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Complex Networks in the Brain:
From “small-world” of neurons & glia
to the mind of a worm
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Network Neuroscience
The Research Program




Step |.

In brain, networks are not random — many have certain
structural patterns

So...

How does network structure affect
dynamics !



Example: small-world networks

A
(CA

iy, S

s P o
w AT e |
Ny TP

X
S/
L/

7
W, i,
Y/
.:-: . %x‘
KX
AN ':I
l\"“*"\ﬁ ‘

A
K%

‘
KA
?
L)
"\

i\-.‘
NS
‘.‘“ .-.'

g, W e

1 X R )

Ty A Q‘ \
¢ RSN
e |

-
. 'Q.‘
\.‘.

A 2ty

)
XN
WS
Y
5
jm\‘
4\!

=T
=

A
L)
2

Ay ey

Regular Network “Small-world” Network Random Network
P — O O < P < I P — I

Increasing Randomness

p: fraction of random, long-range connections

Watts and Strogatz (1998): Many biological, technological and social

networks have connection topologies that lie between the two
extremes of completely regular and completely random.




Small-world networks can be highly clustered (like regular networks ),

yet have small characteristic path lengths (as in random networks )
and, thus, high communication efficiency
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Characteristic path length (£ ( p ) ) and clustering coefficient (C(p ) )
as network randomness increases.



) . - Sensorimotor
Human brain functional network

[fMRI time series, linking 90 cortical & _ Parietal
sub-cortical areas] (Achard et al)

i g "::‘t& Prefrontal
Occipital ,iI:'J- r\ \

Inferior temporal Orbitofrontal

Temporal pole

Several brain functional networks, including the cortex of Humans, as well
as Macaques and Cats, have been reported to show properties similar to
small-world networks

Question:
How relevant is small-world network
architecture to brain dynamics!?



Propagating Waves in Rat Neocortical Slices:
Spiral Waves & Bursts

] Wu Lab, Georgetown Univ

Tangential slices of rat occipatal cortex
stained with voltage

sensitive dye

E Optical signal on each photo
detector = summation of
activity of ~1000 neurons
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Period - 100ms Aerlodlc, | " Period ~ 100ms
dominant period ~ 70ms



Spirals Everywhere

Pattern Formation in Excitable Media
:u% ] N
£ ' Aggregation of

) Dictyostelium amoebae

L(CY : by cAMP signalling

o Ca™ waves in
cytoplasm of
Xenopus oocytes

Tachycardia in canine
ventricle




Waves of excitation in excitable media

Excited cells can excite their neighboring cells through diffusion

gap junction

Waves annihilate on collision

single spiral broken spirals

A characteristic feature of
wave propagation in
excitable media is
spontaneous pattern
formation, in particular ....
Spiral Waves!




But...

* Neurons are not connected in a regular, nearest neighbor
topology

* Can have large number of long-range connections
* In fact, possibly resembles a random network

Whereas...

* Waves in excitable media get disrupted without regular
arrangement, e.g., if cells connected with random topology

Puzzle:
How is sustained wave activity occurring in the brain ?



Clue

Neurons + Glial cells =
Small World Network ?



Glia (Gr., from glue) : The Hidden Bulk of the Brain

Outnumber neurons by 10 to | in some brain areas

*Glial cells form a matrix of regular topology : the
syncytium

*Cells communicate with nearest neighbors through
Calcium waves

*Neurons embedded on this regular structure:
act as long-range links between spatially distant
regions

*Neurons & glia can
communicate through
Calcium waves

*Therefore, the aggregate system:
neurons + glia = “small-world” network of cells,
with neurons as sparse (neuron-glia ratio 2 1:10), long-range connections



Spiral Waves in Mouse Hippocampus

Observation of intercellular Ca** spiral waves in hippocampal slice cultures
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Long-range excitation through neuron-glia communication = spiral waves ?



