Model-based approaches to inferring population history

> Uma Ramakrishnan Stanford University, NCBS

# Model-based approaches to inferring population history

- Understanding population history
- Methods
- Examples: Ancient DNA and Etruscans
- Examples: Y chromosome STRs and subsaharan africa
- Examples: STR data and Common Ancestry Profiles
- Conclusion

#### Reconstructing population history

Genetic variation: shaped by Micro-evolutionary processes
Drift (effective population size)
Mutation
Gene flow
Selection
Population history: biotic and abiotic environment
changes in population size
change in effective size
changes in gene flow
changes in gene flow
changes in survival of certain type

#### Methods to reconstruct population history

• Frequentist

summary statistic based methods Hypothesis-testing using simulations Likelihood

• Bayesian

## Frequentist approaches: Summary statistics

Statistics calculated from observed genetic data. e.g. Heterozygosity, F<sub>st</sub>, number of segregating sites

Equilibrium between mutation, drift and gene flow results in predictable summary statistic value.
Use summary statistic to estimate parameter of interest
e.g. calculate effective population size from heterozygosity

Disadvantage: summary statistic and population parameter relationship based on equilibrium models

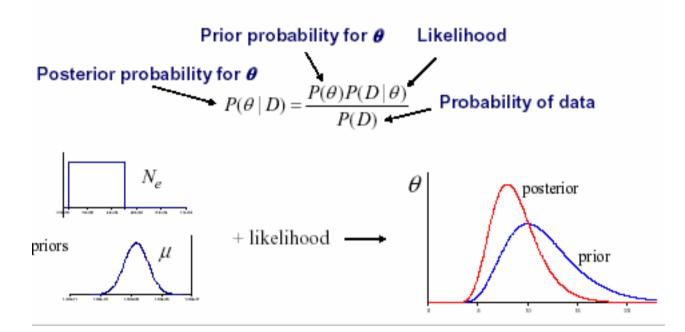
## Frequentist approaches: Hypothesis testing

Are the observed data consistent with a given hypothesis of population history?

Use computer-based simulations to model genetic data.

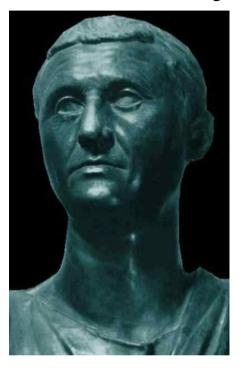
- Calculate summary statistics for simulated data
- Repeat to get distribution of simulated data
- Determine whether observed data fall within expected distributions
- Repeat for different hypotheses

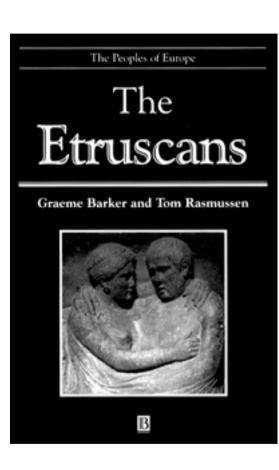
Disadvantage: What if observed data are consistent with different hypotheses?


#### Frequentist approaches: Likelihood

Likelihood (population parameter/obs data) e.g. Likelihood (effective size/heterozygosity) Maximize likelihood: most likely population historic parameter value Ex FLUCTUATE, IM, MIGRATE

Disadvantage: Must explicitly work out likelihood function, difficult for complex models Biased for small sample sizes Computationally intensive, Model comparison is difficult


### **Bayesian approaches**


• Use prior data to influence estimate Ex GENETREE, BATWING



Disadvantage: Not enough model checking Convergence problems Computationally intensive methods

#### **Mysterious Etruscans**







Etruscan cities established in 1 BC in central Italy Flourished between 7th and 5th century A.D. Disappear close to Roman expansion



**Figure 1** Map of Italy showing the area of Etruscan influence (*gray*) in the 7th and 6th centuries B.C., from Barker and Rasmussen (1998). A solid line identifies the boundaries of Etruria proper. Solid circles are sampling locations: A, Adria (17 samples, 5 DNA sequences used for statistical analyses); V, Volterra (6, 3); S, Castelfranco di Sotto (2, 1); P, Castelluccio di Pienza (1, 1); M, Magliano and Marsiliana (25, 6); T, Tarquinia (18, 5); C, Capua (8, 6). Additional samples that yielded no amplifiable DNA were from Castelnuovo Berardenga (1, 0) and Pitigliano (2, 0).

