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Conway’s Game of Life

I A square grid of cells. Every cell has eight neighbours, and is
alive or dead in any configuration.

I A dead cell with exactly three live neighbours comes alive.

I A live cell with either two or three live neighbours remains
alive.

I Every other cell dies or stays dead.

I It is hard to predict whether an initial configuration will lead
to all cells dying eventually, or grow forever or form a stable
population. This is an undecidable problem.



Games in extensive form

I A game is given by a tuple G = (I ,T , λ, u) where I is a finite
set of players, T is a finite rooted tree, λ : NT → I is a
labelling on NT , the non-leaf nodes of the tree, by players and
u : (I × LT )→ R is the utility (or payoff) function that
specifies, for each player, the outcome at each leaf node of
the tree.

I λ specifies which player’s turn it is to move (or play) at any
given node.

I A zero-sum game is one in which for every leaf node n,
Σi∈I u(i , n) = 0. A win-lose game is one in which
u(i , n) ∈ {0, 1} for all i ∈ I and leaf nodes n.



Strategies and winning strategies

In a two-person zero-sum game, exactly one player wins any play.

I A strategy for player i in game G is a subtree σ of G , which
contains the root of G ; for every n ∈ σ such that λ(n) = i ,
there exists a unique G -successor of n in σ; for every n ∈ σ
such that λ(n) 6= i , every G -successor of n is in σ.

I Note that a strategy profile, or a tuple of strategies
σ = (σ1, . . . , σn), where σi is a strategy of player i in game
G , generates a unique play in G (a maximal path from root to
leaf).

I A strategy τ for player i in game G is said to be a winning
strategy, if for every strategy profile σ such that σi = τ , the
resulting play is a win for player i .



Determinacy in two-person zero-sum games

In a two-person zero-sum game, exactly one player wins any play.

I A two-person zero-sum game is said to be determined if one
of the two players has a winning strategy.

I Theorem (Zermelo 1913): Every finite game two-person
zero-sum game (of perfect information) is determined.

I The proof is by backward induction. Leaf nodes are labelled
by winners. Given a labelling of children at a non-leaf node n
with λ(n) = i , the node n gets label i there exists a child
labelled i ; otherwise all children are labelled by the other
player j and n gets label j .

I Solving a game amounts to showing that the game is
determined, finding who has a winning strategy, and
presenting a winning strategy.



The Nim game

An example of a combinatorial game.

I Matchsticks are placed in heaps. Two players take turns, each
player removing some non-zero number of sticks from one
heap. The game goes on until all heaps are exhausted, and
the last player to move wins the game.

I A characterization: Express the number of matches in each
heap in binary. Form column sums. Call a configuration good
if all column sums are even. We can show that any player
moving from a good configuration makes it bad, and that any
player moving from a bad configuration has a move so that
the resulting one is good.

I Then we show that player II (I) has a winning strategy if the
initial configuration is good (bad), solving the Nim game.



The normal form abstraction
In general, players have preferences on outcomes, not simply
winning or losing. Decisions of players involve expected utility.

I Economists try to predict outcomes of games played by
rational agents, without reference to how the game is actually
played to achieve such outcomes.

I Consider a two-player game (of perfect information) in
extensive form. This is a finite tree, and hence the set of
possible strategies for a player (subtrees) is finite as well.

I Suppose player 1 has m strategies and 2 has n strategies.
Then the game can be represented by an m × n matrix whose
(i , j) entries are given by pairs (x , y): consider the unique play
associated with the profile where 1 plays according to strategy
i and 2 according to j . Then x is the payoff for player 1 and y
for player 2 after that play.

I This can be done for any game of perfect information, such a
presentation is said to be in normal form or strategic form.



Finite strategic form games

I N = {1, 2, . . . , n}, the set of players.

I for each i ∈ N, a finite set Si = {1, . . . ,mi} of pure
strategies. Let S = S1 × S2 × · · · × Sn be the set of possible
combinations of pure strategies.

I for each i ∈ N, a payoff (utility) function ui : S → R,
describes the payoff ui (s1, . . . , sn) to player i under each
combination of strategies.



