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Visual Search

Conjunction — more difficult




Serial Search

O Assumes that items are examined one at
a time.

O Search terminates when the target is
found or all items have been examined.

o If the target is present, on average, how
many items need to be examined?
= roughly half
= (N+1)/2
® where n = size of the search set
o If absent, all items will be examined.



RT curves for parallel/serial search
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Attention

O Information processing is supposed to happen in
two stages

Preattentive stage
Attentive stage

O Preattentive processing can be defined as quick

and basic feature analysis of the visual field, on
which the attention can subsequently operate.



Feature Integration Theory (Treisman)
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Guided Search (Wolfte)

O Computes saliency maps. Activation
determined:

O Bottom up:

= Attention is attracted to items that are highly
dissimilar from their neighbors (local
differences).

O Top-down attentional set.



Code Theory

O The spatial element comes from CODE
(COntour DEtection theory of grouping by
proximity) (Offelen & Vos, 1982, 1983)

O The object-based input comes from
Bundesen's TVA (Theory of Visual
Attention) (Bundesen, 1990)



How CODE provides the input for
CTVA?

O Objects are represented on an analogue
map separated by a Euclidean metric.

O Features or items are not represented on
the map as points, but as distributions
across space.

O A threshold is applied to these
distributions to turn the perceptual items
Into ""quasi-discrete/quasi-analogue"
(p606) representations of objects.
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How TVA analyses CODE input:

O TVA assumes two levels of representation-

m (a) a perceptual level that consists of features of display
items;

m (b) a conceptual level which consists of categorisations of
both display items and features.

O They are linked by the following parameter- n(x,i)

O This parameter is used to select
m (a) a catagorisation for that object and
m (b) a within-group perceptual object.
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The rate of categorisation
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Summary of CTVA

O

O

O

O O

Stimuli are represented as distributions In
analogue space

The CODE surface increases with overlapping
distributions

A threshold set by higher cognitive processes
determines the size of the feature catches and
whether stimuli will be grouped together

The feature catches attract attention and provide
the input for TVA - h(x,i)
TVA adds Perceptual Bias and Attentional Weight

A race for categorization within a feature catch
determines which of two or more items within a
feature catch is processed
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Cognitive Architectures

O A cognitive architecture specifies the
Infrastructure for an intelligent system
that remains constant across different
domains and knowledge bases.
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Why Cog Arch?

A single system (mind) produces all aspects of
behavior. It is one mind that minds them all. Even if
the mind has parts, modules, components, or
whatever, they all mesh together to produce
behavior. Any bit of behavior has causal tendrils that
extend back through large parts of the total cognitive
system before grounding in the environmental
situation of some earlier times. If a theory covers
only one part or component, it flirts with trouble from
the start. It goes without saying that there are
dissociations, independencies, impenetrabilities, and
modularities. These all help to break the web of each
bit of behavior being shaped by an unlimited set of
antecedents. So they are important to understand
and help to make that theory simple enough to use.
But they don’t remove the necessity of a theory that
provides the total picture and explains the role of the
parts and why they exist (Newell, 1990).
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What 1s an architecture?

Agent Architecture

Reason

Short-term Memory
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ACT-R

o Tight integration of symbolic and
statistical

m Symbolic level for structured cognition
= Statistical level for learning and adaptivity

O Massive parallelism within each module

O Asynchronous interaction between
modules

O Limited-capacity module interaction

O Central control of cortical areas through
procedural module

19
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ACT-R

O

O

Inspired by psychological models of memory, skills, and learning
Optimization-oriented learning and memory
Dual representations of knowledge
m Procedural vs. Declarative knowledge units
= Explicit vs. Semantic retrieval
Integration of memory, action, and learning
Highly parameterized
Belief representation

=  Uniform representation of relational data and objects

= Automatic semantic retrieval and deliberate management of
assumptions

Goal representations
m Explicit goal buffer
m Goals are “normal” memory objects
= No goal stack
Plan selection and representation
m Explicit scripts may be encoded declaratively
= Plans emerge from atomic conditional knowledge elements
m Combined explicit selection with decision-theoretic memory model
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ACT-R: An Example
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Declarative Memory

A =B+ S WS, (activation equation)

i " R
)

where B, 13 the base-level activation of the chunk i, the Vs reflect
the attentional weighting of the elements that are part of the current

goal, and the 5,5 are the strengths of association from the elements
J to chunk i. Figure 5 displays the chunk encodng for 8 + 4 = 12

B, = 1Ini Etj'"]l, (base-level learning equation)

1=
where 7, 13 the time smce the jth practice of an item. This equation

1

P R —r—
i 1 + Cd = liEs

( probability of remeval equation)

where 5 confrels the noise mn the activation levels and 15 typically
set at about 4. If a chunk 15 successfully retrieved, the latency of

retrigval will reflect the activation of a chumk. The time to remmieve
the chunk 15 given as

T.=Fe™. (latency of retrieval equation)
recognifion time = I+ Fe™
Fe 035,
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Procedural memory

AU 1-K mvolve these utillity calculatons. 1he utlity of a produc-
tion 7 15 defined as

U,=PG-C, (produchon utihty equaton)

where F; 15 an estimate of the probability that if produchon i 15
chosen the current goal will be achieved, & 15 the value of that

current goal, and C, 13 an estimate of the cost (fypically measured
m time) to achieve that goal As we discuss, both P, and C, are
leamed from expernence with that production rule.

g
P = . (production choice equation)

n
Ll
2

!

