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Abstract
Classical information theory provides useful methods to pr ocess and transmit
informations using laws of classical physics. It was Shanno n who had laid the
foundational structure of classical information theory, b ack in 1948, by providing (i) an
optimal data compression scheme for storing classical info rmation through a process
of removing all the redundancies in the data, and (ii) an opti mal channel
encoding-decoding scheme for transmitting classical info rmation in an error-free
manner through a process of inserting redundancies into the encoding. In this set of
three lectures, I will discuss about these two schemes after a brief discussion about
Shannon’s entropy. If time permits, I will then briefly discu ss about Kolmogorov’s
complexity and its relation with Shannon’s entropy.

• First lecture: What is classical information; Shannon’s
entropy as information content; Coding schemes;
Examples.
• Second lecture: Shannon’s source coding theorem.
• Third lecture: Shannon’s noisy channel coding
theorem.

– p. 2



What is classical information?

Statement 1: The sun will rise on the east today.

Statement 2: We may have rain fall tonight at Chennai.

• Statement 1 does not add any useful information to our
knowledge, it is a certain event.

• Statement 2 does add some useful information to our
knowledge, as rain fall at Chennai is not a certain event.
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Information is all about probabilities
• Statement 3: One-third of the world’s population is
India’s present population.
• Statement 4: Two-third of the earth’s surface is
covered by water.
• Is there any difference between the information
contents of these two statements?.
• No! Given any person, our ignorance about his/her
nationality is same as our ignorance about the character
(viz. water or solid) of any given surface area of the
Earth.
• So information is all about the probabilities of
occurrances of different events: probability that a person
(from all over the world) is Indian is 1/3, probability that a
surface area of the Earth is solid is equal to 1/3, etc.
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Information is ignorance

• Thus the amount of information about an event is the
amount of ignorance (or, uncertainty) about that event.

• Ignorance increases with increase of the inverse of the
probability p of occurance of the event.

• Total amount of ignorance of two independent events is
sum of the ignorances.

• So the amount of ignorance I(p) should be an additive
function of p.
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Shannon’s entropy
• Using continuity and additivity properties of I(p),
Shannon (1948) has shown that I(p) = log

2
(1/p) upto

some additive and/or multiplicative constant.

• So the average information content of a set X of n
mutually exclusive but exaustive events x1, x2, , xn with
respective probabilities p1, p2, . . ., pn is the given by the
Shannon entropy H(X) = −

∑n

i=1
pilog

2
pi.

• H(X) depends only on pi’s, not on event names xi’s.

• Base 2 in the logarithm is used in order to express
every event as a string of bit values 0 and 1, and thereby,
H(X) has its unit as no. of bits.
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Information content of a random variable

• As the names of the events (e.g., Sun will rise today on
the East, we will not have rain fall tonight in Chennai,
Barrack Obama is a non-Indian national, Mediterranian
sea is not a portion of the land area of Earth’s surface)
are immaterial so far as there information contents are
concerned, it is enough to consider an abstract variable
X having values ( x, say) as the events (in a statement)
with associated probabilities Prob(X = x) ≡ px being the
corresponding probabilities of occurances of the events.

• Such an X is called as a random variable in probability
theory.
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Information content of ....

• Thus, according to Shannon, the average information
content of a random variable X, having probability mass
density px, is the entropy H(X) = −

∑
x
pxlog

2
px.

• For a joint probability mass density
px1,x2,...,xn

≡ Prob(X1 = x1, X2 = x2, . . . , Xn = xn) of an
unordered sequence of n random variables X1, X2, . . . , Xn,
the average information content is given by the joint
Shannon entropy: H(X1, X2, . . . , Xn) =
−

∑
x1,x2,...,xn

px1,x2,...,xn
log

2
px1,x2,...,xn

.

• In case X1, X2, . . . , Xn are independent random
variables (i.e., px1,x2,...,xn

= px1
× px2

× . . . × pxn
) we have

H(X1, X2, . . . , Xn) =
∑n

i=1
H(Xi).
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Certain event vs. most disordered event

• For any random variable X with value set {x1, x2, . . . , xn}
and Prob(X = xi) = pi, if for some i, xi is a certain event
then H(X) = 0; so we have no ignorance about X!

