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Abstract

What is the best possible way to send any message through a
noisy channel so that output of the channel is very much
closed to input message? Shannon quantified it as the
capacity of the channel – higher the capacity, higher will be
the closedness of the output message to the input one, on an
average. For this purpose, one will have to use the channel
many times. Capacity of a channel is given by the maximum
of the mutual information between the input and the output of
the channel, over all possible input probability distributions.
By using random block coding of sufficiently large length, one
can always send messages reliably through the noisy channel
at any rate which is less than or equal to the capacity of the
channel. In the present lecture, we will discuss about the
capacity of a noisy channel and how to achieve that.

– p. 2



Outline

• What is a noisy channel?

• How does a channel work?

• Examples of noisy channels

• Essential idea to find out channel capacity

• Jointly typical sequences

• Noisy channel coding theorem and its converse

• Examples

• Summary

• References

– p. 3



What is a noisy channel?
What is a channel: A channel is a device which gives an
output if some input is fed into it. A telephone line
connecting two (or more) telephone sets, broadcasting of
programmes of a radio centre to some radio set, internet
networking, nervous system, etc. are examples.
Noisy channel: A noisy channel is such a channel which,
in general, distorts the input messages. While talking
over a mobile phone inside a running electric train, we
generally can’t hear properly the voice of the other
person, we are talking to. This happens due to the
interference of the mobile phone network with the
electromagnetic field caused by the overhead electric
wire of the train. So, here the em field causes the noise in
the mobile networking system.
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How does a channel work?
(1) Express the message, to be sent through the channel,
in terms of a string of letters chosen from an apriori fixed
alphabet. (e.g., the sound wave of your speech over a
telephone set gets transformed into a stream of several
elementary electromagnetic signals) (2) This string of
letters is then fed into the channel (The stream of em
signals pass through the telephone cable). (3) Another
string of letters is produced at the output of the channel
(A stream of em signals is reproduced at the receiving
end of the telephone line). (4) The output string of letters
is then converted into a new message, which may or may
not be same as the original message (The output stream
of em signals are then converted into sound waves,
which, in turn, may or may not be same as the input).
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Examples of noisy channels
Example (1) Noiseless binary channel: Under the action
of the channel, 0 → 0 and 1 → 1. So each bit can be sent
through the channel in an error-free manner.

Example (2) Channel with non-overlapping outputs:
Under the action of the channel, 0 → 1 with probability
1/2, 0 → 2 with probability 1/2, and 1 → 3 with probability
1/2, 1 → 4 with probability 1/2. Although the
correspondence between the inputs and the outputs are
not in one-to-one fashion, looking at the output, one can
uniquely predict the input. So each of the bits can be
sent through the channel in a noise-free manner.
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Examples of noisy ....

Example (3) Noisy English typing machine: Under the
action of the channel, the letters are being transformed
as: with probability 1/2, a → a while with probability 1/2,
a → b; with probability 1/2, b → b while with probability
1/2, b → c; . . . . . .; with probability 1/2, y → y while with
probability 1/2, y → z; with probability 1/2, z → z while
with probability 1/2, z → a. But the punctuation symbols
as well as the numbers remain intact. If we consider any
paragraph involving only the letters (together with the
punctuation symbols and numbers) a, c, . . . , y, then the
paragraph can be typed intact by the machine. So, in this
case the channel will work in a noise-free manner on the
letters a, c, . . . , y.
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Examples of noisy ....
Example (4) Binary symmetric channel: Given any proper
fraction p, under the action of the channel, 0 → 0 with
probability (1 − p), 0 → 1 with probability p, and
symmetrically, 1 → 1 with probability (1 − p), 1 → 0 with
probability p. Looking at the output, it is impossible to
predict with certainty regarding the input. So, the bits
can not be sent through this channel in an error-free
manner.
Example (5) Binary erasure channel: Given any proper
fraction p, under the action of the channel, 0 → 0 with
probability (1 − p), 0 gets vanished with probability p, and
1 → 1 with probability (1 − p), 1 gets vanished with
probability p. Looking at the vanished output, it is
impossible to predict with certainty regarding the input.
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Examples of noisy ....
Example (6) Symmetric channel: Given any discrete
probability distribution {p1, p2, . . . , pd} (thus
p1 + p2 + . . . + pd = 1 and pi’s are probabilities), under the
action of the channel, 1 → 1 with probability p1, 1 → 2 with
probability p2, . . ., 1 → d with probability pd; 2 → 1 with
probability p

(2)
1 , 2 → 2 with probability p

(2)
2 , . . ., 2 → d with

probability p
(2)
d ; . . .; d → 1 with probability p

(d)
1 , d → 2 with

probability p
(d)
2 , . . ., d → d with probability p

(d)
d , where

(p
(2)
1 , p

(2)
2 , . . . , p

(2)
d ), . . . , (p

(d)
1 , p

(d)
2 , . . . , p

(d)
d ) are permutations of

the row (p1, p2, . . . , pd) while
(p2, p

(2)
2 , . . . , p

(d)
2 ), . . . , (pd, p

(2)
d , . . . , p

(d)
d ) are permutations of

the column (p1, p
(2)
1 , . . . , p

(d)
1 ). Example (4) is a special case

of it.
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Essential idea to find out channel

capacity
• A channel is uniquely described by the entire set of
transition probabilities Prob(Y = y|X = x) ≡ py|x for all
possible values x of the input variable X and all possible
values y of the output variable Y .
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Essential idea to find ....