Small-world excitable media

* Each cell described by a 2-variable map
X .= f(xy) =x.2exp(y,-x.) +k (fast variable)
Y= € (Xy) = ay, - bx + c(slow variable)

Parameters chosen, a = 0.89 (0.88 <a <0.93), b=0.6, c =0.28, c = 0.02

» Each cell connected to nearest neighbors diffusively through fast variable
(approximating gap junctions)

Xyay = (1= D) £ (1 Y,) *+ (DH) Tugy £ (x5

D: Diffusion coefficient, determines propagation speed of excitation waves for most
simulations chosen as = 0.2

* In addition to diffusive connections with nearest neighbors, each cell may
have random long-range connections with another cell (with probability p)

 [nitial stimulation (x =1) in central zone or a small number of randomly
selected cells, other cells quiescent (x=0)
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SS, Saramaki & Kaski, PRE 76 015101 (R) 2007

Activation dynamics in SV media
*p = 0: No self-sustained activity

p < p.: Spatial patterns (Single/Multiple Spiral Waves)
Temporally irregular

p! <p <p.: Temporal patterns (Periodic Bursts)
Spatially homogeneous b r‘

Newman meth.
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*p > p.: Failure of self-sustained activity



p <p.': Spiral Waves

Spatial patterns, Temporally irregular

N = 1007 newrons, p = 0.2 Pericdic b e, Newman melhed

P | I
el ittt
[ | { f

PSD
=

Power spectral density
of sustained spiral state:

0os 01 016 02 03 03 03% 04 045 05
frequency

Power spectral density

‘ : h flat spectrum
of transient phase: i | |
power-law decay |
( I / f nOISG) - 03 I v ’ :‘:\:-amn‘!.’r'.’.'}.‘.f.\\\\\‘,w.\’;Wh {
®
o 0.2 T
c
£ v
0.1 -
0 | | J 1 1 1
0 500 1000 1500 2000 2500 3000 | |
time, t 0os 0.1 018 02 ‘le:zncyCU 0.3% 04 0.45 0s

initial transient period with multiple coexisting circular waves
Spiral waves take over after the transient period



Occurrence of spiral waves

Probability of spiral creation (per unit time) increases with
*System size N?
*Shortcut probability p

o—e p-0.

0. —a =0,
o p=0.3
0. A—a D=0.4
. J ,
0 5000 10000 15000 20000 0 5000 10000
time t time t

For p < p/, at long times and large N, random shortcuts always result in
spiral waves



Genesis of spiral waves

I Created by shortcut-induced
excitations in the refractory
' “shadow” of a circular wavefront
Wavefront
Refractory
region

Sparks a semi-circular wave whose
transmission is partially blocked by
“shadow”

Woavefront ends turn into Spiral Waves

Once created, spiral wave takes
over as it has the highest frequency
compared to all other excitations




Transition to new pattern regime

For high enough p, shortcut induced excitations are too numerous for
sustaining spiral waves
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(p-p )N
Almost every cell can be excited with frequency ~ (refractory period)-!

Spirals become unstable — transition to new regime at p = p. = 0.553
Transition point is independent of system size



p./< p < p.: Periodic Recurrence

Temporal pattern periodic, Spatially more homogeneous
Large fraction of system becomes simultaneously active and then decays in order
to recover

Power spectral density

N = 100° neurons, p = 0.65, Absorbmgb c., Newman method
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*Few cells not part of the excitation wave carry activity to next cycle
*Activity again spreads through almost entire system



p > p.: Failure of activity

For even larger p, extremely high shortcut connections spread the excitation
simultaneously to all cells
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The dynamics of the system “burns out” : After the initial transient event, not
enough suscpetible cells are left to sustain the activity



Introducing disorder

*In nature, cells are not exactly alike
*Can be simulated by introducing disorder in parameters controlling cell
dynamics

*Example: Value of a
(parameter determining
recovery period)
randomly chosen from
uniform distribution

[0.89,0.92]
*Tendency of greater

08 | | | fragmentation of waves
p=04 *Increasing number of
o 00 N =128 ] coexisting spirals
% 0.4 \
= o But overall, the
results are robust

1500 2000 2500 3000 W.r.t. disorder’

time, t

500 1000



Structure — Dynamics

Spontaneous, self-sustaining pattern formation in excitable media
with random, long-range (“small-world”) connections

Exhibits non-trivial transition point as pattern goes from
Spatial (multiple coexisting spiral waves) to
*Temporal (global activity shows large oscillations)

Relevance for all natural systems having wave propagation & sparse,
long-range connections,
*in particular, role of non-trivial network topology on brain
functioning

*Possible functional role of small-world topology in epileptic
seizures and bursts



Step |l

But...
how does network structure & dynamics in the
brain connect to behavior !