Iterated elimination of dominated strategies

A dominant strategy is one that is best, no matter what the
opponent is doing.

Left Centre Right

Up (4,3) (2,7) (0,4)

Down (5,5) (5,-1) (-1,-2)

I Centre dominates Right.

I On removal, Down dominates Up.

I The solution is (Down, Left).



The Prisoners’ Dilemma

Example of Dominant Strategy Equilibrium
Jack John Confess Deny

Confess (-10,-10) (0,-20)

Deny (-20,0) (-1,-1)

I Both must confess and get 10 years in jail each.

I Source of much angst in game theory.



Disarmament Dilemma

Replace prisoners by countries and you see a familiar situation.
Country X Country Y Arm Disarm

Arm (1,1) (3,0)

Disarm (0,3) (2,2)

I Rationality leads to armament as the inevitable choice.

I Note that the ordering is relevant, not the numbers.



Hawks and Doves

V , the value of the resource, and C the cost of escalation.
X Y Hawk Dove

Hawk ((V − C )/2, (V − C )/2) (V ,0)

Dove (0,V ) (V /2,V /2)

I If V > C , Hawk is the dominant strategy.

I If V < C , there is no dominant strategy. So dominant
strategies do not always exist.



Nash Equilibrium

In game theory, every player not only optimizes, but also steps into
the shoes of the opponent and solves her optimization problem as
well.

Anu Babu Cricket Concert

Cricket (2,1) (0,0)

Concert (0,0) (1,2)

I There is no dominant strategy, choice depends on what the
other player might do.

I Two Nash equilibria.



No Nash equilibrium

NE does not always exist.
Moriarty Holmes Canterbury Paris

Canterbury (1,-1) (-1,1)

Paris (-1,1) (1,-1)

I There is no NE: whichever player loses, should anticipate
losing and hence choose a different strategy.

I Each player can toss a coin and decide to play one of the two
moves with probability 1/2. The other would do the same and
this is in fact a Nash equilibrium in mixed strategies.



Mixed strategies

Randomized strategies.
A mixed (randomized) strategy xi for player i , with
Si = {1, . . . ,mi} is a probability distribution over Si : a vector
xi = (x1(1), . . . , xi (mi )) such that for 1 ≤ j ≤ mi , xi (j) ≥ 0, and:

xi (1) + xi (2) + . . .+ xi (mi ) = 1

Player i uses randomness to decide which strategy to play, based
on the probabilities in xi .
Let Xi be the set of mixed strategies for player i . For an n-player
game, let X = X1 × . . .× Xn.
X denotes the set of all possible combinations, or profiles of mixed
strategies.



Expected payoffs

Let x = (x1, . . . , xn) ∈ X be a profile of mixed strategies.
For s = (s1, . . . , sn) ∈ S , a combination of pure strategies, let:

x(s) = Πn
j=1xj(sj)

be the probability of the combination s under mixed profile x .
We are assuming that the players make their random choices
independently.
The expected payoff for player i under a profile
x = (x1, . . . , xn) ∈ X is:

Ui (x) = Σs∈Sx(s) ∗ ui (s)



Expected payoffs

The expected payoff for player i under a profile
x = (x1, . . . , xn) ∈ X is:

Ui (x) = Σs∈Sx(s) ∗ ui (s)

It is the weighted average of what player i can win under each pure
combination s, weighted by the probability of that combination.
Key assumption: Every player’s goal is to maximize her own payoff.
Statutory Warning: this assumption is often dubious.



Some notation

A mixed strategy xi ∈ X is said to be pure if for some j ∈ Si ,
xi (j) = 1 and for all j ′ 6= j , xi (j ′) = 0. Let πij denote such a pure
strategy.
The “mixed” strategy πij does not randomize at all: it picks (with
probability 1) exactly one strategy, j , from the set of pure
strategies for player i .
Given a profile x = (x1, . . . , xn) ∈ X , let:

x−i = (x1, . . . , xi−1, empty , xi+1, . . . , xn)

x−i denotes everybody’s strategy except that of player i .



