How neurons talk

dendrites

axon

myelin

sheath

dendrite

terminals

axon

hilloc

Nívedíta Chatterjee Vísíon Research Foundatíon, Sankara Nethralaya, Chennaí

ASTROCYTE

OLIGODENDROCYTE

AXON

NEURON

BLOOD VESSEL

body of Schwann cell

(P)

(H)

The Electrical synapse works with graded potentials

Electrical synapse – with intercellular continuity

Electrical synapses

Finally there are the gap junctions through which electrical synapses function

•Fast transmission •Usually Bidirectional

•Synchronisation of electrical activity

Also allows movement of molecules <1500 dalton

Current flow across squid axon

Depolarization

a brief capacitive current
a longer-lasting but transient phase of inward current

a delayed but sustained outward current

In the retina, hyperpolarisation is the ACTIVATED state

Light activation causes a graded change (**GRADED POTENTIAL**) in membrane potential and a corresponding change in the rate Of transmitter release onto postsynaptic neurons

Quantal transmission at chemical synapses

Peaks of EPP amplitudes occur in integer multiples of the mean amplitude of MEPPs

> Stimulated-Fused vesicles

MEPP: Miniature EPP

MEPP amplitude distribution

No EPP elicited

Electron-microscopical visualisation of vesicles at the

presynaptic

terminal

Unstimulated

Calcium in synaptic transmission

Ca2+ current in presynaptic terminal leads to *increase* in postsynaptic potential

Voltage operated Calcium channel blocker Cadmium eliminates
1) Presynaptic Ca2+ current
(2) rise in postsynaptic potential

Local recycling of synaptic vesicles

Neurotransmitters

Dale's Principle – A neuron is basically either excitatory or inhibitory. *Neurons release the same set of transmitters at all of their synapses.*

Neurons can release multiple types of neurotransmitters at its different synaptic ends.

Excitatory – Glutamate, Dopamine ; opens Ca2+ and Na+ channels

Inhibitory – GABA ; opens transmitter-gated CI– or K+ channels in the postsynaptic membrane

The myelin sheath ensures that the signal strength remains strong during propagation

Myelinated vs. Unmyelinated axons

Unmyelinated <u>axon</u> conduction velocities 0.5 to 10 m/s,

Saltatory Conduction Localisation of ion channels at discrete paranodal regions

> Myelinated <u>axons</u> conduct at velocities upto 150 m/s

Events in synaptic transmission

Action Potential

- **Rising phase Depolarisation**
- 1. Opening of Na+ selective channels
- 2. Entry of Na+ inside cell
- **Overshoot** Depolarisation
- 1. Open Na+ channels prolonged
- 2. Entry of Na+ ions
- Falling phase repolarisation
- 1. Desensitisation of Na+ channels,
- Opening of K+ selective channels; K+ ions go out of cytoplasm
- 1. Opening of Ca2+ selective Channels; exit of Ca2+ ions
- Undershoot Hyperpolarisation Open K+ channels; exit of K+ ions

Voltage-gated channels at the Pre-synaptic terminal

Animation

- •Gated opens to stimuli
- Selectivity shows ion selectivity
- Saturation Can show desensitisation
- Gating current Changed permeability to membrane potential

Synaptic AMPARs recycle in LTP and LTD

AMPA – ligand-gated channel at the postsynaptic terminal

 fast excitatory neuro-transmission

fundamental roles in synapse stabilisation& plasticity

Basal - Equilibrium between surface-expressed & intracellular receptors

LTP - New GluR1-containing receptors are inserted into both non-silent & silent synapses

Later – New equilibrium with GluR3-containing receptors

Glia : The "Other Half" of the Brain

Glial cells and neurotransmission

Astrocyte

Oligodendrocyte

Microglia

Tracings of cells as visualized by impregnation with silver salts

- Ensheathment of synapses
- •Glial cell activation by neurotransmittion
- •Glial cell modulation of neuronal activity

•Glial cells modulate development of synaptic contacts

Kirchoff et al. J Anatomy 2007

Functions of Glia

•Maintain the ionic milieu of nerve cells

- •Modulate the rate of electrical signal propagation
- •Microglial cells; primary scavengers in the brain
- •Provide a scaffold for neural development

•Aiding or preventing repair of injured regions

Modulate synaptic action by uptake of neurotransmitters

•Support, modifies and defines plasticity of synaptic contacts.

Classical roles of Glia....

Myelination Mopping up neurotransmitters Scaffold

Oligodendrocytes are the myelinating cells of the CNS

Myelinated axons

From the spinal cord of a 2-day old kitten

A myelinating oligodendrocyte extends cytoplasmic connections to at least two myelin sheaths

Biogenesis of myelin sheath

with anterograde & retrograde signalling between neurons and oligodendrocytes.

Oligodendrocyte-Neuron Interactions at the Paranode

Schematic diagram of oligodendrocyte-paranode juxtaposition at the internodes

Immature oligodendrocytes sit cheek-by-jowl with neurons too!

From rat CNS – immunolabelled for NG2

Endfeet processes of astrocytes siphon off elevated extracellular K⁺ for depositing in areas of lower K⁺ levels

Expression of GLAST in astrocytes to mop up glutamate

... NT recycling & Glucose utilisation

Freeman & Doherty (2006) TINS 29, 82 - 90

between neurons & glia

Axonal development goes askew without glia

Radial glial cells

Stretch through the thickness of spinal cord, retina, cerebellum, forms elongated filaments

□Newly-born neurons migrate radially along the extended bipolar process of the radial glia

□Radial glia actively divide, producing daughter cells that include both neurons and glia.

□A subset of forebrain radial glia may serve as the founders of adult forebrain neural stem cells

□Source of progenitors for repair; upregulated in areas of neurodegeneration

NT-mediated Neuronal-Glial Signalling

•NT release activates several types of ionotropic, metabotropic receptors & NT transporters.

 Initiate a variety of intracellular signalling processes,
 associated with propagating cytoplasmic Ca2+ signals.

Neurotransmitter sensors expressed in glial cell membranes allows the glia to decode neuronal activity and to synchronize and integrate <u>neuronal and glial circuitries</u>.

Glia as an active participant in neuron-neuron signalling

Neurons & glia can communicate through Calcium waves !

Glia sit cheek-by-jowl with neurons!

Glutamate application on CA1 pyramidal neurons elicited inward current bursts in OPCs.

Astrocytes in hippocampus

Synaptic specialisations between neurons and glia!

The post-synaptic membrane specialisation is thinner in neuron-glia synapses.

Bergles et al., 2000

Single stimuli to axons

Calcium waves in *glial* **cell syncytium** Waves of increased intercellular Ca⁺⁺ travelling at 5-10 µm/s

Craig Charles Lab, UCLA Med School

Response of brain astrocytes to mechanical stimulation of a single cell: wave propagating from stimulated cell to many surrounding cells

Imaging field showing fluorescence intensity of Ca⁺⁺ indicator fluo-4

Calcium waves in glial cell culture in response to mechanical stimulation of a single cell with a micropipette

400 µm

400 µm

Spiral Waves in Mouse Hippocampus

Thanks!

References

- Stevens C.F , Neuron; 40, 381-388
- Llinas R.R, Scientific American; Oct 1982, 16-25
- Benson et al., Nature Reviews; 2, 899-908
- Auld & Robitaille, Neuron; 389-400
- Purves et al., Neuroscience, Free on Pubmed Bookshelf