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A brief history of econophysics

Pre-history:

18t century: Adam Smith anticipates complex systems
theory : hidden hand of free market emerges through
pursuit of self-interest by independent agents.

Ancient::
1897: Vilfredo Pareto’s power-law scaling of
wealth distribution — predates Wilson et al.
1 900: Louis Bachelier’s random walk model
for stock prices — predates Einstein and Black-
Scholes. |
Modern:: k.
Derivative Pricing
1958: MFM Osborne’s log-normal return
distn 1963: BB Mandelbrot’s fat-tailed
distribution of cotton prices
1995 onwards: Econophysics forges ahead




The Market according to Physics
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Questions

What is the question ?
— How to manage money ?
— By quantifying fluctuations in financial time series

Why care about fluctuations ?
— If there were no fluctuations, managing money would be trivial

What’s wrong with the present state of the art !
— Current theory based on random walk cannot explain outliers

— Option-pricing models depend crucially on the measured value
of volatility

Why care !
— Black Monday — rare, but hardly unique

— Return distribution is significantly non-Gaussian
— Large events are correlated — Volatility Clustering



Statistically Unforeseen Crashes
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Example: Korean Won vs US Dollar
* particularly clear that distribution
of price changes before the crisis
was extremely narrow

* could not be extrapolated to
anticipate what happened in the
crisis period.



Statistical Analysis of Financial Data

* Financial Data
— On a daily basis since |9™ century
— With a sampling rate of less than | min since 1984

— Transaction-by-transaction (“tick-by-tick™) since 1993

* Why analyse !?
— Fundamental reason: to understand market dynamics.

— Applied reason: related to option pricing (e.g., estimating
volatility) and portfolio management (e.g., picking stocks with
uncorrelated price movement).



Variety of Financial Data

* Micro-scale
— Order Book

* Types of order: buy/sell limit order and buy/sell market order
* Limit order: order to buy/sell security at a specific price

* Market order: buy/sell order to be executed immediately at the best
current price available

 Stock price: mid-range between bid (highest buy order) and ask price
(lowest sell order)

— Trade Book

* Record of each transaction: price and volume of shares traded

e Macro-scale

— Daily closure prices of individual stocks
— Market-indices, e.g., S&P 500



The Order Book

Buy limit orders Sell limit orders
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Date Time Price Volume
20030101 100706 63.00 100
20030101 101119 62.90 50 Th T d B I
20030101 101334 63.15 40 e ra‘ e OO (
20030101 101351 63.30 60 x 10"

20030101 102131 63.30 25
20030101 102250 63.30 15 55 ACtiVity
20030101 102336 63.00 100 '
20030101 102417 61.10 65
20030101 102417 61.15 60

3

2L

20030101 102417  61.25 25 %15_
20030101 102417  61.30 100 S
20030101 102417  61.35 50 70 al
20030101 102440  61.10 40

20030101 102452  61.10 60 - |
20030101 102531  61.10 100 60 '
20030101 103045  60.00 100 o b
20030101 103255  61.00 25 50

20030101 103329 60.05 50
20030101 103329 60.10 20

Evidence of self-similarity ?

@
20030101 103417  60.05 100 2 40+ .
20030101 103432  60.00 50 L
20030101 103456  60.00 50 i
20030101 103524  60.05 200
20030101 103615  60.05 25
20030101 103625  60.05 40 20+ Price variation 1
20030101 104325  60.05 10
20030101 104620  60.00 100 (Hourly average)

20030101 105455  60.00 5 10
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Fluctuations of Stock Indices

1 Evidence of self-similarity ?

Daily records
of the S&P 500
index for the
35-year period
1962-1996
(linear-log
scale)



What to look for in a time series ?

* What is an appropriate stochastic variable to

investigate !

Y (t) = price of financial asset at time t
Price change: Z(t) = Y(t+dt) - Y(t)
Seriously affected by change in scale

Return: R(t) = [Y(t+dt) - Y(t)] / Y(t)
Log Ratio of Prices: S(t)=log[Y (t+dt) / Y(t)]

For high-frequency data S(t) = R(t)



Distribution of price fluctuations

Deviation of fluctuations from random walk
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Time series of 850 events : Normalized to unit variance.
As time resolution becomes coarser, the time series resembles gaussian noise



Types of Analysis

* Frequency-domain analysis:

Distribution properties

* Time-domain analysis:

Autocorrelation properties
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Universality
Distribution shape is
independent of time-scale
chosen !

