Analyzing Socio-Economic Phenomena
using Physics
ll. Financial Markets: Cross-correlations

Sitabhra Sinha
IMSc Chennai



Risk management

* Important element of risk management : Estimation of
correlations between price movements of different stocks.

* Probability of large losses by a certain portfolio dominated by
correlated moves of its constituents.

Average return R, = 2. p. R,

p;: amount of capital invested , R: expected return

Risk 6,2 = &, p; C; p,

C: covariance matrix
* Optimal portfolio minimizes risk for a given value of R;: a linear
problem involving inversion of C
» Composition of least risky portfolio has large weight on
eigenvectors of C with smallest eigenvalues
Problem: Empirical determination of C from finite time series



How random are financial
correlation matrices ?

Small time series = Measurement noise
Smallest eigenvalues of correlation matrix most sensitive to this
noise — the corresponding eigenvectors precisely the ones that

determine the least risky portfolio!
6 ' T x T - .

Markowitz portfolio optimization
scheme based on historical

! - determination of C not adequate
since the lowest eigenvalues are
dominated by noise !

6

Comparison of eigenvalue distribution
of C with purely random matrix :
Deviation only for the largest few
eigenvalues!




Question

How to reconstruct the interaction between
different elements of the market from the
data about individual price movements ?



The Market = Complex System

Market activity =
Interaction
between agents
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Is simpler description possible ?
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"Brownian motion"

Effective interaction
between stocks
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Co-moving groups of
I stocks =
Business Sectors



The Market seen as a System of
Interacting Stocks
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Questions, Questions, Questions

Can the structure of a market be empirically determined ? =
Correlated movement of stocks

But ... why do emerging markets appear to be more correlated
than developed ones ! = Non-interacting stocks responding to
same external signals can appear more correlated

What is the interaction structure of emerging markets ! @
The Indian market

What role do interactions (vis-a-vis overall market effects) play
in determining observed statistical properties of markets ! =
Cross-correlation of price fluctuations within/between sectors

Can markets having similar statistical properties have very
different internal structure ! = NYSE and NSE
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Question:
Can we make a quantitative comparison of the
degree of correlated stock movement in the

two markets ?

Answer:
Yes, by spectral analysis of the correlation

matrix



Correlation Analysis

l. Construct the correlation matrix C composed of
correlation values between every pair of stocks

Correlation between returns for stocks i and j:

C;=<r,r> where r=[R;-<R>]/0;

Data set:
NSE: Daily closing prices of 201 stocks belonging to Nifty index

from | Jan 1996 to 3| May 2006 (2607 working days)

Selection of stocks to minimize days of missing data

NYSE: Daily closing prices of 434 stocks [20] randomly chosen
from these] belonging to S&P 500 index over same period (2622

working days)



Correlation Matrix

The stocks in the NSE are on average more correlated !
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The problem with analyzing raw correlations

Cross-correlations of infinitely long time series of different
variables will reflect actual inter-relations between them

But in reality, we only get data over a finite time !

Due to stochastic fluctuations, even the output of uncorrelated
random processes may exhibit spurious correlations, if we
calculate C over finite-length time-series !

Question: Can we identify true interactions between variables by
filtering out the effect of cross-correlations generated because of
such finite time effects ?

Solution: Look at the spectral properties of C and compare with
that of an ensemble of random cross-correlation matrices



The spectrum of “Wigner-ium”

Nuclear physics: What is the energy spectrum of a complex nucleus ?
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ll. Obtain eigenvalues of the correlation matrix

If all stocks are uncorrelated, C will be a random (Wishart) matrix with

Bounds of random distrn : Km
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Random nature of the smaller eigenvalues

Let us observe the distribution of eigenvector components of
the eigenvalues

For random matrices generated from uncorrelated time-series,
distrn of eigenvector components follow Porter-Thomas distrn:
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Let’s compare the two markets
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* The largest eigenvalue is slightly higher in NSE

= Consistent with the observation of more correlation in NSE

* The number of intermediate eigenvalues (between A and the
random bulk) is lower for NSE

= Suggests relative absence of distinct structure of interactions
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BUSINESS
SECTORS

Deviating eigenvalues = Information about
interaction structure of the market

Let us look at the eigenvectors u of the largest few eigenvalues
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All stocks contribute
(almost) uniformly to
largest eigenvalue

= Market mode
Common component affecting
all stocks with same bias

Intermediate eigenvalues
should reflect group
structure in market if
eigenvectors are localized

In NSE, no straightforward
interpretation in terms of sectors



Time evolution of correlation structure

If deviations from random bulk are indicators of genuine
correlations, deviating eigenvectors should be stable in time

* Consider eigenvectors of 10 largest eigenvalues of a correlation matrix D,
constructed using a temporal subset [t, t+T] of the data and Dy over a time-
lagged interval [t+T ,t+T+T]

* Calculate the overlap matrix O(t,t) = D, Dg'

* In ideal case (non-random eigenvectors stable in time), O = identity matrix

Overlap matrices
with T = 5 years

Reference period:
Jan 1996

T=6 months =1 year T=2 years

Eigenvectors show different degrees of stability, with the one
corresponding to the largest eigenvalue being most stable



Time evolution of the maximal eigenvalue of
correlation matrix : A window into volatility

43 NSE Nifty Stocks, 1 Jan 2003 to 30 Jan 2006
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Temporal evolution of composition of eigenvector
corresponding to the largest eigenvalue

Allows us to identify the prime movers & shakers of the NSE !