Some notation

x−i denotes everybody’s strategy except that of player i .
By abuse of notation, for yi ∈ Xi , let (x−i ; yi ) denote the new
profile:

(x1, . . . , xi−1, yi , xi+1, . . . , xn)

(x−i ; yi ) is the new profile where everybody’s strategy remains the
same as in x , except for player i , who switches from mixed strategy
xi to mixed strategy yi .



Best responses

A mixed strategy zi ∈ X is a best response for player i to x−i if,
for all yi ∈ Xi ,

Ui ((x−i ; zi )) ≥ Ui ((x−i ; yi ))

Clearly, if any player were given the opportunity to “cheat” and
look at what other players have done, she would switch her
strategy to a best response. By the rules of the game, all players
pick their strategies simultaneously.
Suppose, somehow, that players “arrive” at a profile where
everybody’s strategy is a best response to everybody else’s.
Then no one has any incentive to change the situation. Then we
are in a stable, or equilibrium situation, which we call Nash
equilibrium.



Nash equilibrium

For a strategic game Γ, a strategy profile x = (x1, . . . , xn) ∈ X is a
mixed Nash equilibrium if, for every player i , xi is a best response
to x−i .
That is, for 1 ≤ i ≤ n, and for every yi ∈ Xi ,

Ui (x−i ; xi ) ≥ Ui (x−i ; yi )

In other words, no player can improve her own payoff by unilaterally
deviating from the mixed strategy profile x = (x1, . . . , xn).
x is called a pure Nash equilibrium if every xi is a pure strategy πij

for some j ∈ Si .
(There are many interpretations of a Nash equilibrium).



Nash’s Theorem

This can, with some justification, be called The Fundamental
Theorem of Game Theory.
Theorem (Nash, 1951): Every finite n-person strategic game has
a mixed Nash equilibrium.
He used a fundamental result from topology to prove the theorem,
namely the Brouwer fixed point theorem.



The crumpled sheet experiment

I Take two identical rectangular sheets of paper.

I Make sure neither sheet has any hole in it, and that the sides
are straight.

I “Name” each point on both sheets by its (x , y) coordinates.

I Crumple one of the two sheets any way you like, but make
sure you don’t tear it in the process.

I Place the crumpled sheet completely on top of the other flat
sheet.



The crumpled sheet theorem

There must be a point named (a, b) on the crumpled sheet that is
directly above the same point (a, b) on the flat sheet.
This fact, in its more formal and general form, is the key to why
every finite game has a mixed Nash equilibrium.



The Brouwer fixed point theorem

Theorem (Brouwer, 1909): Every continuous function
f : D → D mapping a compact, convex and non-empty subset
D ⊂ Rm to itself has a “fixed point”, i.e. there exists x∗ ∈ D such
that f (x∗) = x∗.



The definitions

I D ⊂ Rm is convex, if for all x , y ∈ D and all λ ∈ [0, 1],
λx + (1− λ)y ∈ D.

I D ⊂ Rm is compact iff it is closed and bounded.

I D ⊂ Rm is bounded if there exists a non-negative integer K
such that D ⊆ [−K ,K ]m. (i.e. D “fits inside” a finite
m-dimensional box.)

I D ⊂ Rm is closed iff for all sequences x0, x1, . . ., where for all
i ≥ 0, xi ∈ D, if ∃x ∈ Rm such that x = limixi then x ∈ D.
(i.e. if a sequence of points is in D and the sequence has a
limit, then the limit is also in D ).



The definitions

A function f : D ⊂ Rm → Rm is continuous at a point x ∈ D if
for all ε > 0, there exists δ > 0 such that for all y ∈ D: if
dist(x , y) < δ then dist(f (x), f (y)) < ε. f is called continuous if it
is continuous at every point x ∈ D.



The idea

Consider the interval [0, 1]. It is compact and convex.
More generally, [0, 1]n is compact and convex.
The set of profiles X = X1 × . . .Xn is a compact and convex
subset of Rm, where m = Σn

i=1mi , and mi = |Si |.
We will define a continuous function f : X → X and show that if
f (x∗) = x∗ then x∗ = (x∗1 , . . . , x

∗
n ) must be a Nash equilibrium.