Common distribution for
 Different stocks
 Different markets
 Different countries

Return
Distribution

Central portion is log-normal,
tails are power-law distributed
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Return Distribution:

£ .Normal vs Crash/Rally
A Days

Ri(t) = [Yi(t+1)-Y,(O) Yi(t)

Y. (t): closure price of
i-th asset on day t

Ensemble Return
Distribution in a 200 trading
days time interval centered
at 19-10-87 (=0)

[PDF (z-axis) is log-scale]

Courtesy: R N Mantegna



Symmetry
Alteration

Return Distribution abruptly
changes shape on days of
extreme events in the market

PDF

Linear-log plots of the ensemble |,
return distribution in days of E
extreme negative (TOP) and

extreme positive returns (RIGHT).
Distribution is negatively skewed in 10° |
crash days; positively skewed in rally
days. 107

Courtesy: R N Mantegna



Artificial data generated by I nfO 'm ation abO Ut the

Single-index model .
Market is not enough!
Eéh\circle: a different trading day
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Effective correlation among assets cannot be fully described by a
single index ? [Limitation of mean field theory ?]



Volatility: Time-dependence

« How to estimate volatility ? [ e.g., for option pricing

formulae]
Estimate affected by time-interval used!

 Can longer time-intervals give better estimation !
Nonstationarity of volatility vs time implies volatility estimated
from long time series may be very different from volatility during

option lifetime.
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Volatility Distribution

How to measure volatility ?

Return : R(t)=log[Y(t+dt) / Y(t)]

Local variation: V(t) = Z_ .7 [R(T) - <R>{]?/n
where T = n dt is a time window, <R>; =X _ .+ R(T) / n.
Alternatively, volatility V(t) = Z - .1 [R(?)| / n.
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Distribution of volatility on
log-log scale with different
time windows T (dt = 30 min)

Universality
Common distribution for
 Different stocks
 Different markets
 Different countries
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single curve — well-fit by quadratic

function in log-log scale.

Log-normal fits the data better than

Gaussian distribution.
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Volatility distribution: Power-law tail

10° 5 . S U
: Volatility distribution
7 has very different
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Scaling behavior possibly related to long persistence of volatility

autocorrelation function (volatility clustering)
Long-range memory : High volatility follows high volatility and vice versa!

Similar results for individual company stock returns from TAQ database.



Autocorrelation
C(1) = [<G (t+1) G(1)> - <G (t+1)> <G(t)>] / [<G¥(t)>- <G(1)>?]
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Return: No autocorrelation - Validity of Efficient Market Hypothesis

Volatility: Very high autocorrelation — Volatility Clustering



(Power) Laws of the Market

price of a given stock p,

stock price ‘return’ 1, =Inp; — Inp,—a

IDistribution of absolute value of retum

P(r,| > x) ~ x5 &, =3

Distribution of trading volume V,

Gabaix et al, Nature 423, 267 (2003)

The ‘Inverse Cubic Law’ of
return distribution valid for
At = | min—= | month

P(V,>x)~x"%

Distribution of the number of trades N,

P(N, > x) ~ x~ ¥

Universality
P(r’>x)~x-¢
Common distribution for
 Different indices, stocks
 Different markets
 Different countries

fl,f = 1:5.

fNﬁ 3.4.

Plerou et al, PRE 60, 6519 (1999)

Cumulative distribution
) S

* 1000 largest companies
‘\\\TAQ Database '94-'95

“~. Lévy Regime

At = 15 min

® Positive tail
¢ Negative tail

”I_I1O | 100
Normalized returns



Do Indian Markets Follow a Different Law ?
Some recent studies claim “yes™

i I [ai | I-";'TESL*}}."'-‘M: glog-log' - {hi I;'r::s;'}ive:*ﬂifm“%
Return distrn of daily closing price, p . wg.\ Indian Stoéch 1

[At = | day ] for 49 largest stocks in :“ \ 22 / 1 :

NSE (Nov 1994 - Jun 2002) 3} N/ US Stocks
E WF ﬁ‘/ E ﬂ

Return, r . =log (P /P ._ ) m‘_“' 5, sgmi-log oY

Normalized return,r’ =r/ o (r) S T
2 Indian Stocks |

Return distribution decays as an v \

exponential function 3o ocks F

P(r’)~exp(-Br’)

B: characteristic scale L N R L

Matia et al, EPL 66, 909 (2004)

“...the stock market of the less highly developed economy of India belongs to a
different class from that of highly developed countries.” (Matia et al, 2004)



Breakdown of universality !!! Oris it 2?7?

