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Abstract
The information content of a random variable X, with
associated probability mass density px ≡ Prob(X = x), is
described by Shannon as the entropy H(X) bits. In the
present lecture, we will see that in order to store a string of
values of X of arbitrarily large length in the most economic
way, one would require, on an average, a bit string of length
H(X) for storing the value of X.
Asymptotic equipartition property guarantees that, on an
average, at least nH(X)-bit string is a must in order to reliably
store the information about an arbitrary sequence (of length
n) of values of X, n being very large. For achievability of this
limit, one should look for proper encoding of the strings –
Huffman codes provide such a solution.
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Outline

• Thermodynamic entropy versus information theoretic
entropy

• Asymptotic equipartition property

• Data compression and encoding
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Thermodynamic versus information
theoretic entropies

Entropy in statistical thermodynamics: If pi is the
probability of the i-th state of a thermodynamic system
(e.g., pi may be the probability that in an idael gas of
several colliding molecules, some of the gas particles are
having velocity vi at an instant of observing the motion of
the gas molecules). The thermodynamic entropy is then
given by: S = k ×

∑
i pi × logepi, k being Boltzman

constant and the logarithm is the natural one.
Microcanonical ensemble: For any microcanonical
ensemble, all the microstates are taken to be equally
probable. So S = k × logen, where n is the total no. of
microstates.
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Thermodynamic versus ....
2nd law of thermodynamics: Entropy of an isolated
thermodynamic system is non-decreasing.
• Question: Does the same feature happen for
information theoretic entropy?
• Modelling isolated systems: For this purpose, we need
to model an isolated system from the perspective of
information theory. For any isolated system, the state of
the system at some time t depends solely on the
governing dynamical laws and the state of the system
immediately before the time t. This indicates to a Markov

chain type evolution of the system with the transition
probabilities being provided by the governing physical
laws.
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Thermodynamic versus ....
• Stochastic process: {Xα : α ∈ Λ} is a collection of
random variables each having the same value set, Λ
being either a discrete or a continuous index set, and
where the joint probability mass density
Prob(Xα1

= xα1
, Xα2

= xα2
, . . . , Xαn

= xαn
) always exits for

any choice of n indices α1, α2, . . . , αn from Λ with
n = 1, 2, . . ..
• Discrete stochastic process: A stochastic process for
which Λ is discrete. In this case, we can take
Λ = {1, 2, . . .}.
• Markov chain: It is a discrete stochastic process for
which Prob(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 =
x1) = Prob(Xn+1 = xn+1|Xn = xn) for all xn+1, xn, . . . , x1 and
for all n. So px1,x2,...,xn

= px1
px2|x1

px3|x2
. . . pxn|xn−1

.
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Thermodynamic versus ....

• Time invariance, states, stationary distribution, etc.:
(i) A Markov chain {X1, X2, . . .} is time-invariant iff
Prob(Xn+1 = a|Xn = b) = Prob(X2 = a|X1 = b) for all n, a, b.
(ii) Xn: state of the chain at time n.
(iii) For all n ≥ 2, stationary distribution:
Prob(Xn+1 = a) = Prob(Xn = a) for all a.
(iv) Transition probability matrix:
Pij = Prob(Xn+1 = j|Xn = i).
(v) Thus pxn+1

=
∑

xn
pxn

× Pxnxn+1
. So, for the same

Markov chain, pxn
will be different if px1

’s are different.
(vi) Call the prob. mass density pxn

as pn.
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Thermodynamic versus ....

• Relative entropy decreases: For two different
probability mass functions pn and p′n of the same Markov
chain, D(pn+1||p

′
n+1) ≤ D(pn||p

′
n) for all n. (Use chain rule of

relative entropy)

• Entropy decreases for non-uniform stationary
distribution: Intial probability mass density p1 be
uniform. So H(X1) is maximum. Under the time evolution
this initial uniform prob. mass density will tend to a
stationary distribution pn for all n ≥ 2, and hence H(Xn)
can not be maximum, as pn is non-uniform.

– p. 8



Thermodynamic versus ....

• Entropy increases for uniform stationary distribution:
p′n: uniform stationary distribution, pn: any other
distribution at time n. Then
D(pn||p

′
n) = log2d − H(pn) = log2d − H(Xn), d: size of the

value set of the chain. As D(pn||p
′
n) decreases with n,

H(Xn) will increase.

• Above scenario is somewhat closed to the case of
microcaconical ensemble in statistical thermodynamics.
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Asymptotic equipartition property
String of random variables: The height hi of a flight at
time ti, while moving from one place A to another place
B, will not be far apart from its height at time ti−1 if
ti − ti−1 is small enough. But during an entire year, the
height Xi may vary within the interval [hmin

i , hmax
i ] for each

i with associated probability Prob(Xi = hi) ≡ pi(hi). So the
random variables Xi, X2, . . . are not independent. We
need to know the joint probabilities
Prob(X1 = h1, X2 = h2, . . . , Xn = hn) to get the information
content about the heights of the flight.
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Asymptotic equipartition ....
i.i.d. random variables: L random variables
X1, X2, . . . , XL, having same value set, are i.i.d. iff (i)
Prob(X1 = a) = Prob(X2 = a) = . . . = Prob(XL = a)
(≡ Prob(X = a), say) for all a and
Prob(X1 = a1, X2 = a2, . . . , XL = aL) = Prob(X1 =
a1) × Prob(X2 = a2) × . . . × Prob(XL = aL) for all
a1, a2, . . . , aL.
Letters, alphabet, messages: X1, X2, . . ., XL be i.i.d.
random variables distributed as X. For any random
variable X, each of its values x1, x2, . . ., xn is called a
letter; the set {x1, x2, . . . , xn} is called alphabet; any string
xi1xi2 . . . xiL of length L is called a message where L can be
any positive integer.
Prob(XL = xi1xi2 . . . xiL) = p(xi1)p(xi2) . . . p(xiL).
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Asymptotic equipartition ....
Weak law of large numbers: For all n, if X1, X2, . . . , Xn are
i.i.d. random variables distributed as X and if E(X) < ∞,
then for any given ǫ > 0: Prob(|(1/n)

