Why the Indian subcontinent holds the key to global tiger recovery

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Samrat Mondol K. Ullas Karanth Uma Ramakrishnan

NCBS-TIFR

Micro-evolutionary processes

Current distribution

Assessing tiger genetic variation in the Indian subcontinent

QuickTime™ and a decompressor are needed to see this picture.

Sampling: non-invasive scats from 73 tigers 28 protected areas including varied habitats

Mondol et al., 2009

Assessing genetic variation: mitochondrial DNA

Ascertain for most variation Total sequence length: 1263 bp for 4 regions

Mondol et al., PLoS gen 2009

Assessing genetic variation: nuclear DNA

STRs: High mutation rate, very polymorphic, independently evolving, codominant loci

Nuclear DNA from scat: degraded and low concentration

30 microsatellites from domestic cats, other tiger subspecies selected based on high heterozygosity and low allelic size range (<200 bp)

Fecal DNA microsats: possible genotyping and amplification error

All loci tested for amplification success with fecal DNA; 10 most consistent loci standardized; 5 of these loci used in Luo et al. for other subspecies

Each locus genotyped 4 independent times for each sample.

Final data includes samples with 75% or higher consistency

Genetic variation: mitochondrial DNA

Resampling simulations reveal that Indian diversity is not higher due to sample size Mondol et al., PLoS gen 2009

Genetic variation: nuclear microsatellites

Subspecies	Observed heterozygosity (S.D.)	Number of alleles (S.D.)	Allelic size range (S.D.)
Bengal (P. tigris tigris)	0.70 (0.16)	12.4 (3.6)	32 (7.7)
All other subspecies (Indo-Chinese,	0.53 (0.07)	7.2 (1.6)	16 (6.1)
Malayan, Sumatran and Siberian)			
All South-East Asian subspecies	0.56 (0.14)	7.2 (1.6)	16 (6.1)
(Indo-Chinese, Malayan and Sumatran)			
Indo-Chinese (P. tigris corbetti)	0.57 (0.27)	6.2 (1.5)	14.8 (4.8)
Malayan (P. tigris jacksoni) and Sumatran (P. tigris sumatrae)	0.55 (0.05)	5.8 (1.5)	13.2 (6.1)

India holds 63% of global genetic variation

Why are Indian tigers genetically more diverse?

2) High Population differentiation

3) High Ancestral effective size

Indian origin for tigers?

1) Paleontological data suggest South China origin

3) Population genetic models: LAMARC

 $\begin{array}{c} \text{Mt DNA: MLE (m21) = 185 (44, 486); MLE (m12) = 0.19 (0.01, 59) \\ \text{Nuclear DNA: MLE (m21) = 36 (31, 40); MLE (m12) = 13 (11, 15) \\ \text{Tigers expanded their range into India} \\ \text{NO} \\ \end{array}$

High population differentiation?

	North $(n=10)^2$	Central (n=11) ²	South $(n=18)^2$
North $(n=24)^1$		0.027 (p=0.063)	0.041* (p=0.000)
Central $(n=18)^1$	0.236* (p=0.000)		0.019 (p=0.054)
South $(n=26)^1$	0.298* (p=0.000)	0.026 (p=0.279)	

High differentiation for mtDNA

South and central India not differentiated

Structure contributes to high overall variation in Indian subcontinent

Mondol et al., PLoS gen 2009

Fischer-Wright coalescent: Constant population size

- 1. Reconstruct genealogical relationship between the samples
- 2. Distribute mutations on the genealogy: number of mutations proportional to branch length

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Quantifying changes in population size with the coalescent

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

High Ancestral effective size?

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Population decline quantified by other methods including LAMARC, m-ratio, BOTTLENECK Decline ~ 200 years old

Mondol et al., PLoS gen 2009

Effective population size: 23,280 (2,964, 151,008)
Effective size / Census size = 0.4

many ligers in Peninsular

58,202 adult tigers (7,412, 377,520) i peninsular India 200 years ago

Given current estimates: decline of 98%

Mondol et al., PLoS gen 2009

mola

Sensitivity analyses

- Does magnitude of decline change when more genetic loci are used?
 NO
- Is our result valid only for peninsular Indian tigers?
 NO

Alternate explanations for high diversity in India

• Greater extent of population decline for other subspecies?

QuickTime[™] and a decompressor are needed to see this picture. Quick TIFF (Uncomprese are needed to

NO

Mondol et al., PLoS gen 2009

Conclusions

- Indian tigers have high genetic variation
- This high variation is due to population differentiation and high ancestral size
- However, we have already lost around 98% of these tigers

Implications for conservation

The Indian subcontinent retains 50-60% of the global tiger population..... living in varied and fragmented habitats...

with 60-70% of species genetic variation.....