Vernesi et al., 2004

#### Table 1

| Consensus HVR-I | Mitochondrial Se | equences in 28 | Etruscan | Individuals |
|-----------------|------------------|----------------|----------|-------------|
|-----------------|------------------|----------------|----------|-------------|

|                                  |                |                 | HVR-I Motif             |            |             |
|----------------------------------|----------------|-----------------|-------------------------|------------|-------------|
| Site                             | Century (B.C.) | Haplotype Label | (16024–16384)           | 14766 MseI | $N_{ m SF}$ |
| Volterra                         | 6th–5th        | 1V              | 193-219                 | _          | 0           |
| Volterra <sup>*</sup>            | 3rd-2nd        | 2V              | 069-186-189-223-319-362 | _          | 0           |
| Volterra                         | 2nd–1st        | 3V              | 189-274-334-356         | _          | 0           |
| Volterra                         | 6th–5th        | 4V              | 261                     | +          | 7           |
| Adria                            | 5th-4th        | 5AM             | CRS                     | _          | 32          |
| Adria                            | 5th-4th        | 6AM             | 126                     | +          | 8           |
| Adria                            | 5th-4th        | 7AC             | 126-193-278             | +          | 0           |
| Adria                            | 5th-4th        | 8A              | 129                     | _          | 10          |
| Adria                            | 5th-4th        | 9A              | 223                     | NA         | 9           |
| Capuaª                           | 3rd            | 10C             | 189-311-356             | -          | 0           |
| Capua                            | 3rd            | 11C             | 069-095-223-261         | -          | 0           |
| Capua                            | 3rd            | 12C             | 126-274-356             | _          | 0           |
| Capua                            | 3rd            | 13C             | 193-219-356             | +          | 0           |
| Capua                            | 3rd            | 7AC             | 126-193-278             | +          | 0           |
| Capua                            | 3rd            | 14CMT           | 126-193                 | +          | 0           |
| Castelluccio di Pienza           | ?              | 15P             | 193-219-256-270-291     | -          | 0           |
| Castelfranco di Sotto            | ?              | 16S             | 189-356                 | _          | 4           |
| Magliano/Marsiliana              | 6th            | 17M             | 095G-126-189            | _          | 0           |
| Magliano/Marsiliana              | 7th            | 18M             | 066-126-193-219         | _          | 0           |
| Magliano/Marsiliana              | 6th            | 19M             | 311                     | _          | 26          |
| Magliano/Marsiliana              | 6th            | 6AM             | 126                     | _          | 0           |
| Magliano/Marsiliana              | 6th            | 14CMT           | 126-193                 | +          | 0           |
| Magliano/Marsiliana <sup>a</sup> | 7th–6th        | 5AM             | CRS                     | NA         | 0           |
| Tarquinia                        | 3rd            | 20T             | 126-229-362             | +          | 0           |
| Tarquinia                        | 5th            | 14CMT           | 126-193                 | +          | 0           |
| Tarquinia                        | 3rd            | 21T             | 126-193-228-229-278     | +          | 0           |
| Tarquinia                        | 5th            | 22T             | 278-334                 | +          | 0           |
| Tarquinia                        | 3rd            | 23T             | 098-311-327             | +          | 0           |

NOTE.—CRS is the Cambridge reference sequence (Anderson et al. 1981). The HVR-I motif is the position (-16,000) where substitutions were observed, with respect to the CRS; the only observed transversion is in boldface italic type. In the haplotype labels, capital letters indicate the site(s) where the haplotype was observed: A, Adria; C, Capua; M, Magliano and Marsiliana; P, Castelluccio di Pienza; S, Castelfranco di Sotto; T, Tarquinia; V, Volterra. The designation "14766 *MseI*" indicates the presence (+) or absence (-) of a diagnostic restriction cut.  $N_{SH}$  is the number of modern populations sharing that haplotype, among the 34 in the database. Haplotype 2V was excluded from the statistical analyses. NA = not available.

\* Samples for which DNA was independently reextracted and retyped in Barcelona.