. 1

Dynamics <> Function <> Structure




Understanding the Mind
of a Worm

e Elegans: 959 cells, out of which 302 are neurons




* neurons ~ 300

* connections ~ 3000

(synaptic ~ 2500, gap juncs ~ 500)
* graded potentials (analog signals)

much simpler than ...

e

S P VT
W il

“SABVR

* neurons ~ 10 °?

e connections ~ 10 2
* action potentials
(binary signal)

ASJL



Motivation

e Mind = Behavior
Nobel Prize in

Sydney Brenner (1974): Physiology, 2002

“Behavior is the result of a complex and ill-understood set of
computations performed by nervous systems and it seems essential to
decompose the problem into two:

*one concerned with the question of the genetic specification of the
nervous system, and,

the other with the way nervous systems work to produce behavior.”

* How do the components of the worm nervous system work
together ?

* How is the activity of neurons, interacting with each other,
translated into behavior of the whole organism ?



StI"UCtU re Of the We concentrate on the 282
nervous S)’Stem non-pharyngeal neurons

SCC: strongly connected component
IN: in-component

Pharynx OUT: out-component
(20 neurons)

Nerve ring

Head e
1 o Tail
Y Anterior (G1) %89;,2 ?i?fl‘{ess

Dorsal (G2)
Lateral (G3)

Lumbar (G9)
Dorsorectal (G8) \

Ventral Cord (G10) — ' Pre—anal (G7)

G: Ganglia (clusters of neighboring
neurons) in the C. elegans nervous system

Neurons



Post-synaptic

Deg F'ee connections \ In-degree

In-degree & out-degree ™~

—-

Degree: total number of connections for a node

\

*In-degree: number of incoming connections Out-degree Pre-synaptic
*Out-degree: number of out-going connections connections

*Exponentially decaying degree distribution, not many highly connected ones

40 40

CAVAR 39 AVAL 45
35 AVAL 38 35 AVAR 4] -
30 PVCR 34 | 30 AVBR 36 |
PVCL 34 AVBL 36
> 25 DVA 30 .. 25 AVER 35 |
5 0 HSNR 27 5 AVEL 33 |
s AVDR 27 | s AVDR 31
" 1 ADL  27{ S5 RIAR 27
PVNR 24 PVCR 26
10 ADEL . 10 RIAL 26 -
AVDL 26
5 5
0

0 5 10 15 20 25 30 35 40 0 5 10 156 20 25 30 35 40 45
Synaptic Junction Out-degree Synaptic Junction In-degree



Connectivity of the somatic nervous system

Synaptic Gap-junctional
o o %o "oy 30 g8 @ o0 N |
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5 6789
Ganglion Ganglion
Observation:

Lateral ganglion receives many connections from other ganglia and sends many connections
Note that LG contains the “command” interneurons

Question:
Is the network modular ? How do you determine the modules if

the connections are not localized within corresponding ganglia ?



Measuring modularity
How to quantify the degree of modularity ? // ?“{3

One suggested measure:

Q = zs [ (le L) - (dsl 2L)2]

(Newman & Girvan, PRE, 2004)

L : Total number of links

L. : #links between nodes within module s Al'

d, : sum of degrees for nodes in module s Y

Modules: each node i belonging to module s has Cc i B

more links with nodes in s than rest of network < % /3/‘:?\@
: o R 8N

(strong defn of community) ,}:ﬁ) 5 t}@

Modules determined through stochastic /t/a\’_\

optimization of Q t Lf,



The Modular Structure of the Network

Optimal decomposition of the somatic nervous system into 6 modules

v I scnsory I Motor ] Inter ] Others
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Modules
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o