By Brouwer’s theorem, we are done.
In fact, it turns out that x∗ is a Nash equilibrium iff x∗ is a fixed
point of f .



A claim

Claim: A profile x∗ = (x∗1 , . . . , x
∗
n ) is a Nash equilibrium iff for

every player i , and every pure strategy πij , j ∈ Si ,

Ui (x∗) ≥ Ui (x∗−i ;πij)

Proof of claim: If x∗ is a NE then the inequality is obvious.
For the other direction, first note that, for any xi ∈ Xi ,

Ui (x∗−i ; xi ) = Σmi
j=1xi (j) ∗ Ui (x∗−i ;πij)

That is, the payoffs of player i is the “weighted average” of the
payoffs of each of her pure strategies, weighted by the probability
of that strategy.



Proof (continued)

We have:
Ui (x∗−i ; xi ) = Σmi

j=1xi (j) ∗ Ui (x∗−i ;πij)

By assumption, for all j ∈ Si ,

Ui (x∗) ≥ Ui (x∗−i ;πij)

So clearly, Ui (x∗) ≥ Ui (x∗−i ; xi ), for any xi ∈ Xi , since a “weighted
average” no bigger than Ui (x∗) cannot exceed Ui (x∗).
Hence each x∗i is a best response strategy to x∗−i , and hence x∗ is a
NE.



What we want

Thus we wish to find x∗ such that for all i , and for all j ∈ Si ,

Ui (x∗) ≥ Ui (x∗−i ;πij)

That is, for all i , j ∈ Si ,

Ui (x∗−i ;πij)− Ui (x∗) ≤ 0

For a mixed profile x = (x1, . . . , xn) ∈ X define:

φij(x) = max{0,Ui (x−i ;πij)− Ui (x)}

Intuitively, φij(x) measures “how much better off” player i would
be if she picked πij instead of xi , when everone else’s strategy is
fixed.



A function

Define f : X → X as follows. For x = (x1, . . . , xn) ∈ X , let:

f (x) = (x ′1, x
′
2, . . . , x

′
n)

where, for all i , 1 ≤ j ≤ mi ,

x ′i (j) = (xi (j) + φij(x))/(1 + Σmi
k=1φik(x))

If x ∈ X , then f (x) ∈ X .
f is continuous.
Thus, by Brouwer’s theorem, f has a fixed point, x∗.
We need to show that x∗ is a NE.



x∗ is NE

For each i , 1 ≤ j ≤ mi ,

x∗i (j) = (x∗i (j) + φij(x∗))/(1 + Σmi
k=1φik(x∗))

Thus,
x∗i (j)(1 + Σmi

k=1φik(x∗)) = (x∗i (j) + φij(x∗))

Hence,
x∗i (j)Σmi

k=1φik(x∗)) = φij(x∗)

We show that this in fact implies: RHS = 0, for all j .



Another Claim

Claim: For any mixed profile x , for player i , there exists j such
that xi (j) > 0 and φij(x) = 0.
Assume the claim. Then for such a j , x∗i (j) > 0 and:

x∗i (j)Σmi
k=1φik(x∗)) = 0 = φij(x∗)

But all φik(x∗) ≥ 0, hence for all k, φik(x∗) = 0.
Thus, for all i , 1 ≤ j ≤ mi ,

Ui (x∗) ≥ Ui (x∗−i ;πij)

as required.



Proof of Claim

Claim: For any mixed profile x , for player i , there exists j such
that xi (j) > 0 and φij(x) = 0.

φij(x) = max{0,Ui (x−i ;πij)− Ui (x)}

Since Ui (x) is the “weighted average” of the Ui (x−i ;πij)’s, based
on the weights in xi , there exists j such that xi (j) > 0 such that
Ui (x−i ;πij) does not exceed the “weighted average”.
That is,

Ui (x−i ;πij)− Ui (x) ≤ 0

Hence for this j , φij(x) = 0, as required.



A Corollary

Since Ui (x∗) is the “weighted average” of the Ui (x∗−i ;πij)’s, we see
that:
Ui (x∗) = Ui (x∗−i ;πij), whenever x∗i (j) > 0.
That is, in any NE x∗, if x∗i (j) > 0, then each such πij is itself a
best response to x∗−i .
(Useful in computing NE.)



