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Why is network anatomy so important to characterize? 
Because structure always affects function.

Strogatz (2001) Exploring complex networks.  Nature



Nodes = Species/Taxa

Edges = Directed trophic links

-predation
-herbivory
-detritivory
-parasitism
-cannibalism



1970’s Challenge:
Complex communities LESS 

stable than simple communities

1950’s Paradigm:
Complex communities MORE 

stable than simple communities

Current & Future Research:
“Devious strategies” that promote 
stability and species coexistence
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1. Food-Web Data



Earliest known graph of feeding relations

Lorenzo Camerano, 1880

Network of 15 taxa:
-Amphibians
-Reptiles
-Fish
-Birds
-Mammals
-Worms
-Crustaceans
-Spiders
-Various insects
-Plants
-Parasitic plants



1st generation data: 1920s-1980s: 

Summerhayes & Elton 1923: Food web of Bear Island



Bear Island

S (# taxa) = 28
L (# links) = 59
L/S (links/species) = 2.1
C (connectance; L/S2) = 0.075
TL (mean trophic level) = 2.07

Directed Connectance (C): Proportion of possible links (S2) that are realized (L)

1 bacteria, 4 autotrophs, 13 invertebrates, 6 birds, 4 mammals



2nd generation data: 1990s-present 

Fishes

Insects

Zoo-
plankton

Algae

S = 92, L = 997, L/S = 11, C = 0.12, TL = 2.40

Martinez 1991

Food Web of Little Rock Lake, Wisconsin
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Examples of currently used datasets
S ~ 25 to 180, C ~ 0.03 to 0.3



3rd generation” data: 2009 and beyond

Antarctic Weddell Sea Trophic Species Web Highly & Evenly Resolved

Original species = 492
62 autotrophs
4 mixotrophs
345 invertebrates
48 ectotherm vertebrates
29 endotherm vertebrates
3 detritus
1 bacteria

S = 290
L = 7200
L/S = 24.8
C = 0.086
Mean TL = 3.79

Data compiled by Ute Jacob

Antarctic Weddell Sea Food Web
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2. General Patterns Across Webs
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Beyond S and C: Link distributions



Raw data for 16 webs

Apparent complexity



Raw data for 16 webs Normalized data for 16 webs

Apparent complexity Underlying simplicity
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Camacho et al. 2002, Dunne et al. 2002



Whence the exponential?

Principle of Maximum Entropy (MaxEnt, Jaynes 1957)

The probability distribution with the maximum information 
entropy is the least biased probability distribution which 
satisfies a set of information-containing constraints.

69%
Percent of 51 food webs with degree distributions not 
significantly different from MaxEnt distributions 
constrained by # species, links, and top or basal spp.

Williams 2009

Why should observed distributions tend toward MaxEnt distributions?

Observed large-scale patterns typically arise from aggregation of many 
small-scale processes, whose fluctuations tend to cancel each other out.  
A few constraints set the pattern in the aggregate, everything else 
tends to the greatest randomness (Frank, in press).



Types of Organisms:

% Top spp. =   1.1
% Intermediate spp. = 85.9
% Basal spp. = 13.0
% Cannibal spp. = 14.1
% Herbivore spp. = 37.0
% Omnivore sp. = 39.1
% Species in loops = 26.1

Linkage Metrics:

Mean food chain length = 7.28
SD food chain length = 1.31
Log number of chains = 5.75
Mean trophic level = 2.40
Mean max. trophic simil. = 0.74
SD vulnerability (#pred.) = 0.60
SD generality (#prey) = 1.42
SD links (#total links) = 0.71
Mean shortest path = 1.91
Clustering coefficient = 0.18

Beyond degree distribution

Little Rock Lake
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Williams et al. 2002, Vermaat et al. 2009



3. Network Structure Models



Simple, stochastic, single-dimensional 
models of food-web structure

Explain “the phenomenology of observed food web 
structure, using a minimum of hypotheses ”

1)  Two Parameters: S (species richness) and C (connectance) 
2)  Assign each species i a uniform random “niche value” ni of 0 to 1
3)  Simple rules distribute links from consumers to resources 

Empirical regularities modeling opportunities

Cohen & Newman 1985, Williams & Martinez 2000
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Cascade model

Link distribution rules:
Each species i has probability P = 2CS/(S-1) of consuming resource species j  
with lower niche values (nj < ni)

Effect of rules:
Creates strict hierarchy of feeding (cannibalism & longer cycles prohibited)

Cohen & Newman 1985
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Niche model

Link distribution rules:
Species i is assigned a feeding range ri (drawn from beta distribution)

The center ci of ri is a uniform random number between ri/2 and min (ni, 1-ri/2)   

Species i feeds on all species that fall within ri

Effect of rules:
Beta distribution generates exponential-type degree distributions