Fraction of neurons

=
—

=2
=2
o

Il m n A VI | [l [ I W V1
Modules Modules

® Dense interconnectivity within neurons in a module, relative to connections
between neurons in different modules

® The modules are not simply composed of one type of neurons (e.g., a purely
sensory neuron or motor neuron or interneuron module does not exist)



Modules

Modules and Spatial Localization
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Neuron Positions

Q. How far does the existence
of ganglia explain the modules ?
Ans. The overlap between
modules and ganglia indicates
that most ganglia are
composed of neurons
belonging to many different
modules

Overlap Fraction

Q. Do constraints related to physical
adjacency of neurons (e.g.,
minimization of wiring length)
completely explain the modular
organization ?

Ans. No

1 Ganglion



Optimizing for wiring cost and communication

efficiency
Communication g = | /ayg path length, £ = 2 /IN(N-1) %, d,
efficiency
Wiring cost  DW = 3,_d; for all connected neurons
Low Efficiency High Efficiency (“dedicated wire” model)

Low wiring cost High wiring cost

D0 &R

Trade-off between increasing
communication efficiency and

C Elegans P LI L L decreasing wiring cost
EEEE'
3 " L EE T T T T T T i
S Va9 % 04 | - . .
9 %ﬁ L The network is sub-optimal !
= - 2
- C B = presence of other
8 0a7 | T i . .
.|:. R EE . constraints governing network
b}
100 200 organization
Wiring cost (CW
025 | | Wiring co t ((. )

400

600

Wiring cost (DW)

800



How mesoscopic network structure can alert

us to critical functional role of neurons

With=in module degree z

C. Elegans
6
5 e AVAL
e AVAR

local 8 RIAL
4 I'?Cs oRIAR global
3 uos connector  hubs

o

$ o hubs
2l 0 ®RVCR®e® @

&b, °° ogPYCL ® gAVBR

0

15 & ° & AVPLAYSE S&UE
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0 0.2

0.4 06 08
Participation Coefficient P

1

With—=in module degree z

[

—2

Randomized

ePVCR

o AVAR

e AVBL
@ AVAL
8 AVBR

o PVCL
e RBIAR

e SBR|A

a2 AVEL

0

0.2

0.4

0.6

0.8 1

Participation Coefficient P

Importance of connector hubs: possibly integrating local activity to produce
coherent response, 2| out of the 23 already implicated in critical functions

Prediction: AVKL and SMBVL are likely important for some as yet
undetermined function



Core-periphery organization

Sensory Cells

/Q\ Q O
Sensory
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Motor neurons 04_0 Of\

Muscle Cells



k-Core: Undirected & Directed

-

e In-degree 2-CORE Out-degree 2-CORE



Number of members

300

250

200

150

100

50

k-Core of C Elegans neural net
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Out-degree 5-core of synaptic network



Composition of k-Cores

Out-degree cores

Mostly sensory & interneurons

05

045
04
0.35
03
0251
0.2+
0151

.

Fraction of function type present

0.1r

0051

*

Sensory neurons
Inter neurons
Motor neurons

0

0

Over-representation of
Lumbar & Lateral Ganglia

neurons

1 2

k

Fraction of function type present

05

04

03

Over-representation of Lateral
Ganglion & Ventral Cord Neural Group

& Sensory neurons
+ |nter neurons
B Motor neurons *

i 2 3 4
k
In-degree cores
Mostly motor &

interneurons




Lateral Ganglion: the information highway of C Elegans
Bridging the sensory & motor neurons

STIMULI

Out-degree core

glion

INFORMATION

A

In-degree core

RESPONSE



Functional circuits of C Elegans

Tap Withdrawal Circuit

® Touch sensitivity ALM PVD

avm Q)

® Egg laying

® Thermotaxis

Chemosensory v T L - —~AVD O Sensory neuron
77 DVA O
. i Inter neuron
*Defecation
EWD REV Motor neuron
. [ ]
LOC0m0t|0n nerve axon/lateral
ring process PLMR

when
= Satiated: Feeding
* Hungry: Expl?ratlon  ontm -
= Escape behavior: Tap withdrawal ALML branch

anus pLmL



Functional ckts & k-Core

Most k-core neurons are the
neurons involved in different
functional circuits and...

