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An n-person game consists of
l.nsets Sij(i=1,...,n).
2. n real-valued functions

Pi:Six xSy —R (i=1,...,n)

The set S; is called Player i’s strategy space. The
function P; is called Player i’s payoff function.

This formulation is general enough to model
pretty much any real-world strategic interaction: we

take S; to be the set of actions available to
the character called Player i, we imagine
that each player must choose some ac-
tion, we imagine that those actions have
some joint consequence and that P;
measures Player i’s assessment of the
value of that consequence. Given such a
model, one can ask questions that tend to
fall into two broad categories: First, what do we
think the players will do (assuming, ordinarily, that
they are sublimely selfish and sublimely rational)?
Second, what do we think the players ought to do
(according to some standard of fairness or justice
or morality)? Questions of the first sort call for so-
lution concepts; questions of the second sort call
for normative criteria.

The most thoroughly studied solution concept
is Nash equilibrium, an outcome that results when
players maximize their own payoffs, taking other
players’ behavior as given. More precisely, an
n-tuple of strategies (s1,...,Sy) is a Nash equilib-
rium if for every i and for every s € §;,

Pi(s1,...,8i-1, i, Si+1 -+ -Sn)

ZPi(sla---ySiflns,SHl’---;Sn)-
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NOTICES OF THE AMS

Nash equilibrium either is or is not a good predic-
tor of actual behavior depending on exactly what
sort of behavior is being modeled.

Turning now to normative criteria (criteria
intended to judge the desirability of outcomes),
the least controversial is the criterion of Pareto-
Optimality. Given two n-tuples of strategies
s=(s1,...,8n) and s’ =(s1,...,Sn), we say that s
(weakly) Pareto dominates s’ if Pi(s) = Pi(s’) for all
i; it is easy to verify that Pareto dominance is a
partial order, and we say that s is Pareto optimal
if it is maximal for this order.

In general, we have no guarantees of existence
or uniqueness for Nash equilibria or for Pareto op-
tima. When they do exist, Nash equilibria and Pareto
optima might or might not coincide. The single
most famous example in the history of game
theory is the Prisoner’s Dilemma, one form of
which can be represented by the following matrix:

Player Two
C D
(1) C | 33 (0,5)
Player One
D (5,0) (1,1)

Here the rows are indexed by Player 1’s strategy set
{C, D}, the columns are indexed by Player 2’s strat-
egy set {C,D}, and the (i,j) entry is
(P1(i, j), P2(i, j)). The associated story, which the
reader can see enacted every Tuesday night on
N.Y.P.D. Blue, goes as follows: Two prisoners have
jointly committed a crime. They are separated and
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invited to testify against each other. Each receives
the same menu of options: You're facing a ten-
year sentence for this crime. You can either coop-
erate with your buddy (strategy C) by refusing to
testify against him or defect from your criminal
partnership (strategy D) by testifying. If you both
cooperate (i.e., if you both stay silent), we’ll have
to convict you of a lesser crime, which will take
three years off each of your sentences. But if you
defect while your buddy cooperates, we’ll take five
years off your sentence (while he serves a full
term). And if you both defect, we’ll take one year
off each of your sentences.

As the reader can (and should) verify, the unique
Nash equilibrium (D,D) is also the unique out-
come that is not Pareto optimal. Rational selfish
prisoners always choose the one strategy pair that
both can agree is undesirable—in the sense that
they would both prefer (C, C).!

The simplest game without a Nash equilibrium
is “odds and evens”, represented by the game ma-
trix

Player Two
(0] E
(2) o | 1,-1 (-1,1)
Player One
E (-1,1) (1,-1)

Suppose there is a Nash equilibrium in which
Player 1 plays Even. Then Player 2 plays Odd, so
Player 1 plays Odd—contradiction; and similarly
with Odd and Even reversed. Thus there is no Nash
equilibrium, and without an alternative solution
concept we are unable to predict anything other
than paralysis on the part of both players. But of
course anyone who has ever played this game
knows what actually happens: players randomize
their strategies, and each wins half the time.