• Thus, in the case of statement 1, as the phenomenon
that the Sun will rise on the East is a certain event, the
value “Sun will rise on the East” of a two-valued random
variable X occurs with probability 1, while its
complementary value “Sun will not rise on the East”
does never occur. So H(X) = −(1× log

2
1 + 0× log

2
0) = 0.
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Certain event vs. most ....

• For equally probable events x1, x2, . . ., xn, we have
H(X) = log

2
n; so we have maximum ignorance about X.

• Thus, for example, in an experiment of throwing a
unbiased coin once, as the probability of occurance of a
‘head’ is same as that of occurance of a ‘tail’, the average
information content of the corresponding random
variable X (which takes the values ‘head’ or ‘tail’ with
probability 1/2) is given by H(X) = −(2 × 1

2
× log

2

1

2
) = 1.

• For all other probability distributions,
0 ≤ H(X) ≤ log

2
n.

• Thus, in the case of statement 3, we have:
0 < H(X) = −(1

3
×log

2

1

3
+ 2

3
×log

2

2

3
) = log

2
3−2/3 < log

2
2 = 1.
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Example 1

• Given a proper fraction p, let X be a {0, 1}-valued
random variable with Prob(X = 0) = 1 − p and
Prob(X = 1) = p. Then
H(X) = −plog

2
p− (1− p)log

2
(1− p) ≡ H2(p). Note that H2(p)

is a concave function of the variable p on the unit interval
0 ≤ p ≤ 1, i.e., with 0 ≤ p1 ≤ p2 ≤ 1 together with 0 ≤ λ ≤ 1,
we have H2(λp1 + (1 − λ)p2) ≥ λH2(p1) + (1 − λ)H2(p2).
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Example 2
• Let X be a {a, b, c, d}-valued random variable with
Prob(X = a) = 1/2, Prob(X = b) = 1/4, Prob(X = c) =
1/8, Prob(X = d) = 1/8. Then H(X) = 7/4 bits.
• We now want to determine the value of X with a min.
no. of questions: e.g., “Is X = a?” If not, “is X = b?” If
both are false, “is X = c?” Note that each question is of
yes/no - type ( i.e., binary). The 1st question is single
binary, 2nd is double binary, 3rd is triple binary with
respective probabilities 1/2, 1/4, 1/8 + 1/8 = 1/4 ⇒ the
expected no. of binary questions is 7/4, which is same as
H(X)!
• In general, for any random variable X, the expected no.
of min. of of binary questions required to determine the
value of X, lies between H(X) and H(X) + 1.
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Joint vs. conditional entropy

• Joint entropy H(X1, X2, . . . , Xn): already defined.
• Conditional entropy: H(Y |X) ≡

∑
x
px × H(Y |X = x) =

−
∑

x
px ×

∑
y
py|x × log

2
py|x = −

∑
x
px,y × log

2
py|x.

• Chain rule: Joint entropy of (X,Y ) is the sum of the
entropy of X (equivalently, Y ) and the conditional entropy
of Y given X (equivalently, X given Y ), , i.e.,
H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).
• Prove it!
• As a consequence: H(X,Y |Z) = H(X|Z) + H(Y |X,Z).
• Prove it!
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Example

• Consider the motion of a system of two coupled
classical harmonic oscillators of equal mass m, equal
frequency ω, both are moving along the x-axis under
simple harmonic potentials (1/2)mω2x2

1
and (1/2)mω2x2

2
,

and where the coupling potential is K(x1 − x2)
2. So the

total Hamiltonian of the system is H =
p2

1
/(2m) + p2

2
/(2m) + (1/2)mω2x2

1
+ (1/2)mω2x2

2
+ K(x1 − x2)

2,
where pi is the momentum of the i-th oscillator and xi

being its position.
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Example ....

• Let X1 be the random variable having values as the
position ( x, say) of the centre of mass of the entire
systems, while X2 be the random variable having values
as the distance ( r, say) of the two oscillators.
• Show that both the probability mass functions
px ≡ Prob(X1 = x) and pr ≡ Prob(X2 = r) are Gaussians.
Show that the joint probability px,r = px × pr (so X1, X2 are
independent random variables). Show that
H(X2|X1) = H(X1|X2) = 0.