Two-person zero-sum games

Note that u1(s) = −u2(s), for every strategy profile s.
u(s1, s2) can be conveniently viewed as an m1 ×m2 matrix A1

where A2 = −A1.
Thus we are given only one matrix A, player 1 maximizing u(s).
Let A(i , j) denote the entry in the ith row and jth column.



Matrix view of 2p-zs games

Suppose players 1 and 2 choose mixed strategies x1 and x2

respectively.
Consider the product xT

1 A x2.
We see that xT

1 A x2 = ΣiΣj(x1(i) ∗ x2(j)) ∗ A(i , j).
But note that (x1(i) ∗ x2(j)) is precisely the probability of the
(pure) combination (i , j).
Thus, for the mized profile x = (x1, x2),
xT
1 A x2 = U1(x) = −U2(x),

where U1(x) is the expected payoff (which player 1 is trying to
maximize, 2 is trying to minimize).



Minimaximizing strategies

Suppose player 1 decides on x∗1 by trying to maximize the worst
that can happen. That would be player 2 choosing x2 that
minimizes (x∗1 )T A x2.
Define x∗1 to be a minimaximizer for player 1 if

minx2(x∗1 )T A x2 = maxx1minx2xT
1 A x2

Similarly x∗2 is a maximinimizer for player 2 if

maxx1xT
1 A x∗2 = minx2maxx1xT

1 A x2

Note that minx2(x∗1 )T A x2 ≤ (x∗1 )T A x∗2 ≤ maxx1xT
1 A x∗2 .

In 1928, von Neumann showed that equality holds.



The Minimax theorem

For a two-person zero-sum game given by A, there exists a unique
value v∗ ∈ R such that, for some x∗ = (x∗1 , x

∗
2 ):

1. For all j , ((x∗1 )T A)j ≥ v∗.

2. For all j , (A x∗2 )j ≤ v∗.

3. Thus, v∗ = (x∗1 )T A x∗2 , and

maxx1minx2xT
1 A x2 = v∗ = minx2maxx1xT

1 A x2

4. The conditions above hold precisely when (x∗1 , x
∗
2 ) is a Nash

equilibrium.

x∗1 is a minimaximizer for player 1 and x∗2 is a maximinimizer for
player 2.



Remarks

x∗1 guarantees player 1 at least expected profit v∗, and x∗2
guarantees player 2 at most expected loss v∗.
We call any such (x∗1 , x

∗
2 ) a mini-max profile.

We call the unique value v∗ the mini-max value of the game.
Now it is obvious that max profit guaranteed for player 1 is ≤ the
minimum loss guaranteed for player 2. The theorem asserts the
non-trivial converse.



Proof

The mini-max theorem follows easily from Nash’s theorem.
Let (x∗1 , x

∗
2 ) be an NE. Let v∗ = (x∗1 )T A x∗2 = U1(x∗) = −U2(x∗).

Since x∗i is the best response to the other, we have:
Ui (x∗−i ;πi ,j) ≤ Ui (x∗).
But U1(x∗−1;π1,j) = (Ax∗2 )j . Thus, (Ax∗2 )j ≤ v∗ = U1(x∗).

U2(x∗−2;π2,j) = −((x∗1 )T A)j . Thus, ((x∗1 )T A)j ≥ v∗ = −U
(
2x∗).



Proof (contd)

maxx1xT
1 A x∗2 ≤ v∗, because xT

1 A x∗2 is a weighted average of
(Ax∗2 )j ’s.
Similarly. v∗ ≤ minx2(x∗1 )T A x2.
Thus maxx1xT

1 A x∗2 ≤ minx2(x∗1 )T A x2.
Thus minx2maxx1xT

1 A x2 ≤ maxx1minx2xT
1 A x2.

We did not assume anything about the NE chosen. So for every
NE x∗, if v ′ = (x∗1 )T A x∗2 , we get v ′ = v∗.
It is easy to see that any x∗ satisfying conditions 1-3 is an NE.