One might be tempted to conclude that Nash
equilibrium is the wrong solution concept for this
game. A better conclusion is that the mathemati-
cal structure (2) is a poor model for the real-world
game of odds and evens. A better model would
allow for mixed (i.e. randomized) strategies. So we
replace the strategy space S; = {Odd, Even} with
the unit interval S =[0,1], using p €[0,1] to
model the strategy “play Odd with probability p

Im fact, things are even worse than that. Each player has
D as a dominant strategy, which means that D is the op-
timal play regardless of whether the other player chooses
C or D. This is a far more powerful reason to anticipate
an outcome of (D, D) than the mere fact that (D,D) is a
Nash equilibrium.
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and Even with probability 1 — p”. It is then natural
to define new payoff functions

Pi(p,q) = pqPi(0Odd, Odd)
+ p(1 — g)P;(0Odd, Even)
+ (1 — p)gP;(Even, Odd)
+ (1 — p)(1 — g)P;(Even, Even).

More generally, given any game G with finite
strategy sets S;, we define a new game G* as fol-
lows: Let S} be the set of all probability distribu-
tions on S;, and define

Pf:Six---x8,—-R
by
(3) Pf(st,..

=J Pi(s1,...,8n)dsi(s1)...ds}(sn).
S1x---XS,

S Sh)

(The restriction to games with finite strategy sets
is so that we do not have to worry about conver-
gence issues in (3).) One proves via standard fixed
point theorems that the game G* has at least one
Nash equilibrium, the key point being that each Sj,
unlike the original S;, can be identified with a con-
vex subset of a Euclidean space on which the P;f
are continuous.

Thus in the case of Odds and Evens, G* is a
better model of reality than G is. I want to argue
that the same thing is true more generally: If G
is any game with finite strategy spaces intended
to model some real-world interaction, then G* is
always a better model of that same interaction.
Here’s why: In the real world, players must com-
municate their strategies either to each other or
to a referee or to an interrogating detective, who
then computes the payoffs. And as a practical
matter, it is quite impossible for a referee or any-
one else to prohibit the use of mixed strategies.
Player 1 announces “I defect!” How can the referee
know whether Player 1 arrived at this strategy
through a legal deterministic process or an illegal
random one?

Because there is no way to prohibit mixed
strategies in practice, we might as well allow
them in the model. More generally, whenever
the real world imposes limits on referees’ ability
to observe and/or calculate, we should improve
the model by adjusting the strategy spaces and
payoff functions accordingly.

Quantum game theory begins with the obser-
vation that the technology of the (near?) future is
likely to dictate that much communication will
occur through quantum channels. For example,
players might communicate their strategies to a ref-
eree via email composed on quantum computers.
Such communication creates the prospect of new
strategies whose use the referee cannot detect and
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therefore cannot prohibit: Instead of cooperating
or defecting (or randomizing between the two), a
player might send a message that is some quantum
superposition of the messages “I cooperate” and
“I defect”. To read the message, the referee must
destroy the superposition, along with any evidence
that the superposition ever existed, which makes
superpositions effectively impossible to prohibit.
What cannot be prohibited must be
allowed; therefore, if we want to model accurately
the behavior of games in which players have access
to “quantum moves”, we should expand our
strategy spaces accordingly.

One might guess that a quantum move is just
one more way to implement a mixed strategy, so
that there is nothing new here for game theory. The
physicist David Meyer [M] was the first to publish
a counterexample to that guess. In Meyer’s exam-
ple a single coin is passed back and forth between
two blindfolded players. The coin starts out heads
up (call this state H). Player One has the option ei-
ther to flip the coin or to return it unflipped. Then
Player Two (still blindfolded so he doesn’t know
Player One’s first move) has the same option: Flip
or don't flip. And finally, Player One gets another
turn. If the coin ends up in its initial state H, Player
One wins. If it ends up in the opposite state T (tails
up), Player Two wins.

Here Player One has four strategies (“flip, flip”,
“flip, don’t flip”, etc.). Player Two has two strate-
gies (“flip” and “don’t flip”). In any mixed strategy
Nash equilibrium, Player Two flips with probabil-
ity .5, Player One flips an even number of times with
probability .5, and each wins half the games.

Now suppose we treat the coin as a quantum
object. Its state is an equivalence class of nonzero
vectors in the complex vector space spanned by H
(“heads”) and T (“tails”); two vectors are equivalent
if one is a scalar multiple of the other. A physical
operation on the coin corresponds to a unitary
operation on the state space; in particular, we can
set things up so the operation “not flip” is repre-
sented by the identity transformation and the
operation “flip” is represented (with respect to
the basis {H, T}) by the unitary matrix

(0 1),

Now suppose that Player One (but not Player Two)
has access to a full array of quantum moves; that
is, instead of simply flipping or not flipping, he can
apply any unitary matrix he chooses. In particular,
if he is clever, Player One will choose the matrix

“1-i 2
_ 2 2
U=\ 12 ﬂ)

2 2
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on his first turn and the matrix U ! on his second.
Here’s why that’s clever: If Player Two fails to flip,
then the net result of the three operations is

(4) UloloU=TI;

whereas if Player Two flips, the net result is

*\/§+1‘\/§ 0
2
0 \/ii\/?) )

(5) U 'oFoU-= (
2

This is great for Player One, because both (4)

and (5) map the state represented by H into itself

(remember that any scalar multiple of H is equiv-

alent to H). Thus whether or not Player Two flips

the coin, Player One is guaranteed a win.