∑n

i=1 Xi − E(X)| > ǫ)
tends to 0 as n goes to ∞ – ‘convergence in probability’.
Asymptotic equipartition property: If X1, X2, . . . are i.i.d.
random variables distributed as X (with prob. mass
density p(x) ≡ Prob(X = x) and joint prob. mass density
p(x1, x2, . . .) = p(x1)p(x2) . . .) then the random variable
−(1/n) × log2p(X1, X2, . . .) → H(X) in probability for finite
H(X).
Proof: log2p(X1), log2p(X2), . . . are i.i.d. random variables
distributed as log2p(X) with
E(log2p(X)) =

∑
x p(x)log2p(x) = −H(X). So, by WLLN,

−(1/n) × log2p(X1, X2, . . .) → H(X) in probability.
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Asymptotic equipartition ....

Typical set and sequence: Let H be the value set of the
random variable X with prob. mass density p(x). Given
any ǫ > 0 and n, the typical set w.r.t. p(x)

is: A(n, ǫ) ≡ {(x1, x2, . . . , xn) ∈ Hn|2−n(H(X)+ǫ) ≤

p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ǫ)}. Each element of A(n, ǫ) is
called as a typical sequence.
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Asymptotic equipartition ....

Property (1): (x1, x2, . . . , xn) ∈ A(n, ǫ) implies that
H(X) − ǫ ≤ −(1/n)log2p(x1, x2, . . . , xn) ≤ H(X) + ǫ.

Property (2): Prob(A(n, ǫ)) > 1 − ǫ for sufficiently large n.

Property (3): Total no. of elements in A(n, ǫ) ≤ 2n(H(X)+ǫ).

Property (4): Total no. of elements in
A(n, ǫ) ≥ (1 − ǫ) × 2n(H(X)−ǫ) for sufficiently large n.

Proof: Follows from the definition of A(n, ǫ) and AEP.
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Data compression and encoding
• Aim: X1, X2, . . . , Xn be i.i.d. random variables
distributed according to X with prob. mass density p(x),
H being the value set. We want to find out shortest
description for the sequences (x1, x2, . . . , xn).
• How to do that?: (1) Devide Hn into typical and atypical
sets A(n, ǫ), (A(n, ǫ))c respectively.
(2) Order the elements in each of these two sets
according to lexicographic order. We can then represent
each element of these sets by the corresponding index of
the ordering. By property (3), this indexing requires not
more than n(H(X) + ǫ) + 1 bits for A(n, ǫ). We prefix all
these bit strings by a 0, giving a total length:
n(H(X) + ǫ) + 2 bits.
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Data compression ....

(3) Similarly, encode the indices of the ordered set
(A(n, ǫ))c by means of strings of log2|H|n + 1 bits. Prefix all
these bit strings by an 1, giving a total length:
nlog2|H| + 2. Thus encoding of Hn is completed now.

(3) Let xn ≡ (x1, x2, . . . , xn). l(xn): length of the codeword.
Then, for sufficiently large
n: E(l(Xn)) =

∑
xn p(xn)l(xn) =

∑
xn∈A(n,ǫ) p(xn)l(xn) +

∑
xn∈(A(n,ǫ))c p(xn)l(xn) ≤

∑
xn∈A(n,ǫ) p(xn)[n(H(X) + ǫ) + 2] +

∑
xn∈(A(n,ǫ))c p(xn)[nlog2|H| + 2] = Prob(A(n, ǫ))[n(H(X) +

ǫ) + 2] + Prob((A(n, ǫ))c)[nlog2|H| + 2] ≤ [n(H(X) + ǫ) + 2] +
ǫ[nlog2|H| + 2] = n(H(X) + ǫ + ǫlog2|H| + 2/n) → nH(X).
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Data compression ....

• Thus, for sufficiently large n, we can store the
information about all the strings (x1, x2, . . . , xn) by
represrenting them using nH(X) bits, on an average.
• Is it optimum?
• Shannon has shown, using Huffman codes (which
involves block coding), that this is optimum.
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Variable vs. fixed length coding
• Eight ‘letters’ 1, 2, 3, ..., 8 are produced by a source
with respective probabilities 1/2, 1/4, 1/8, 1/16, 1/64, 1/ 64,
1/64, 1/64.
Fixed lenght coding: C(1) = 000, C(2) = 001, C(3) = 010,
C(4) = 011, C(5) = 100, C(6) = 101, C(7) = 110, C(8) = 111.
Average no. of bits per letter is 3.
Variable lenght coding: C(1) = 0, C(2) = 10, C(3) = 110,
C(4) = 1110, C(5) = 111100, C(6) = 111101, C(7) = 111110,
C(8) = 111111. Average no. of bits per letter is 2 = H(X).
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Information about the next lecture
• In the next lecture, we will discuss about Shannon’s
noisy channel coding theorem, according to which, one
can send any large string of values of a random variable
through a noisy chhanel, almost in an error-free manner
at a maximum rate of I(X; Y ) bits per single use of the
channel, X and Y being respectively the input and output
random variables of the channel and I(X; Y ) is their
mutual information.
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