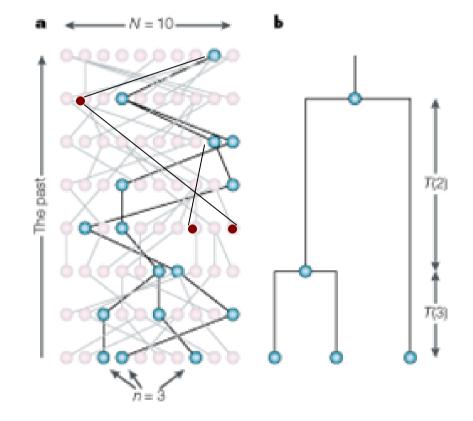
#### Vernesi et al., 2004

# mitochondrial and ancient DNA

Maternally inherited Present in large numbers in cells No recombination High mutation rate Used extensively to reconstruct human population history.

Ancient DNA: tends to be degraded Best results with high copy number genes like mtDNA Many factors involved in DNA preservation: temperature, precipitation etc. Reliable DNA extracted from upto 100,000 year old

# Results from genetic comparisons


Sequenced 260bp of control region for 27 Etruscans: Etruscans are as variable as other European groups

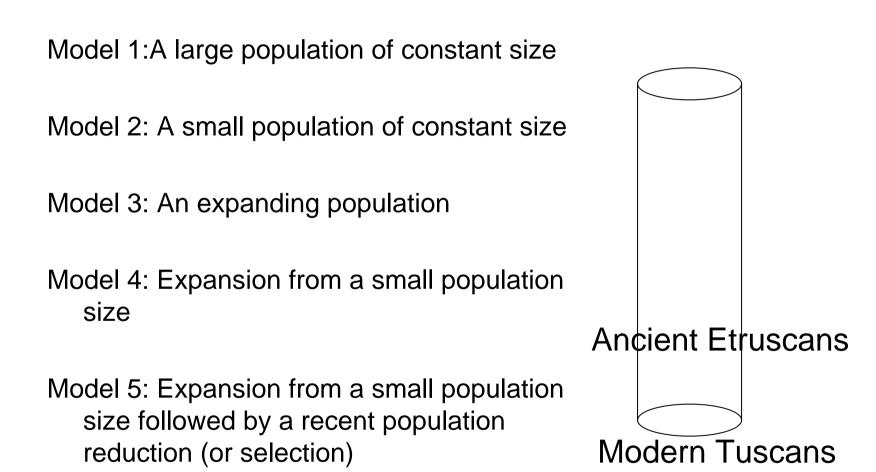
Compared Etruscans to other European groups: Etruscans-European genetic distance > any European-European comparison

Q) Are the Etruscans a distinct population, or ancestral to present-day Tuscans?

Vernesi et al., 2004

#### Modeling temporal data

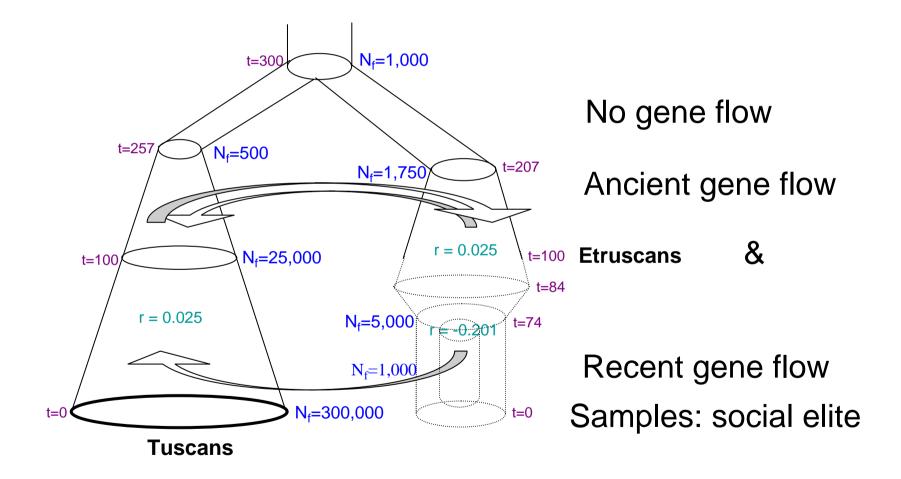



Serial coalescent process

#### **Observed Statistics**

|                             | Etruscans           | Tuscans             |
|-----------------------------|---------------------|---------------------|
| Sample size                 | 27                  | 49                  |
| Haplotype number            | 22                  | 40                  |
| Haplotypic diversity        | $0.9465 \pm 0.0148$ | $0.9487 \pm 0.0185$ |
| Nucleotidic diversity       | $0.0109 \pm 0.0063$ | $0.0140 \pm 0.0077$ |
| Average pairwise difference | $3.91 \pm 2.02$     | 5.03 ± 2.49         |
| Allele sharing *            | 9.1%                | 5.0%                |