Meyer’s example shows that quantum moves
can be more powerful than mere mixed strategies,
at least in a context where quantum moves are
available to only one player. But of course it is
more natural to ask what happens if both players
are given access to a full set of quantum moves.

The first example of a full-fledged quantum
game is due to Jens Eisert, Martin Wilkens, and
Maciej Lewenstein [EWL]. Let G be a two-by-two
game, that is, a game with two players, each of
whom has a two-point strategy space, say {C,D}.
(The reader will have no difficulty extending this
construction to n-by-m games.) Each player is given
a coin that he returns to the referee either in its
original state (to indicate a play of C) or flipped (to
indicate a play of D). A player with access to quan-
tum moves can act on his coin with any unitary
matrix and therefore return it in a state

ocH+ BT

where « and f are arbitrary complex numbers,
not both zero. (Here and in everything that follows
I will freely abuse notation by writing oH + ST
both for an element of the vector space C2 and for
the state represented by that vector.) When the
referee observes the coin, it will appear to be un-
flipped or flipped with probabilities proportional
to | |2 and | B12. As long as the coins can be treated
as independent quantum entities, then indeed all
we have is a fancy way to implement a mixed strat-
egy—in other words, nothing new for game theory.

Meyer’s example was more interesting because
both players acted on a single coin. Eisert, Wilkens,
and Lewenstein (referred to henceforth as EWL)
make their example more interesting by assuming
the players’ coins are entangled so that there
is a single state space for the pair of coins.
Explicitly, let C2 be the two-dimensonal complex
vector space spanned by symbols H and T; then the
state space for an entangled pair is

(6) S=(C?®C% - {0})/ ~
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where ~ is the equivalence relation that identifies
a vector with all its nonzero scalar multiples. As
before, I will write, for example, H® H both for
a vector in the space C2 ® C2 and for the state it
represents. A physical operation on the first coin
is represented by a two-by-two unitary matrix U
acting on the state space S as U ® 1. A physical
operation on the second coin is represented by a
two-by-two unitary matrix V acting on the state
space as 1 ® VT.

Now EWL conjure the following scenario: A pair
of coins starts in the state?

HeoH)+(T®T).

As before, each player is handed one of the
coins and invited to indicate a play of C by
applying the identity matrix (“leaving the coin
untouched”) or to indicate a play of D by applying

the matrix
0 1
(4 o)

(“flipping the coin”). As long as the players restrict
themselves to the two-point strategy space {C, D},
the pair of coins lands in one of the four states

(7a) CC=HeH)+(TeT),

(7b) CD=H®T)-i(TeH),
(70) DC=H@&T)+i(T ® H),
(7d) DD=HoH)-(T®T).

The referee now performs an observation to
determine which of the states (7a-d) the coins
occupy and makes appropriate payoffs.

If players cannot be trusted to restrict them-
selves to the two strategies C and D, then the
mathematical modeler should replace the game G
with a new game G that expands the strategy
spaces accordingly. Player One’s strategy space
should consist of the operations that can be
effected on the state space S (defined in (6)) via the
action of unitary matrices on the first variable. Let
U be the group of two-by-two unitary matrices. The
matrices that fix S are the scalar matrices, which
form a subgroup S! c Up. Therefore, we define
Player One’s strategy space to be the group U»/S!.

Let SU» C Uy be the subgroup of matrices with
determinant one; then inclusion induces an iso-
morphism

2 Everything to follow depends heavily on the assumption
that the coins start in the “maximally entangled” state
(He® H) + (T ® T). If they were to start in a state of the form
s ® t, then the construction that follows would only re-
construct the classical mixed strategy game G*. [EWL]
studies families of quantum games parameterized by the
choice of initial state.