Analysis: divide time series into overlapping windows of length T = 6 months
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Inverse Participation Ratio

Analyse the composition of eigenvectors for detecting localization: we look at

Inverse Participation Ratio

For the jth eigenvector |, =X, \ [u;]% u;: eigvector components

* If all components are equal (u; = IINN), as for A, = I=1/N

* Dominant contribution of a single component (u,=1 & u=0, i=2,...,
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* | inversely related to number of
significantly contributing
eigvector components [stocks]

*For eigenvectors of rand corr
matrix = |=3/N [seen in the
random bulk]

* | > 3/N for most deviating
eigenvectors = Localization

* But much less significant in NSE
compared to NYSE



However ...

largest eigenmode (market) dominates all intra-group correlations (if existing).
= no straightforward detection of significantly related groups of stocks.

For this purpose, use

Matrix Decomposition Technique
Aim: removing the effect of (i) market mode & (ii) random noise

Expanding correlation matrixas C=X.A.u."u,

Allows decomposition of C into contributions due to
* market, common for all stocks

* groups of co-moving stocks (identified with various business sectors)
* random, idiosyncratic effects for each stock

C=C market i C i C

sector random

— T T T
‘7“0 Uy  Ug+ 2o 7% u' Ut +1,... N-1 7% U;" U

»- i Ngroup group "

Largest eigenvalue Intermediate eigenvalues Random bulk eigenvalues



Filtered correlation matrices

By visual inspection of intermediate eigenvalues for NSE, we choose N, = 5
No signficant error from choice = variations of N, due to eigenvalues closest to
random bulk = has lowest contribution to C

sector

Probability

10 F

Probability

107 107

random
1

-0.2 -0.1 0 0.1 0.2 0.3 0.4 05 0.6
Matrix elements

-0.2 -0.1 0 0.1 0.2 0.3 0.4 05 0.6
Matrix elements

NYSE: sector correlations as strong as market effects

= Distinct groups of interacting stocks (business sectors)
= No such case in NSE, sector contribution weak



= NSE has much smaller fraction of significantly interacting stocks
= Hard to segregate into groups having distinct sector identity

But can we show this explicitly ?

Reconstructing the stock interaction network

Method: Use the sector correlation matrix C_ .. to generate an
adjacency matrix A, such that

* Aij = | if CI]sector >C
* A; = 0 otherwise

cutoff . -
Depending on choice of C_ . _«

we get different numbers of clusters
* C_,.orf SMall = all stocks are
connected in a giant cluster

.- | * C_off large =all stocks are isolated
/ \ | nodes
| * Largest number of distinct clusters
o - °%  (=3) generated for C_ . .~ 0.1
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Comparing Market Structures
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So... very few distinct groups of co-moving stocks can be
identified in NSE compared to NSE

* But are these results too specific (i.e., valid only for NSE) ?

* Does the lack of group structure always get reflected in the
eigenvalue distrn of the market correlation matrix ?

* Let’s generate a random ensemble of returns with market
internal structure that is specified by us & examine their spectral
properties

For this, we use

Factor Models

Return of i stock, r X (t) =B m(t)+ykEik(t)+o. 1, (t)
Market Sector Random

subject to the condition: B 2+ (y)2+c 2= |

Gaussian (0,1)

Independent model parameters: relative strengths of sector effect
(Y) & random effect (G), and the number of sectors (M)



Simulation results with N =200, M =10

7LO=I\l[32’ klzsmax(l 'B)ZzSmax[I'\/(I'fyz'ﬁz)]2

where S__ :size of largest sector (=20)

* Increase of largest eigenvalue with increasing market effect
* Decrease of 2™ largest eigenvalue with dominance of market effect
= intermediate eigenvalues occur closer to random bulk (since Q=constant)
* If sectors are of same size, intermediate eigenvalues cluster together
» for different sized sectors, they are spaced apart
* Consistent with empirical NSE data; holds for y & ¢ distributed over a range



Conclusions

A detailed study of internal structure (network of stock
interactions) of an emerging market

* Supports the notion that emerging markets are more correlated
than developing ones = implication for portfolio diversification
(risk reduction) for investing in such markets

 Reason for correlation:

* Lack of distinct sector identity, relative absence of groups of co-
moving stocks

* Market effects dominate, systems tends to move as a
homogeneous entity to information shocks (e.g., news breaks)

» Hypothesis: Gradual emergence of sectors as market matures

 Implication for observed statistical properties of markets

* Universality of “inverse cubic” law = Price fluctuation distrn
may be explained as the response behavior of a single entity

(no need to consider complex internal structure of the market)