The feeding hierarchy is slightly relaxed (cycles can occur)

Webs are “interval” (species feed on contiguous sets of species)

Williams & Martinez 2000



Nested hierarchy model

Link distribution rules:
Each consumer i’s number of resource species j assigned using beta distribution

Resources j chosen randomly from species with nj < ni until all links are assigned or a j 
is obtained which already has at least one consumer

Species i links to j and joins j’s “consumer group”

Subsequent j chosen randomly from the set of j of this group until all of i’s links are 
assigned or all j of the consumer group have been chosen

Subsequent j chosen from remaining species with no consumers and nj < ni

Subsequent j chosen randomly from species with nj ≥ ni

Effect of rules:
Rules meant to mimic phylogenetic effects (guilds of related consumers)

Food webs are not “interval”

Hierarchy relaxed in principle, in practice rarely violated

Cattin et al. 2004



Generalized cascade model

Link distribution rules:
Species i consumes resources species j with nj ≤ ni with a probability  
equal to a random number with mean 2C drawn from a beta distribution

Effect of rules:
Create a simple, non-interval, beta-distributed hierarchical model that 
allows cannibalism

Stouffer et al. 2005



‘Relaxed’ niche models

Link distribution rules:
Same as niche model, but allow for gaps in a slightly expanded feeding 
range or for links external to feeding range

1. Generalized niche model (Stouffer et al. 2005)
2. Relaxed niche model (Williams & Martinez 2008)
3. Minimum potential niche model (Allesina et al. 2008)

Effect of rules:
Relax the intervality constraint of the niche model

Stouffer et al. 2005, Williams & Martinez 2008, Allesina et al. 2008



Random models

Link distribution rules:
Distribute links randomly
1. Random model (Williams & Martinez 2000): P = C
2. Random beta model (Dunne et al. 2008): beta distribution

Effect of rules:
Minimal constraints 
1. Random: no hierarchy, no intervality, no beta distribution
2. Random beta: no hierarchy, no intervality

Williams & Martinez 2000, Dunne et al. 2008



Summary of model constraints

   hierarchical feeding 
Model beta distribution intervality hierarchy exceptions 
Random no no no — 
Random beta yes no no — 
Cascade no no yes no 
Generalized cascade yes no yes nj = ni 
Niche yes       yes yes nj ≥ ni 
Relaxed niche yes   no* yes nj ≥ ni 
Nested hierarchy yes no yes  nj ≥ ni* 

 



4. Confronting Models with Data 



1. Degree distribution
2. Suite of properties
3. Likelihood

ri0 1

i

ni

ci

?

Inference methods



Data Normalization & Analytical Analyses

1) Degree distribution

Camacho et al. 2002, Stouffer et al. 2005



   hierarchical feeding 
Model beta distribution intervality hierarchy exceptions 
Random no no no — 
Random beta yes no no — 
Cascade no no yes no 
Generalized cascade yes no yes nj = ni 
Niche yes       yes yes nj ≥ ni 
Relaxed niche yes   no* yes nj ≥ ni 
Nested hierarchy yes no yes  nj ≥ ni* 

 

‘Degree distribution’ summary



2) Suite of properties

• Test: against the structure of empirical food webs

• Assess: a suite of structural properties

• Generate: a set of 1000 model webs for each empirical web

• Evaluate: how well does the model perform?   

Normalized Model Error = (empirical value – model mean) / (model median   
value - value at upper or lower 95% boundary of model distribution) 

MEs ≤ |1| show ‘good’ fit of model mean to empirical value

Beyond degree distribution…

Williams & Martinez 2000
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Path Length:
The average of the shortest 
chain of links between each 
pair of species.

Most models significantly  
underestimate path length.

Williams & Martinez 2008



1) Mean ME ≤ |1| for all models: effect of hierarchy + beta distribution constraints  
2) Niche: lowest ME mean & SD, most properties closest to 0, fewest properties >|1|
3) All models drastically underestimate herbivory/detritivory 

33%1.58-0.40Rel Nic
25%1.32-0.10Niche
26%1.45-0.53Nes Hier
39%1.40-0.50Gen Nic
46%2.37-0.57Gen Cas

% ME 
> |1|

ME 
SD

ME 
mean

Summary Stats

15 network structure properties

Williams & Martinez 2008



   hierarchical feeding 
Model beta distribution intervality hierarchy exceptions 
Random no no no — 
Random beta yes no no — 
Cascade no no yes no 
Generalized cascade yes no yes nj = ni 
Niche yes       yes yes nj ≥ ni 
Relaxed niche yes   no* yes nj ≥ ni 
Nested hierarchy yes no yes  nj ≥ ni* 

 

‘Suite of properties’ summary



3) Likelihood: topology as a whole

A A*

= +
N KA A*

= +
N K

Allesina et al. 2008

1) 3 models (Cascade, Niche, Nested hierarchy) and 10 datasets analyzed. All webs have links 
that violate assumptions of each model.