- Combined allele sharing: 3.3%
- Nei's genetic distance: 0.19


#### Single population models



#### Single population models: Results

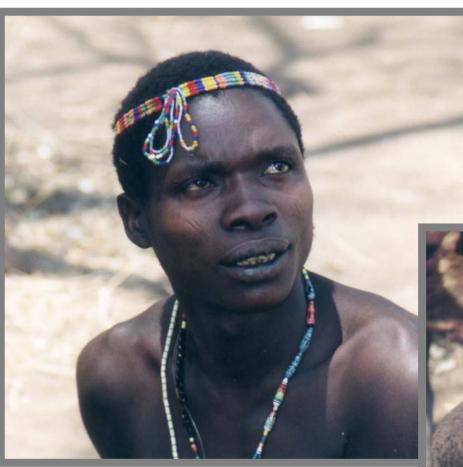
|                    | Number of  |    | Gene div  | Gene diversity |            | Nucleotide |                   | Average pairwise |      | Percentage of |      |  |
|--------------------|------------|----|-----------|----------------|------------|------------|-------------------|------------------|------|---------------|------|--|
|                    | Haplotypes |    | diversity |                | difference |            | shared haplotypes |                  |      |               |      |  |
|                    | Т          | Е  | Т         | Е              | Т          | Е          | Т                 | Е                | Т    | E             | С    |  |
|                    | 47         | 26 | 0.9779    | 0.9602         | 0.3079     | 0.3042     | 110.86            | 109.52           | 0.0  | 0.0           | 0.0  |  |
|                    | 49         | 27 | 0.9796    | 0.9630         | 0.3934     | 0.3956     | 141.62            | 142.43           | 2.1  | 3.8           | 1.4  |  |
|                    | 40         | 23 | 0.9705    | 0.9520         | 0.1176     | 0.1170     | 42.32             | 42.11            | 2.2  | 3.7           | 1.4  |  |
|                    | 46         | 27 | 0.9774    | 0.9630         | 0.2046     | 0.2085     | 73.65             | 75.07            | 12.8 | 21.7          | 8.6  |  |
| $\tilde{\bigcirc}$ | 43         | 23 | 0.9738    | 0.9520         | 0.1180     | 0.1138     | 42.48             | 40.99            | 2.1  | 3.7           | 1.4  |  |
|                    | 48         | 27 | 0.9788    | 0.9630         | 0.2019     | 0.2030     | 72.70             | 73.09            | 13.3 | 24.0          | 9.2  |  |
|                    | 29         | 12 | 0.9087    | 0.7929         | 0.0085     | 0.0060     | 3.05              | 2.15             | 10.5 | 22.2          | 7.8  |  |
| $\square$          | 41         | 20 | 0.9680    | 0.9355         | 0.0261     | 0.0240     | 9.38              | 8.65             | 26.9 | 57.1          | 21.7 |  |
|                    | 31         | 15 | 0.9418    | 0.8834         | 0.0191     | 0.0162     | 6.88              | 5.85             | 11.9 | 23.8          | 9.1  |  |
| $\bigcirc$         | 42         | 23 | 0.9731    | 0.9492         | 0.0546     | 0.0548     | 19.66             | 19.74            | 27.9 | 56.2          | 22.2 |  |
| $\square$          | 31         | 15 | 0.9371    | 0.8834         | 0.0184     | 0.0161     | 6.62              | 5.79             | 12.1 | 23.5          | 9.0  |  |
| $\bigcirc$         | 42         | 22 | 0.9721    | 0.9492         | 0.0537     | 0.0543     | 19.32             | 19.54            | 28.6 | 56.2          | 22.7 |  |
| $\mathbf{Y}$       |            |    |           |                |            |            |                   |                  |      |               |      |  |