Remarks

Over 2p-zs games, NE and minimax profiles are the same.
Moreover, when x∗ = (x∗1 , x

∗
2 ) is a minimax profile and x∗1 (j) > 0,

we have: ((x∗1 )T A)j = v∗ = (x∗1 )T A x∗2 .
Similarly if x∗2 (j) > 0, (A x∗2 )j = v∗ = (x∗1 )T A x∗2 .
Note: we have, as yet, no clue how to compute the minimax value
and a minimax profile.
We are trying to maximize v subject to (xT

1 A)j ≥ v , for all j .
Optimizing a linear objective subject to linear constraints.



Critique of NE-1

When there are multiple equilibria, it is not clear which one the
players would or should try for.

Rose Colin A B

A (1,1) (2,5)

B (5,2) (-1,-1)

I (A,B) and (B,A) are non-equivalent and non-interchangeable
pure Nash equilibria.

I But (A,B) is better for Colin and (B,A) is better for Rose. If
both try for their favourite equilibrium, they will end up with
(B,B) which is not an equilibrium and indeed the worst
outcome possible.



Critique of NE-2

Nash equilibria need not be Pareto optimal.
Rose Colin A B

A (3,3) (-1,5)

B (5,-1) (0,0)

I (B,B) is the unique (pure) Nash equilibrium.

I But (A,A) is a better outcome for both players.



Solvable in the strict sense

A better solution concept for non-zero sum games

I There is at least one equilibrium outcome that is Pareto
optimal, and

I All Pareto optimal outcomes are equivalent and
interchangeable.

I Below, (B,B) and (A,C) are equilibria, but the latter is the
only Pareto optimal outcome.

Rose Colin A B C

A (0,-1) (0,2) (2,3)

B (0,0) (2,1) (1,-1)

C (2,2) (1,4) (1,-1)



Natural selection rather than rationality

Payoff is fitness points: increased probability of passing along
genes to the next generation.

P1 P2 Hawk Dove

Hawk (-25,-25) (50,0)

Dove (0,50) (15,15)

I A Hawk fights for a resource; a dove merely postures.

I Winner of resource gets 50 points. A losing Hawk gets -100,
and wasting time (for doves) gets -10 points.

I Each player is genetically determined to always play hawk or
dove.



Population dynamics

What kind of populations are stable ?

I Suppose that the population starts off with almost entirely
doves.

I Doves meet mostly doves, so get 15 fitness points.

I An occasional hawk gets 50, and being genetically
advantaged, the hawk population will begin to rise.

I A hawk minority (by mutation) would eventually invade the
population.

I Thus a population of doves is not evolutionarily stable.



Mixed strategies

How about a mixed population, of 1
4 hawks and 3

4 doves?
Best solved by considering a focal player playing against an
opponent playing a mixed strategy.

Focal Other Hawk Dove

Hawk (-25,-25) (50,0)

Dove (0,50) (15,15)

I Expected payoff for focal player playing hawk is 311
4 and dove

is 111
4 .

I It pays to be a hawk, and hence hawks will increase.



Evolutionary equilibria

When can we be sure that no mutant strategy will invade ?

I If there are few hawks then hawks will increase and if there
are few doves, then doves will increase.

I There must be some proportion of hawks and doves where the
two tendencies balance out.

I Consider a mixed population, of x hawks and 1− x doves.
Then this is the mixed strategy that the focal player is up
against.

I Expected payoff for focal player playing hawk is 50− 75x and
dove is 15− 15x .

I Solving, x = 7
12 . Thus a population of 7

12 hawks and 5
12 doves

would be evolutionarily stable.



Evolutionary game theory

Evolutionarily stable strategies.

I We say that a strategy S is evolutionarily stable if the
following condition holds: Let T be any strategy. If almost
everyone in the population plays S and a few play T . Then
the expected payoff for playing S should be at least as much
as the expected payoff for playing T .

I If a population has adopted S , no mutant strategy T can
invade and prosper against S .

I We no longer need the assumption that each individual is
either a pure hawk or pure dove. The same kind of stability
obtains if all players played a mixed strategy of 7

12 hawk and
5
12 dove.