Proportion of global tiger habitat in India: 8-25%

Strong case for conservation of Indian tigers

Non-invasive genetic monitoring of tigers in Bandipur National Park

Molecular methods to identify tigers (Mukherjee et al., 2007) Molecular sexing Genetic individual identification and population estimation Comparison to photographic mark-recapture estimates.

Future directions

- Sampling of historical skins to investigate 'lost' variation, better quantify decline
- Quantifying phenotypic variation: striping pattern
- Landscape level studies in high tiger density areas to investigate connectivity

What drives patterns of genetic variation in the Indian subcontinent: Geography, Climate, Ecology or Humans?

Uma Ramakrishnan

Global drivers of patterns of genetic diversity?

- Biogeographic divides
- Recent climatic fluctuations
- Ecology: dispersal ability and population size

Why the Indian subcontinent?

- Three major biogeographic realms (Palearctic, Africotropical, Indomalayan) intersect here
- Geologically interesting history
- Ecologically encompasses a diversity of habitat types
- Hominins have been present since the last million years
- Data poor

India part of seconday range expansion.....

In the Indian subcontinent

- No major biogeographic divides
 - Large differences in elevation across the subcontinent
- Impacts of climate not very clearly understood: Posters: Robin, Priya
- Ecology: different patterns for very large and very small species
- Significant anthropogenic impacts

How do we test these predictions? Comparative framework

- Do differences in elevation matter?
 - Contrast species living in high elevations with closely related species in plains, Arunachal vs bonnet macaques
- Do differences in body size matter?
 - Contrast species across a range of body sizes, tigers, leopards, jungle cats
- Do differences in climatic regime matter?
 - Contrast ecologically similar species with small differences in habitat preference, leopard cat vs jungle cat
- Do anthropogenic impacts matter?
 - Contrast species that have been impacted negatively by humans (tigers) with unknown impacts (leopards)

Genetic patterns in two macaques

Largest primate genus

Most widespread primate (after humans)

Most diverse distribution (after humans)

u (hibetana

M. assamensis

arctoides @

Very high morphological and behavioural variation – species to individual Highly adaptable to diverse environments

M.radiala

M. sinica

Bonnet macaque phylogenetic tree and network

Much less genetic differentiation than Munzala A hint that the Palghat gap might be a biogeographic divide

Ecological parameters scale with body size

Differences in body size

How do differences in density, movement impact genetic structure?

Differences in body size: isolation by distance across peninsular India

Sampling

Differences in body size: isolation by distance across peninsular India

Continuously distributed species reveal genetic patterns driven by body siz

Same body size, but different origins

Mukherjee et al., PLoS One, in revision

THE IJON RED UST OF THREATENED SPECIES

Length of tail as a percentage of head + body length in some cats

Pocock (1939), http://www.abf90.dial.pipex.com/bco/ver4.htm

Mukherjee et al., PLoS One, in revision

Phylogenetic trees and haplotype networks

Mukherjee et al., PLoS One, in revision

Cytochrome b: 141bp jungle cat, 202 bp leopard cat

Population subdivision

Taxonomy (n)

	F. c. valbalala	F. c. kutas	F. c. affinis
F. c. valbalala (13)			
<i>F. c. kutas</i> (23)	0.04		
<i>F. c. affinis</i> (10)	0.20	0.12	
F. c. prateri (9)	0.14	0.07	0.16

Latitudinal range (n)

	10-19.9	20-28.9
10-19.9 (15)		
20-28.9 (30)	0.05	
29-35 (10)	0.19	0.12

Jungle cat patterns are as expected

Continuous distribution throughout India

Weak isolation by distance

	P. b. horsfieldi
P. b. bengalensis	0.32

Biogeographic zones

	Himalaya	N. East
N. East (9)	0.30	
W Ghats (12)	0.90	0.91

Leopard cat patterns in contrast to expectation

A clear break in geographical continuity indicated by genetic differentiation Are we missing populations in-between in Central India? If there is a gap in distribution, what is causing it?

Mukherjee et al., PLoS One, in revision

Are we missing populations in-between in Central India? If there is a gap in distribution, what is causing it?

Leopard cat locations superimposed over the maximum temperatures in the warmest month.

Mean = 29.27° C (95% CI: 28.59° C - 29.93° C; n = 217)

Mukherjee et al., PLoS One, in revision