APRIL 2004

SUy/{+1} — Uy/S!,

so we can just as well define Player One’s strategy
space to be SU>/{+1}. Moreover, the group SU> can
be identified with the group S3 of unit quaternions
via the map

SU, — §3

A B ,
( C D) — A+Bj.
The same analysis applies to Player Two. Thus we
define the strategy spaces

®) SP =59 =8%/{x1} =RP,

Using language loosely, I will often identify a
strategy with either of the two quaternions that
represent it.

Next we motivate definitions for the payoff
functions. Start with the game G:

Player Two
C D
9 C | X1,Y (X2, Y2)
Player One
D | (X3,Y3) (X4, Yq)

Suppose Player One plays the quaternion p
and Player Two plays the quaternion q. Write the
product as

(10) pq=m1(pq) + T2(PQ)i + T3(PA)j + TT4(PQ)k

where the 114 are real numbers unique up to a
sign, because p and q are defined up to a sign. Using
the notation of (7a-d), a chase through the iso-
morphisms reveals that the coin is transformed
from the initial state CC to a final state

111 (pq)CC + 12(pq)CD + 173 (pq)DC + T74(Pq)DD.

When the referee observes the coins’ joint state, he
observes each of the four outcomes with proba-
bilities
Prob (CC) = 1 (pq)®  Prob (CD) = m2(pg)*
Prob (DC) = 1r3(pg)®>  Prob (DD) = m4(pq)°.

Thus we should define the payoff functions by

'S

(11) P2(p,q) = Z (P> Xi,

4
P (p,q) = Z
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Equations (8) and (11) define the quantum game
G2 associated to the game G of equation (9). The
quantum game G< is not at all the same as the
mixed strategy game G*. Using mixed strategies,
the players can jointly effect some but not all
probability distributions over the four possible
outcomes; there is, for example, no pair of
mixed strategies that can effect the probability
distribution

Prob (CC)=1/2 Prob (CD)=0
Prob (DC)=0 Prob (DD)=1/2.

By contrast, in the game G2 any probability dis-
tribution at all is realizable; in fact, more is true:
taking Player One’s strategy as given, Player Two
can choose a strategy that effects any desired prob-
ability distribution. (Proof: Let Player One choose
strategy p, and let r be an arbitrary unit quaternion;
then Player Two can play p~!r.)

Thus Nash equilibria must be a great rarity in
quantum games; in fact, Nash equilibria exist only
when there exists «x € {1, 2, 3,4} that maximizes
both X4 and Yy; in other words, Nash equilibria
exist only when there is no conflict between the
players.

But nobody would ever actually play the game
G2 anyway. Just as there is nothing to stop our
players from adopting quantum strategies, there
is also nothing to stop them from adopting mixed
quantum strategies. So we really want to study the
game

(12) G' = (GY*.

So far, we have defined the game G* only when
the game G has finite strategy spaces, which is cer-
tainly not the case for G2. So to turn (12) into a
definition, we must first give a more general defi-
nition of G*.

Definition. A measurable game consists of

1. n measure spaces (S;,0;) (i=1,...,n). (That
is, Sj is a set and O; is a o-algebra on S;.)
2. n bounded measurable functions

Pi:S1x---xS —-R i=1,...,n).

Definition. Let G be a measurable game. Then a
mixed strategy for Player i consists of a probability
measure on the space (S;, 9;).

Definition. Let G be a measurable game. Then we
define a game G* as follows: Let S; be the set of all
probability measures on S; and define

Pf:Syx---x8, =R

by
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Pi(st,...,80)

i
=J Pi(s1,...,8n
S1X--XSy

(We identify the original strategy space S; with a
subset of S; by identifying the point s with the prob-
ability measure concentrated on s.) Now if we equip
RP3 with its Borel o-algebra, then G acquires, quite
naturally, the structure of ameasurable game. Thus
equation (12) becomes a meaningful definition.

The payoff functions in G' should be called P;
or PI-Q+, but I will just call them P;.

In the game G' there is always at least one Nash
equilibrium, namely (u, u) where u is the uniform
probability distribution on RP3. There are usually
more interesting equilibria as well. For example, let
us return to the Prisoner’s Dilemma (1). It is easy
to verify that the following pair of mixed strategies
constitutes a Nash equilibrium:

)dsi(s1)...dsy(sn).

u: Player 1 plays the quaternions 1 and k, each
with probability 1/2.

(13)

v: Player 2 plays the quaternions i and j, each
with probability 1/2.