• Probing the output values y, we would like to know
about the corresponding input values x. So, more we can
reduce the content of information in X by knowing Y ,
more efficiently we can know X. Thus, we should look at
the mutual information I(X; Y ). As, given any channel,
we can alter only the input probability distributions,
therefore, in order to get the maximum possible
efficiency of the channel, we should maximize I(X; Y )
over all possible input distributions px’s. This is
maximized I(X; Y ) is the capacity of the channel in
question.
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Essential idea to find ....

• Choosing the appropriate input prob. distribution px is
somewhat similar to choosing the selective no. of letters
a, c, . . . , y in noisy English typing machine, so that looking
at the perfectly distinguishable outputs, one can reliably
infer about the inputs.
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Essential idea to find ....

• The basic idea is to first encode each message i from
the message set {1, 2, . . . ,M} using some encoding
procedure Xn(i) to produce (in an 1-to-1 way) a string of
n bits. Then send this n-bit string through the channel to
produce another n-bit string Y n. If Xn(i) is a typical
sequence, there are approximately 2nH(Y |X) no. of
possible sequences Y n (forming the set Stypical, say), each
being of equal probability. As we want that no two X
sequences produce the same Y sequence, and as, in
total, there are 2nH(Y ) no. of typical Y sequences, the total
no. of required disjoint sets Stypical must be
≤ 2n(H(Y )−H(Y |X)) = 2nI(X;Y ). So, we can send at most
2nI(X;Y ) no. of distinguishable X sequences of length n,
for sufficiently large n.
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Jointly typical sequences
• Discrete channel: Represented by (X , py|x,Y), with
finite input as well as output sets X , Y and transition
probabilities py|x such that

∑
y py|x = 1.

• n-th power discrete memoryless channel: Represented
by (X n, py1,y2,...,yn|x1,x2,...,xn

,Yn) where
pyk|x1,x2,...,xk;y1,y2,...,yk−1

= pyk|xk
(for k = 1, 2, . . . , n), with xj, yj

being the input, output of the j-th use of the channel.
• n-th power discrete channel without feedback:
Represented by (X n, py1,y2,...,yn|x1,x2,...,xn

,Yn) where
pxk|x1,x2,...,xk−1;y1,y2,...,yk−1

= pxk|x1,x2,...,xk−1
(for k = 1, 2, . . . , n).

• So, for an n-th power DMC without feedback, we have:
py1,y2,...,yn|x1,x2,...,xn

=
∏n

i=1 pyi|xi
.
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Jointly typical ....

• An (M,n) code for a discrete channel (X , py|x,Y) is
represented by ({1, 2, . . . ,M}, Xn : {1, 2, . . . ,M} → X n, g :
Yn → {1, 2, . . . ,M}), Xn being the encoding function with
Xn(1), Xn(2), . . . , Xn(M) being the codewords forming the
codebook {Xn(1), Xn(2), . . . , Xn(M)} and g being the
decoding function.
• Conditional probability of error for an (M,n) code for a
discrete channel (X , py|x,Y): λi ≡ Prob(g(Y n) 6= i|Xn =

Xn(i)) =
∑

{(y1,y2,...,yn)∈Yn:g((y1,y2,...,yn)) 6=i} py1,y2,...,yn|x1(i),x2(i),...,xn(i)

for i = 1, 2, . . . ,M .
• Maximal probability of error for an (M,n) code for a
discrete channel (X , py|x,Y):
λ(n) ≡ max {λi : i = 1, 2, . . . ,M}.
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Jointly typical ....

• Average prob. of error for an (M,n) code:
P

(n)
error ≡ (1/M) ×

∑
i=1 λi. Note that if all the indices i’s are

chosen uniformly from {1, 2, . . . ,M}, then
P

(n)
error =

∑M

i=1 Prob(i 6= g(Y n)). Obviously, P
(n)
error ≤ λ(n). It

can be shown that: smallness in Perror implies that in λ(n).

• Rate of an (M,n) code: R ≡ (log2M)/n bits per use of
the channel.
• Achievable rate R: A given rate R is achievable if there
exists a sequence of (⌈21R⌉, 1), (⌈22R⌉, 2), . . . , (⌈2nR⌉, n), . . .

codes for a discrete channel (X , py|x,Y) such that λ(n) → 0

as n → ∞, where, for any real no. z, ⌈z⌉ is the smallest
integer ≥ z.
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Jointly typical ....