#### **Two-population models**



#### Two-population models: Results

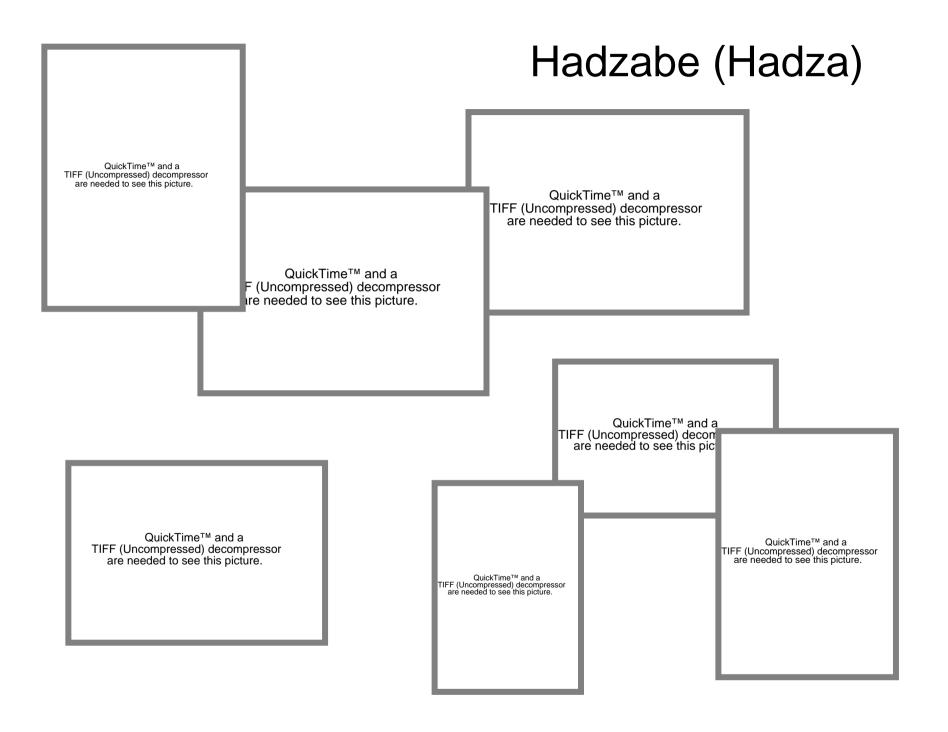
|                      | Number<br>Haplotypes Nei's |      | Gene diversity |          | Nucleoti | y Pairv  | Pairwise difference |       | Percent of shared |             |             |          |
|----------------------|----------------------------|------|----------------|----------|----------|----------|---------------------|-------|-------------------|-------------|-------------|----------|
|                      | of haplot                  |      |                |          |          |          |                     |       |                   |             |             | distance |
| No gene flow         | 30 T                       | 15 E | 0.9180         | 0.8779 E | 0.01068  | 0.0109 E | 3.84                | 3.91  | œ                 | 0. <b>प</b> | 0. <b>E</b> | 0.093    |
| ite gene new         | 40                         | 23   | 0.9704         | 0.9492   | 0.0407   | 0.0413   | 14.65               | 14.86 | 11.4              | 21.4        | 8.0         | 2.83     |
| Ancient cone flow    | 31                         | 15   | 0.9288         | 0.8807   | 0.0129   | 0.0116   | 4.63                | 4.17  | 2.9               | 5.6         | 2.0         | 0.096    |
| Ancient gene flow    | 42                         | 23   | 0.9721         | 0.9520   | 0.0397   | 0.0391   | 14.29               | 14.07 | 16.1              | 31.2        | 11.8        | 3.41     |
|                      | 31                         | 15   | 0.9296         | 0.8750   | 0.0128   | 0.0116   | 4.61                | 4.19  | 2.5               | 4.7         | 1.7         | 0.088    |
| Recent gene flow     | 42                         | 23   | 0.9721         | 0.9492   | 0.0386   | 0.0390   | 13.90               | 14.03 | 14.3              | 28.6        | 10.0        | 2.79     |
|                      | 32                         | 15   | 0.9288         | 0.8834   | 0.0168   | 0.0164   | 6.03                | 5.91  | 3.0               | 5.6         | 2.0         | 0.086    |
| Continuous gene flow | v 43                       | 23   | 0.9729         | 0.9520   | 0.0712   | 0.0708   | 25.65               | 25.48 | 16.2              | 31.6        | 11.8        | 3.53     |
|                      | 32                         | 15   | 0.9354         | 0.8779   | 0.0135   | 0.0110   | 4.87                | 3.95  | 4.8               | 9.1         | 3.3         | 0.059    |
| Social elite         | 43                         | 23   | 0.9729         | 0.9520   | 0.0432   | 0.0413   | 15.55               | 14.86 | 17.1              | 33.3        | 12.5        | 2.59     |

