wheredmax is the largest expected degree.

In the case under considerationsg.3d, kd2l / kdl con-
verges to the finite valuekd2l` / kdl` fk¯l` is defined by Eq.
s27dg, while dmax diverges asN1/sg−1d f1g. Thus, for large
enough N, the conditions forl,Îdmax will be satisfied,
sinceN1/sg−1d / sln Nd4→` asN→`. While l,Îdmax→` as

N→`, the mean-field approximationkd2l / kdl remains finite.
We can estimate an upper bound on how largeN needs to

be for this discrepancy to be observed. For largeN,
kd2l / kdl,d0, whered0 is the minimum degreefpsdd=0 for
d,d0g. The maximum degree is approximately given by
dmax,d0N

1/sg−1d f1g. Inserting these estimates into the con-
dition Îdmax,kd2l / kdlsln Nd2 we obtain

N , d0
g−1sln Nd4sg−1d. sB1d

As an example, forg=4 and d0=20, the upper bound is
approximatelyN,1025, a far larger system than we can
simulate.

APPENDIX C

In this appendix we study the linear stability of the inco-
herent state by a method similar to that presented in Ref.
f17g. As described in Sec. V, we assume that in the incoher-
ent state the solution to Eq.s3d is given approximately by

un
0std < vnt + fn, sC1d

wherefn is an initial condition. We introduce infinitesimal
perturbations to this state by

un = un
0 + dn. sC2d

Linearizing Eq.s3d, we get

ḋn = ko
m=1

N

Anm cossum
0 − un

0ddm + mn − nndn, sC3d

where mn=kom=1
N Anm sinsum

0−un
0d and nn=kom=1

N Anm cossum
0

−un
0d. As before, we assume that the number of links to node

n is so large that, due to the incoherence, we may neglect the
termsmn and nn. With this simplification, Eq.sC3d can be
recast as an integral equation as follows:

dnstd = kE
−`

t

dt8o
m=1

N

Anmdmst8dcosfum
0st8d − un

0st8dg

=
k

2
E

−`

t

dt8e−iun
0st8dSo

m=1

N

Anmeium
0 st8ddmst8d

+ o
m=1

N

Anmeif2un
0st8d−um

0 st8dgdmst8dD . sC4d

Multiplying by Ajneiun
0std, summing overn, and defining

Bnstd;om=1
N Anmdmstdeium

0 std, we get

Bjstd =
k

2
E

−`

t

dt8o
n=1

N

Ajneifun
0std−un

0st8dgfBnst8d + e2iun
0st8dBn

*st8dg.

sC5d

We assume that the quantitiesBn grow exponentially with
time asBnstd=bne

st, where Ressd.0. Inserting this ansatz
into Eq. sC5d and performing the integration, we get
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bj =
k

2o
n=1

N
Ajnbn

s− ivn
+

k

2
e2 Imssdto

n=1

N
Ajnbn

*e2iun
0std

s* + ivn
. sC6d

The second sum is very small due to the incoherence of the
un

0’s. So, changing indices, we are left with the eigenvalue
equation

bn =
k

2 o
m=1

N
Anmbm

s− ivm
, sC7d

as claimed in Sec. V.

If, as proposed in Sec. VI, there are fluctuations in the
values ofun

0std such thatun
0std=vnt+fn+Wnstd, whereWnstd

is a random walk such thatkWnstdl=0 and kWnstd2l=2Dnt,
we take the expected value of Eq.sC5d. We use the fact that
for a Gaussian random variablex with variances2 we have
keixl=eikxl−s2/2. In this case,x=vmst8− td ands2=2Dmst− t8d.
We obtain, after performing the integration,

bn =
k

2 o
m=1

N
Amnbm

s+ Dm − ivm
. sC8d
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