Re-examination of the question leads to the opposite
conclusion:

Indian markets have a fat-tailed return distribution,
consistent with a power law having exponent a = 3,

Based on analysis of trading data from BSE & NSE with
different time resolutions

* Macro-scale (daily closing price)

* Micro-scale (transaction-by-transaction or tick-by-tick)



The Indian Financial Market

One of the biggest emerging markets in the world !

e H L 23 different stock markets in India
A — The two | t BSE & NSE
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The Indian Financial Market

One of the biggest emerging markets in the world !

Mumber of transactions

1885 1847 1235 20M 2003 2005

The largest of 23 stock markets in India is
National Stock Exchange (NSE)
3rd largest in world in terms of

transactions

* Commenced operations in Nov 1994
* Emerging nature = grown by several
orders of magnitude over 1995-2006

Turmover | Rs. million )

1885 1887 12Eg 200 2003 2005



Let us focus on a single stock, say, Reliance
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Using high-frequency trading data

Price { Rs)

Price Returns
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Tick-by-tick data allows us
to zoom into the daily
closing price time-series
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Reliance { NSE ), 1 Jan 2003 to 31 March 2004
700 . . .
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Distribution of 5-min interval price returns of a single
stock (Reliance)
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Dependence of the results on the observation time-scale

Reliance { NSE )

=

10 : ] —_ .
T + 1day | At =5 min
% 15 mins ||
5 10| __ At = |5 min
a
E‘ —
= At = | day
S 2
S 107} ._
o
¥
2
o
— -3
e 0 % ] Reliance ( NSE )
% ] eliance
© Comparing different time scales A t -23 1 10" ; : .
10" I | © day |]
10° 107 10' F . ;5(‘”'”51
Normalized Price Returns §1O'1— i ;
g‘ Comparing different time scales A t
@
5 107} £
o
QO
=
]
= -3
g 107 ¢ 3
=
O
10-4 1 I

Normalized Price Returns



Let’s now compare the distribution of price returns for
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Let’s normalize, i.e., divide by the
standard deviation of returns

The different curves collapse into a
power-law tail with exponent around 3

Normalized
Cumulative probability distribution

the different stocks

Cumulative probability distribution

The different stocks seem to follow
different long-tailed distributions

Cumulative Probability Density
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Do Indian markets follow the inverse-cubic law of stock
price return distribution ? (S & R K Pan, EPL, 2007)

(]

10 . ]
® b . 1 . ofe .
““Neee% At=5min |  Cumulative Probability Density of
1 & ~ o o« o .
107} o, 1 individual stock returns in the NSE
: R | (tick-by-tick data)
s 8, . .
£107} Eﬁ\ 3 =follow a power law tail consistent
3 B with inverse cubic law
3 107 g
. g0
o o AGC v “\\ : 80 : —
. o  BHEL ig B .
10 v DABUR et 70} — At =5 min -
= RELIANCE mAL LA -
A TATAPOWER 60}
1D_5—| ICI II 2
10 10 10 10 50t
Mormalized price returns Z - ]
%40
Histogram of power law exponents aof
for the individual return distributions 20}
of 489 stocks in the NSE ol JH
= median exponent value ~ 2.84 : _ﬁ ] |
0 1 2 3 4 5

Exponent o,



Do Indian markets follow the inverse-cubic law of stock
price return distribution ? (S & R K Pan, EPL, 2007)
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Probability density function
A single distribution of all the normalized
returns for 489 NSE stocks

Power law tail over
approximately two decades !
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A Tale of Two Markets
Comparing the NSE with NYSE

Probability density function for daily closing returns over the period Nov
1994 to May 2006

Almost identical distributions for NSE and NYSE stocks
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So, in terms of price fluctuation distribution, emerging

markets behave similarly to developed markets



However,
Other measures of market activity fail to show universality

Reliance { NSE ), 1 Jan 2003 to 31 Mar 2004
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What All This Means

* Econophysics points out the drawbacks of the
foundations of current financial theory.

* Distributions are non-Gaussian & Volatilities
cluster: random walk theory underlying most
option-pricing models need to be revised.

 Points out new universal relations which new
models of market activity should be able to
explain.