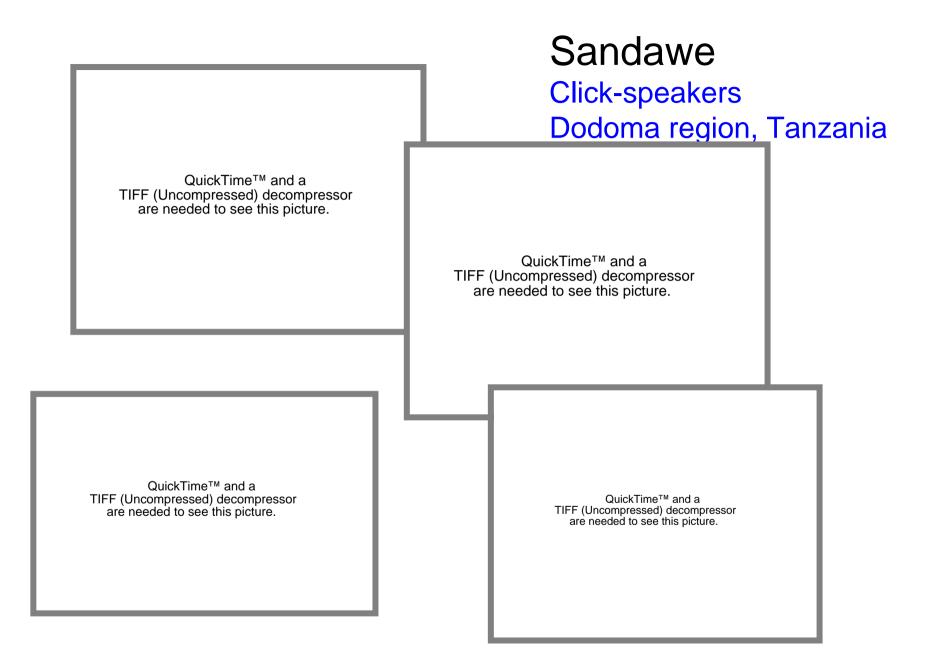

#### Conclusions: Etruscans

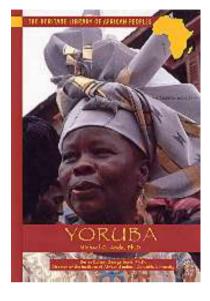
- Ancient sampled Etruscans were not the ancestors of the modern Tuscans
- Two population models needed to explain ancient and modern data

Q) How to distinguish between two population models?

## Reconstructing population history in sub-Saharan Africa


- All genetic data point to relatively ancient origin
   of African groups
- Regions like Tanzania include very high linguistic diversity
- What are the relationships between groups? Click speaking vs Bantu speakers
   Populations: Click-speakers: Hadzabe, Sandawe Bantu-speakers: Yoruba
   Data: Non-recombining region of Y





#### Hadzabe (Hadza)

- Foragers of north-central Tanzania
- Small population
- Language includes click consonants