2) Use a genetic algorithm to order species to minimize violating links (Matrix A A* ).  

3) Split datasets into compatible links (Matrix N ) and incompatible links (Matrix K ). 

4) Calculate probability of obtaining Matrix N with the model and Matrix K with a random graph.

5) Product of those P’s gives a “total likelihood” (Tot L) of that model for that dataset.



Alternate model: The minimum potential niche model

Link distribution rules:
Same as niche model, but define a feeding range where the consumer has 
a probability of <1 of feeding on species in that range. 

Effect of link distribution rules:
Relax the intervality constraint of the niche model

No empirical links are incompatible with the models

Introduces an extra model parameter



Minimum potential (relaxed) niche model performs best:

no irreproducible links (Niche model has most)
marginally better Tot L than the Niche model on every dataset
much better Tot L than Nested hierarchy or Cascade models 



   hierarchical feeding 
Model beta distribution intervality hierarchy exceptions 
Random no no no — 
Random beta yes no no — 
Cascade no no yes no 
Generalized cascade yes no yes nj = ni 
Niche yes       yes yes nj ≥ ni 
Relaxed niche yes   no* yes nj ≥ ni 
Nested hierarchy yes no yes  nj ≥ ni* 

 

‘Likelihood’ summary



1) Degree Distributions
Pros: Characterizes a central tendency of structure
Cons: Very minimal notion of “structure”

2) Suite of Properties
Pros: Allows assessment of details of how/why structure differs
Cons: Properties are not independent, making overall evaluation problematic

3) Likelihood
Pros: Based on full structure of network
Cons: How to understand details of how/why structure differs? 

How to interpret magnitude of differences in Tot L?

Pros and cons of inference approaches
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‘Complex’ food webs aren’t intractably complex: underlying shared   
scale-dependent structure.

MaxEnt provides a simple null model for a central feature of data and 
models, the degree distribution.

The Niche model and its variants, but not the Cascade model, do a good 
job of predicting many aspects of empirical web structure.  

Hierarchical Feeding + Beta/Exponential Distribution

The Niche and Relaxed Niche models fit data better than other variants.

Intervality + Cycles

Evaluation of models largely indifferent to inference method.



5. Case Study: Ancient Food Webs



Are species interactions structured differently 
in ancient versus modern ecosystems?
(can we even put convincing data together?)

Have food webs become more complex since the beginning of the 
Phanerozoic?

What do differences/similarities in ecological network structure
suggest about fundamental constraints on species interactions?

Does food-web complexity or structure change across extinction 
boundaries?

Do major evolutionary innovations ramify throughout food webs?

How does community structure respond to major environmental 
perturbations?



Lagerstätten: Fossil assemblages with exceptional soft-tissue preservation

Burgess Shale (505 Ma)

Chengjiang Shale (520 Ma)

Geologic Time Scale



Burgess Shale BiotaWiwaxia

Waptia Marella

Anomalocaris

Hallucigenia Opabinia

Ollenoides

Pikaia Ottoia



Gut contents
Body size
By analogy with associated taxa
Damage patterns
Environmental deposition
Functional morphology
Stable isotopes
Trace fossils
Coprolites
The occasional smoking gun…

Certainty:
1 = possible
2 = probable
3 = certain

Every link is a hypothesis based on inferences

Lines of evidence for feeding interactions

predator preypredator prey



Image by Ken Dowd (via NSF): Anomalocaris canadensis hunting trilobites

Functional morphology + damage patterns



Burgess Shale Food Web

S = 85, L = 559, L/S = 6.6, C = 0.08, TL = 2.99
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60%
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Dunne et al. (2008) Compilation and network analyses of Cambrian food webs. PLoS Biology 6:e102
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A few potentially meaningful differences?

Higher LinkSD in both Cambrian webs
Reflects higher vulnerability to predation

Longer Path lengths in Chengjiang web
Reflects lower integration among taxa

More taxa in Loops in Chengjiang web
Reflects less hierarchical trophic organizationPath
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Detailed species interaction data compiled for ancient 
ecosystems from the early Phanerozoic (> 500 MA).

The structure of Cambrian & modern webs is very similar 
and well-predicted by the niche model.

Results are robust to removal of uncertain or random links.

Differences in Cambrian structure may reflect a rapid 
transition to more stable, constrained, hierarchical, 
integrated, trophic organization following the Cambrian 
“explosion” of diversity, body plans, and trophic roles.

Shared architecture across habitats and deep time is 
suggestive of constraints on trophic organization. 

null: MaxEnt
thermodynamic constraints
dynamical stability of complex systems
evolutionary processes
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Dunne et al. 2008
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