• (Operational) capacity C of a DMC without feedback: It
is the supremum of all the achievable rates. Thus any
rate R < C will yield arbitrarily small probability of error
for sufficiently large block lenght n.

• Intuitively, we decode the channel output Y n as the
index i if the codeword Xn(i) is ‘jointly typical’ with Y n.

• If xn ≡ (x1, x2, . . . , xn) is taken from the typical set
A(X)(n, ǫ) and the corresponding output sequence
yn ≡ (y1, y2, . . . , yn) is also from the typical set A(Y )(n, ǫ) for
the joint prob. distribution pxn,yn, (xn, yn) need not be
jointly typical!
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Jointly typical ....

• Jointly typical set:
A(X,Y )(n, ǫ) = {(xn, yn) ∈ X n×Yn : |−(1/n)log2pxn−H(X)| <
ǫ, | − (1/n)log2pyn − H(Y )| <
ǫ, | − (1/n)log2pxn,yn − H(X,Y )| < ǫ}, with
pxn,yn =

∏n

i=1 pxi,yi
.
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Jointly typical ....

• Joint AEP: Let (Xn, Y n) be drawn i.i.d. according to
pxn,yn =

∏n

i=1 pxi,yi
. Then (1) Prob(A(X,Y )(n, ǫ)) → 1 as

n → ∞. (2) |A(X,Y )(n, ǫ)| ≤ 2n(H(X,Y )+ǫ). (3) If (X̃n, Ỹ n) has
prob. distribution pxn × pyn, then
Prob((X̃n, Ỹ n) ∈ A(X,Y )(n, ǫ)) ≤ 2−n(I(X;Y )−3ǫ). (4) For
sufficiently large n,
Prob((X̃n, Ỹ n) ∈ A(X,Y )(n, ǫ)) ≥ (1 − ǫ)2−n(I(X;Y )+3ǫ).

• Using this AEP properties, a proof of Shannon’s noisy
channel coding theorem can be given. Shannon has
shown in this proof that the ‘operational capacity’ of a
noisy channel is asymptotically same as the
‘informational capacity’ of the channel.
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Noisy channel coding theorem and its
converse

• Given any rate R less than the capacity C, there exists
a sequence (⌈2nR⌉, n) of codes for a DMC without
feedback with λ(n) → 0. Conversely, any sequence
(⌈2nR⌉, n) of codes for a DMC without feedback with
λ(n) → 0, we must have R ≤ C.
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Examples
• (1) For the noiseless binary channel (example 1), each
bit is transmitted undisturbed through the channel, and
so, looking each time at the channel output, one will be
able to infer about the channel input, without making any
error. So, one can send exactly one bit undisturbed per
single use of the channel. Therefore the capacity C of
this channel must be 1 bit. This is easy to show by
maximizing I(X; Y ) over all possible initial probability
distributions px’s. Choose, for example, p0 = 1/2, p1 = 1/2.
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Example ....

• (2) For the noisy channel with non-overlapping outputs
(example 2), each transmitted bit can be recovered,
without making any error, by looking at each of the four
outputs. So, one can send exactly one bit undisturbed
per single use of the channel. Therefore the capacity C of
this channel must be 1 bit. This is easy to show by
maximizing I(X; Y ) over all possible initial probability
distributions px’s. Choose, for example, p0 = 1/2, p1 = 1/2.
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Example ....

• (3) For the noisy English type writter (example 3), any
set of all the alternate alphabets (there are 13 such
alphabets are there) gets transmitted without making any
error per single use of the channel. So, one can send
exactly log213 bits of information intact per single use of
the channel. Therefore the capacity C of this channel
must be log213 bits. This is easy to show by maximizing
I(X; Y ) over all possible initial probability distributions
px’s. Choose, for example, the uniform probability
distribution: pa = pb = . . . = pz = 1/(26).
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Example ....

• (4) For the binary symmetric channel (example 4),
I(X; Y ) = H(Y ) − H(Y |X) = H(Y ) −

∑
x=0,1 pxH(Y |X =

x) = H(Y ) −
∑

x=0,1 px × H2(p) (as, for example,
Prob(Y = 0|X = 0) = 1 − p and Prob(Y = 1|X = 0) = p,
therefore H(Y |X = 0) = H2(p)) = H(Y ) − H2(p) ≤ 1 − H2(p)
(as Y is here a binary random variable, so
H(Y ) ≤ log22 = 1), the inequality will become equality if
py is uniform, which will hold good if and only if px is
uniform, i.e., p0 = p1 = 1/2. So C = 1 − H2(p).
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Summary
• What do we mean by classical information of a data: it
is given by the Shannon’s entropy of the probability
distribution of different events of that data.
• To what extent can one compress a data: for large
string size of different events from the data, it is again
given by the Shannon’s entropy of the probability
distribution of different events of that data, per unit
length of the string.
• What is the maximum rate of transmission of data
through a noisy channel: for sending any string of events
of large length through the channel, the maximum rate
can not cross the mutual information of the input and the
output random variables per single use of the channel.
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