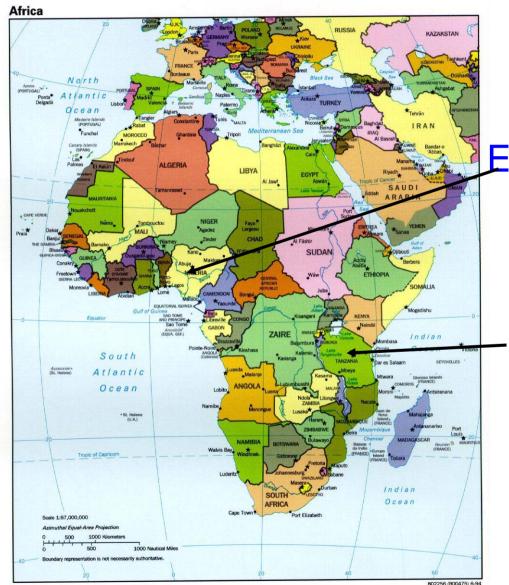








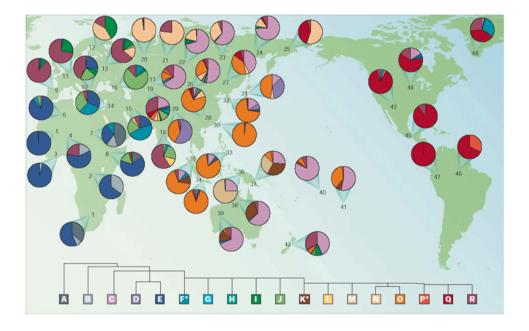



#### Yoruba








#### Study populations in Africa

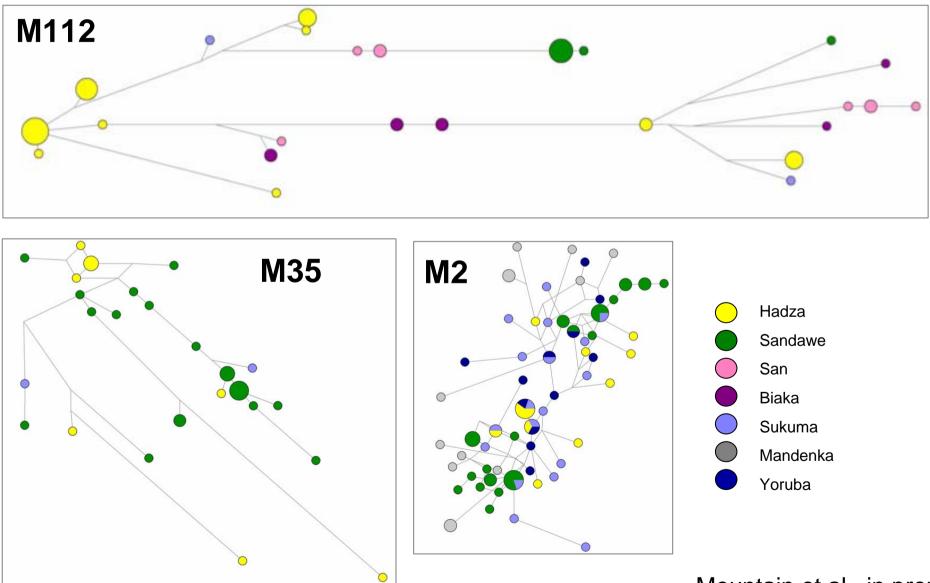


#### Bantu-speakers: Yoruba Expansion from West Afric

Hadzabe and Sandawe: Lake Eyasi region of north-central Tanzania

#### Y chromosome




Males inherit from father as a single, non-recombining unit

Consists of linked UEPs and STRs

UEPs define haplogroups, different ages

Very useful tool to investigate human history

#### African Y chromosome diversity Networks of three SNP-defined lineages (11 STR markers)



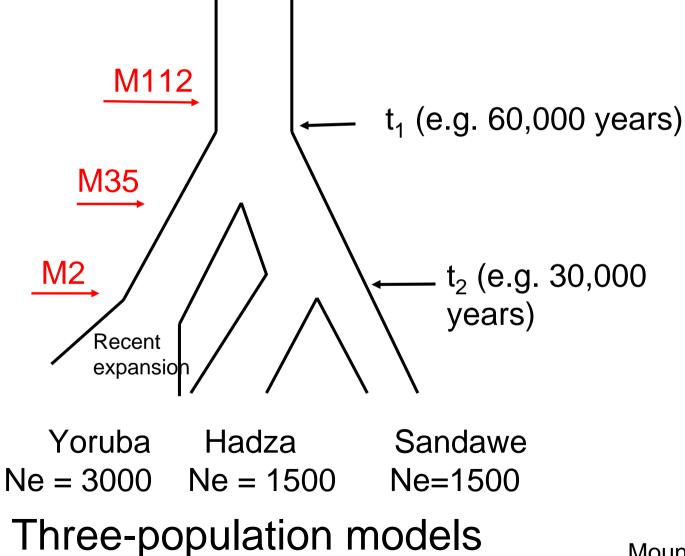
### Click-speaking groups in Africa

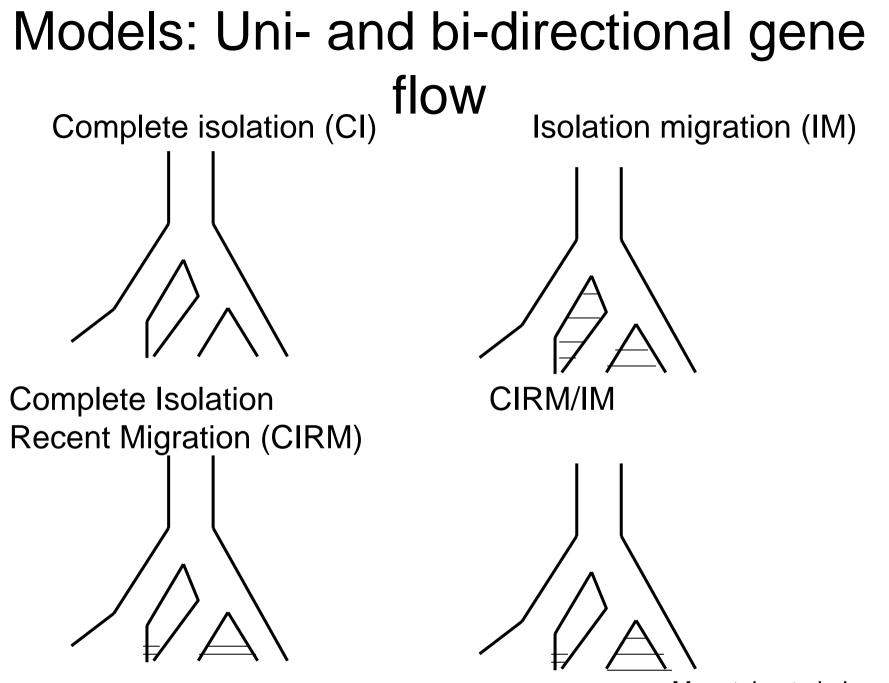
M112 (oldest): Hadza maintain high diversity

M35 (younger): Sandawe maintain large diversity

M2 (youngest): Bantu-speaking groups high diversity; evidence of population growth

Relationship between click-speaking groups:


Recent common ancestry or deep common ancestry?


Gene flow between click-speaking groups?

Gene flow between click-speakers and Bantu speakers?

Explore population historic scenarios using sinvatantienas in prep

#### Y chromosome simulation: 3 UEPs+11 STRs





#### Methods

- Run simulations for particular model
- Ascertainment based on UEP frequencies
- Calculate summary statistics
- Calculate simulated likelihood (L<sub>sim</sub>)



### Results: Top 5 models

| Model        | Parameters                                                                                                                                                                                                                                                                                           | L <sub>sim</sub><br>(x10 <sup>-18</sup> ) |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| CIRM7        | recent gene flow over the last 3,000 years; unidirectional gene flow from the<br>Yoruba into the Hadza and Sandawe populations (5 migrants per generation),<br>more recent divergence between Hadza and Sandawe (15,000 years before                                                                 | 0.938                                     |