... large fraction of the functional
circuit neurons are present in the
inner cores !

Out-degree core

In-degree core

Reason: eliminating inner core
neurons more likely to result in
behavioral anomaly

k-Core: Relating structure
& functional importance

action of functional ckt neurons in k-core
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05+ —&— touch sensitivity
—&— egqg laying
0.4 —— thermotaxis
03l —+#— chemosensitivity
—+— feeding locomotion
0.2r —=— exploration
04t —F— tap withdrawal
0 1 1
0 1 2 3 4
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071

06
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0.5¢ —oa— touch sensitivity
04l —H&— egg laying
—— thermotaxis
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0.1+ —+— tap withdrawal
0 1 | 1
0 1 2 3 4
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So far we talked about structure...
What about dynamics ?

Let’s look at how the i-th neuron’s potential (which represents its activity)
belonging to the network evolves with time

gap jn

synapse .
: J

R,C,dV/dt=V -V, +R, 2 +I" )+l Potential V,
I'y=w"g " (V, =V Gap jnl current: Input through gap junctions
li=w; g, (E;=V,) Synaptic current: Input through synapses

d g,/ dt=(g i V j )—g ;)T  Synaptic conductance: graded potential synapse

KiltVimVea IWarseily siomoid function of pre-synaptic potential

gtV )=g,/(l+e



But why look at dynamics ?

* Because dynamics is the key behind how the nervous system
does its job

* How to design the network (especially the “control box™ of
interneurons) so as to have a large number of possible input-
output relations!?

Muscle Cells

Sensory Cells

Sensor
Y Motor neurons

neurons Interneurons



The Central Question

* Why central nervous system (brain) evolved at all
instead of a nervous system equivalent to a collection
of reflex arcs ?

* Why networks rather than parallel pathways ?

# R a R
L @\gg

Also relevant for intra-cellular signaling networks (protein kinase instead of neurons)



Advantage of Networks: Flexibility
Logic Gates out of Threshold Element Networks
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Disadvantage of Networks: Necessity for
complex control mechanisms

* The price to be paid for this flexibility: Control overheads

Need to introduce additional control machinery to segregate
different functional circuits

* E.g, stimulation of a mechano-sensitive neuron should lead
only to tap withdrawal and NOT to egg-laying !

* Problem: In a structurally connected network, stimulating any
neuron will lead eventually to stimulation of all neurons
through cascading activation signals

R s A i
A A



Solution: Segregation of functional ckts
through excitation/inhibition

* The problem of runaway excitation can be controlled by introducing
negative links (inhibition)
O

O
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* To determine the actual network of positive & negative links, need to
identify excitatory & inhibitory neurons
* Problem: C. elegans is too small to do electropysiology

* So we are determining polarities of neurons by comparing output of our
dynamical network model with experimental data

* cross-validation through indirect methods (e.g., comparison with Ascaris)



Control

Effect of
randomized
polarities

Stimulation of sensory neurons of Tap-withdrawal circuit
wihout tonic input (cutoff without abs =0.1775e-4)

wihiout lame input (cutafl walh abs =01775e-4)

Time (sec)

0.05

0.1

| Neuron number 282

Effect of Randomizing Polarities on the Tap-wilhdrawal circuit {coteff withoul abs=0 231e-4)




In lieu of conclusion

Modular analysis may help spot functionally critical neurons

k-Core analysis indicates role of lateral ganglion as information
highway between the sensory and motor components
(stimulus-response path)

Almost all functional circuit neurons are present in the inner
cores: relating structure and functional importance

Differing behavior of in-degree core and out-degree core
indicates different organization in the sensory-interneuron and
inter-motor neuron sections of the network

Ongoing work: using neuronal dynamics to study the logic
circuits of the nervous system

Network maybe using polarity and the attenuation of graded
potentials over long network distances to localize activity
within different regions