• In general, H(X|Y ) 6= H(Y |X), but we always have:
H(X) − H(X|Y ) = H(Y ) − H(Y |X).
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Shannon’s entropy, relative entropy, mutual information

• Shannon’s entropy is all about probability
distributions: same probability distributions give rise t o
the same entropy.

• How to compare two different probability distributions
px = Prob(X = x) and qx = Prob(Y = x)? Relative
entropy: D(p||q) ≡

∑
x
px × log

2
{px/qx}.

• Relative entropy is not a distance as it is not
symmetric with respect to p and q. But it is always
non-negative and is equal to zero iff px = qx.
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Shannon’s entropy, relative entropy ....

• Mutual information I(X; Y ) is the measure of
information content of one random variable about the
other one. It is the relative entropy of the joint
distribution px,y and the product distribution
px × py: I(X; Y ) =

∑
x

∑
y
px,y × log

2
{px,y/(px × py)}.

• For finding out capacities of noisy channels, by
looking at the outputs of the channel over all inputs, the
mutual information of the inputs and the outputs is the
quantity one should calculate – according to Shannon.
• I(X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X). (Prove it!)
Thus I(X : Y ) is the reduction in the amount of
uncertainty about X due to the knowledge about Y .
• I(X; Y ) = H(X) + H(Y ) − H(X,Y ). (Prove it!)
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Example

• Let X and Y be two {0, 1}-valued random variables with
p0 = Prob(X = 0) = 1 − r and q0 = Prob(Y = 0) = 1 − s.
Show that D(p||q) = 0 iff p0 = q0. When r = 1/2 and s = 1/4,
show that I(X; Y ) = 0.375 bits.
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Chain rules for entropy, relative entropy and mutual
information

• Chain rule for entropy: For a string of random variables
X1, X2, . . . , Xn with joint probability distribution px1,x2,...,xn

,
we have:
H(X1, X2, . . . , Xn) =

∑n

i=1
H(Xi|Xi−1, Xi−2, . . . , X1).

• Conditional mutual information I(X; Y |Z): It is the
reduction in the uncertainty in X due to the knowledge of
Y given Z. So I(X; Y |Z) ≡ H(X|Z) − H(X|Y, Z).

• Chain rule for mutual information:
I(X1, X2, . . . , Xn; Y ) =

∑n

i=1
I(Xi; Y |Xi−1, Xi−2, . . . , X1).
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Chain rules for entropy, relative entropy .......

• Conditional relative entropy It is the average relative
entropy of the conditional probabilities py|x and qy|x,
averaged over
px: D(py|x||qy|x) ≡

∑
x

∑
y
py|x × log

2
{py|x/qy|x}.

• Chain rule for relative entropy:
D(px,y||qx,y) = D(px||qx) + D(py|x||qy|x).

– p. 20



Jensen’s inequality

• If f is a convex function and if X is a random variable,
we have: expectation of f(X) ≥ f(expectation of X).
Moreover, if f is strictly convex, then the equality implies
that X = expectation of X with probability 1, i.e., X is a
constant random variable.

• Jensen’s isequality can be used to prove the
non-negativity of relative entropy: D(p||q) ≥ 0 with
equality holds iff px = qx for all x.

• As a consequence: I(X; Y ) ≥ 0 with equality iff X and
Y are independent.
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H(X|Y ) ≤ H(X)

• It follows from the fact that
I(X; Y ) = H(X) − H(X|Y ) ≥ 0.

• But this result holds on an average: for some value y,
H(X|Y = y) may be greater than H(X).

• Example: In a police investigation of a murder case, a
new evidence regarding past history of the victim might
increase the uncertainty about proceedings of the
investigation, but on an average, any evidence decreases
this uncertainty.
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Convextity of relative entropy, concavity of entropy

• D(p||q) is jointly convex in p and q:
D(λp1+(1−λ)p2||λq1+(1−λ)q2) ≤ λD(p1||q1)+(1−λ)D(p2||q2)
for two pairs (p1, q1), (p2, q2) of probability mass
distributions.
• H(X) is a concave function:
H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2).
• Example: Mixing of two gases of equal entropy
(regarding the vel. distribution of the gas particles)
results in a gas with higher entropy.

– p. 23



Information about next lecture
• In the next lecture, we will discuss about Shannon’s
source coding theorem, which quantifies the minimum
amout of bit space required, on an average, to store a
large string of values of a random variable.
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