| CIRM/<br>IM4 | present)<br>recent unidirectional gene flow over the last 3,000 years from the Yoruba into the<br>Hadza and Sandawe populations (5 migrants per generation); continuous<br>unidirectional gene flow following population divergence from the Sandawe to the<br>Hadza (2 migrants per generations)    | 0.105                                     |
| CIRM 5       | recent gene flow over the last 3,000 years; bidirectional gene flow between the<br>Hadza and the Sandawe (2 migrants per generation) and unidirectional gene flow<br>from the Yoruba into the Hadza and Sandawe populations (5 migrants per                                                          | 0.035                                     |
| CIRM/<br>IM3 | generation)<br>recent unidirectional gene flow over the last 3,000 years from the Yoruba into the<br>Hadza and Sandawe populations (5 migrants per generation); continuous<br>unidirectional gene flow following population divergence from the Sandawe to the<br>Hadza (1 migrants per generations) | 0.028                                     |
| CIRM8        | recent gene flow over the last 3,000 years; unidirectional gene flow from the Yoruba into the Hadza and Sandawe populations (5 migrants per generation), more recent divergence between Hadza and Sandawe (10,000 years before present).                                                             | 0.015                                     |

### Conclusions

- We can reject complete isolation and isolation migration models
- Accept more complex versions of history click-speaking groups isolated or geneflow from Sandawe into Hadza
   received migrants from Bantu-speakers
  - received migrants from Bantu-speakers
- Method provides a set of possible histories
  - Test with STR data?