I Different individuals may play different strategies but
averaging to 7

12 hawks across the population.



ESS Examples

A pure ES strategy.
P1 P2 A B

A (1,1) (2,3)

B (3,2) (4,4)

I Strategy B is an ESS and the only one.

I B strictly dominates A, and hence advantaged in any
population.



ESS Examples

More than one ES strategy.
P1 P2 A B

A (3,3) (1,2)

B (2,1) (4,4)

I Strategy A and B are both ESS.

I In any population of almost all B’s, B would be best (by 4:1).

I In a population of almost all A’s, A would be best (by 3:2).

I Whichever gets established first would persist.



ESS Examples

No pure ES strategy.
P1 P2 A B

A (1,1) (4,2)

B (2,4) (3,3)

I The unique ESS is a mixed strategy.

I This game is ordinally equivalent to our original hawk dove
game.



Expanding our horizons

EGT wants us to resist invasion by any other strategy T. How can
we be sure that we have identified all feasible strategies ?

I Since it is advantageous to play dove against a hawk and to
play hawk against a dove, why not play conditional strategies
?

I Bully: In any contest, show initial fight. Continue to fight if
opponent does not fight back. If opponent fights, run away.

I When bullies meet, both run away but one runs faster and the
other is left holding the prize.

P1 P2 Hawk Dove Bully

Hawk (-25,-25) (50,0) (50,0)

Dove (0,50) (15,15) (0,50)

Bully (0,50) (50,0) (25,25)



Further expansion of horizons

What is the best way to deal with bullies?
P1 P2 Hawk Dove Bully

Hawk (-25,-25) (50,0) (50,0)

Dove (0,50) (15,15) (0,50)

Bully (0,50) (50,0) (25,25)

I No pure strategy is an ESS.

I Bully dominates dove, so doves would eventually die out.

I The only ESS is half-hawk and half-bully.

I We can expect a lot of conflict and cowardice.



Dealing with bullies

The solution you used as a child.
Retaliator: In any contest, initially behave as a dove. However, if
you are persistently attacked, fight back with all your strength.

P1 P2 Hawk Dove Bully Retaliator

Hawk (-25,-25) (50,0) (50,0) (-25, -25)

Dove (0,50) (15,15) (0,50) (15, 15)

Bully (0,50) (50,0) (25,25) (0, 50)

Retaliator (-25, -25) (15, 15) (50,0) (15, 15)

I The pure strategy retaliator is an ESS. So is any mixture of
retaliators and doves, with < 30% doves.

I A little paradoxical, as retaliators should have the worst of
both worlds.

I Biologically interesting: in a population of mostly retaliators,
there is not much conflict but much posturing. This is
reminiscent of behaviour recorded by Konrad Lorentz.



Signalling

ESS can provide Pareto-inferior outcomes. This can be overcome
by co-operation: signals telling a player to be a hawk etc.
Bourgeois: Be a hawk on home ground, and a dove elsewhere.

P1 P2 Hawk Dove Bully Retaliator Bourgeois

Hawk (-25,-25) (50,0) (50,0) (-25, -25) (12.5, -12.5)

Dove (0,50) (15,15) (0,50) (15, 15) (7.5, 32.5)

Bully (0,50) (50,0) (25,25) (0, 50) (25, 25)

Retaliator (-25, -25) (15, 15) (50,0) (15, 15) (-5, -5)

Bourgeois (-12.5, 12.5) (32.5, 7.5) (25,25) (-5, -5) (25, 25)
Both pure strateges retaliator and bourgeois are ESS.



An invitation to Game Theory

I EGT can be used to study not only emergence of aggression
and responses to it, but also sexual behviour, altruism and
cooperation.

I Studying repeated games leads to interesting notions like
threats, promises and commitments.

I Placing limits on rationality assumptions is an important topic
of research.

I We have not touched on games of imprefect information,
where the notions are in general more complicated.

I We have also not spoken of co-operative game theory which
studies behaviour of coalitions.

I The study of infinite games offers a rich mathematical theory
with important implications for descriptive set theory.
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