Indeed, for any unit quaternion g = a + bi + cj + dk,
we have

Pr(u,q) = 2a’ + gbZ + gcz + 2d2,

so that q is an optimal response to u if and only if
a=d=0.Thusq=1i,q=jare optimal responses;
whence so is the strategy v. Similarly with the play-
ers reversed.

In the Nash equilibrium (13), each player’s pay-
off is 5/2, so (13) Pareto dominates the unique
classical equilibrium (D, D) (where the payoffs are
both 1). Nevertheless, (13) is still Pareto subopti-
mal, being dominated by (C, C).

More generally, we would like to classify the
Nash equilibria in G' where G is an arbitrary two-
by-two game. The results that follow are from the
forthcoming article [L].

Given a strategy u, we define the optimal response
sets

O1(u)=1{pe RP3 |P1(p, 1) is maximized},
O2(u)=1{q € RP3 |P>(u, q) is maximized}.

Thus (u, v) is a Nash equilibrium if and only if v
is supported on O2(u) and u is supported on O1(v).
This leads us to ask: Which subsets of RP3 can occur
as Oj(u)? The answer is:

Theorem. For any u, each O;(u) is a projective
hyperplane in RP3.
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Proof. We have

(14) Pi(p, 1) = jpl(p, Qdu(@),

which, for fixed u, is a quadratic form in the coef-
ficients Ttu(p) and hence maximized (over S3) on
the intersection of S3 with the linear subspace of
R* corresponding to the maximum eigenvalue of
that form. O1(u) is the image in RP3 of that linear
subspace. Similarly, of course, for O>.

The theorem (or more precisely, the proof of the
theorem) has some immediate corollaries of con-
siderable interest.

Corollary. Let G be the arbitrary two-by-two game
of expression (9). Then in any mixed strategy quan-
tum Nash equilibrium, Player One earns a payoff
of at least (X1 + X» + X3 + X4)/4, and Player Two
earns a payoff of at least (Y1 + Yo + Y3 + Yy)/4.

Proof. The quadratic form (14) has trace
X1+ X2+ X3+ X4 and hence a maximum eigen-
value of at least one fourth that amount. Similarly,
of course, for Player Two.

Corollary. Suppose the game (9) is zero-sum, mean-
ing that Xy + Yx =0 for all x. Then in any mixed
strategy quantum equilibrium, Player One earns
exactly (X1 + X2 + X3 + X4)/4 and Player Two earns
exactly (Y1 + Y2 + Y3+ Yys)/4.

To describe Nash equilibria in general, we need
to describe probability measures on RP3 in general.
Of course, there are a huge number of such mea-
sures, but fortunately they fall quite naturally into
large equivalence classes. In particular, we say that
two mixed quantum strategies y and ' are equiv-
alent if for all mixed quantum strategies v and for
all x € {1, 2,3,4}, we have

[ . Teatdumiavia
RP’ xRP*

[0 TP (p)via)

RP®xRP

where the 114 are the coordinate functions on the
quaternions as in (10). That is, two strategies are
equivalent if one can be substituted for the other
without changing either player’s payoffs in any
game.

It turns out that equivalence classes of strate-
gies are quite large. I proved in [L] that every mixed
quantum strategy is equivalent to a strategy sup-
ported on (at most) four mutually orthogonal points
(that is, four points that are the images of mutu-
ally orthogonal points in S3). Thus an equivalence
class of measures can be identified with a “weighted
frame” in R4, that is, a set of mutually orthogonal
vectors, each assigned a positive weight in such a
way that the weights add up to one.
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That cuts the set of (equivalence classes of)
potential Nash equilibria way down to size. But
we can cut it down much further. Call a pair of
weighted frames (u,v) realizable if it is a Nash
equilibrium for some quantum game. A reason-
able first guess is that every pair (u, v) is realizable.
But the truth is quite the opposite: the main
theorem of [L] establishes highly restrictive (and
easily checkable) necessary conditions for realiz-
ability. Modulo some minor technical provisos,
the theorem implies that for each u there are
only a small finite number of v such that (u, v) is
realizable. In many cases, that small finite number
is zero; in the remaining cases, the relevant strate-
gies v are easy to describe. Given a particular game,
this makes the search for Nash equilibria a tractable
problem.

One can view quantum game theory as an exercise
in pure mathematics: Given a game G, we create a
new game G' and we study its properties. But game
theory has historically been interesting primarily
for its applications. As with quantum computing,
the applications of quantum game theory lie in the
future.? The immediate task is to prove theorems
that we expect will be useful a generation from now.
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