where the summation 13 over all applicable productions and ¢
controls the noise in the unlities. Thus, at any point in time there

Successes

~ Successes + Failures ° (probability of success equation)
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Dynamic Approaches

O Connectionist Models
m Associators
= Back propagation

® Recurrent networks
Simple recurrent networks
Hopfield networks/Boltzmann machines

0 Non-connectionist

= Dynamics
State-space, attractors, limit cycles, oscillations

25



Introduction

o What is an (artificial) neural network

m A set of nodes (units, neurons, processing
elements)
Each node has input and output
Each node performs a simple computation by its
node function
= Weighted connections between nodes

Connectivity gives the structure/architecture of the
net

What can be computed by a NN is primarily
determined by the connections and their weights
= A very much simplified version of networks of
neurons in animal nerve systems



ANN Neuron Models

O

Each node has one or more
Inputs from other nodes,
and one output to other
nodes

Input/output values can be
m Binary {0, 1}

m Bipolar {-1, 1}

m Continuous
All inputs to one node
come in at the same time
and remain activated until
the output is produced

Weights associated with
links

f (net) isthe nodefunction
net=>"" wx ismost populaf

flwyzy,...

s Wy )

General neuron model

.f{wlzl + e + “—'rrtnj

Weighted input summation



Node Function

O

|dentity function : f (net) = net.

Constant function: f (net) =c.
Step (threshold) function

a if net < e

f(net) =
b if net > ¢

where c is called the
threshold

Ramp function

’

a if net < e

f(net) = ¢ b if net > d

a + (rei—c (bj—a]

otherwise

-ﬂ“ﬂﬂ
: (ON)
SR i
b
(OFF) "
i
¥ ¥ - net
Step function
ﬂneﬂ,\\
... d (ON)
010 o R P S—
)
il
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Ramp function



Node Function

O Sigmoid function
m S-shaped

m Continuous and everywhere
differentiable

m Rotationally symmetric
about some point (net = ¢)

m Asymptotically approach
saturation points

lim f(net) =a
net——oc

lim f(net) =05
net—oc

m Examples:
1

0 net

Sigmoid function

L] =
flvet) ==z + 1 + exp(—=x - net + y)

f(net) = tanh(zx - net — y) + =z,

When y =0 and z = O:
a=0,b=1, ¢c=0.
Wheny =0and z = -
0.5
a=-05 b=0.5c=
0.

Larger x gives steeper
curve




Node Function

O Gaussian function
m Bell-shaped (radial basis)
m Continuous

m f(net) asymptotically
approaches 0 (or some
constant) when |net] is large

m Single maximum (when net
= 1)
m Example:

f(aet) = exp[_l(net—ﬁ)zl

Gaussian function

2o 2




Network Architecture

O (Asymmetric) Fully Connected Networks
m Every node is connected to every other node
m Connection may be excitatory (positive), inhibitory

(negative), or irrelevant (= 0).
= Most general

m Symmetric fully connected nets: weights are symmetric

(W = w;)

Output node
-0.2 1 0.2

Hidden node

Input
node

Output
node

Input
node

0.4 0.3

INnput nodes:
receive input
from the
environment

Output nodes:
send signals to
the environment

Hidden nodes: no
direct interaction
to the
environment




Network Architecture

O Layered Networks

= Nodes are partitioned into subsets, called layers.
= No connections that lead from nodes in layer j to

those in layer k if j > k.

LAYER 3
(Output Laver)

LAYER O LAYER 1 LAYER 2
(Input Laver) e, 4
Cag, o

: -
o

Hidden Lavers

e Inputs from the
environment are
applied to nodes
in layer O (input
layer).

e Nodes in input
layer are place
holders with no
computation
occurring (i.e.,
their node
functions are

identity function)




Network Architecture

0 Feedforward Networks

= A connection is allowed from a node in layer i only to
nodes in layer / + 1.

= Most widely used architecture.

LAYER. O LAYER 1 LAYER 2 LAYER 3
{Input Layer) . A {Output Laver)

=
e,
e

Hidden Lavers

Conceptually,
nodes at
higher levels
successively
abstract
features from
preceding
layers




Network Architecture

O Acyclic Networks

= Connections do not form directed cycles.

= Multi-layered feedforward nets are acyclic
O Recurrent Networks

= Nets with directed cycles.

= Much harder to analyze than acyclic nets.
O Modular nets

m Consists of several modules, each of which is
Itself a neural net for a particular sub-problem

m Sparse connections between modules



Backpropagation Learning

O Architecture:

O O

O O

m Feedforward network of at least one layer of non-
linear hidden nodes, e.g., # of layers L > 2 (not

counting the input layer) 1
= Node function is differentiable S(net) = R
most common: sigmoid function
Learning: supervised, error driven, s, a
generalized delta rule

Call this type of nets BP nets () Qutput layer
The weight update rule
(gradient descent approach)
Practical considerations
Variations of BP nets
Applications wy 3



Algorithm Backpropagation;

Start with randomly chosen weights;

while MSE is unsatisfactory
and computational bounds are not exceeded, do
for each input pattern x,, 1 < p < P,
Compute hidden node inputs (net( ])
Compute hidden node outputs (:nppj)
Compute inputs to the output nodes (netiﬂ);

Compute the network outputs (op4);

Modify outer layer weights:

(2 1)

AwD = n(dp — 0ps) S (netP)all)

Modify weights between input & hidden nodes:
1,0) 2 2,1
A =n3 ((dps — 0ps)S'(met)wils?) S (met! )y,

end-for Note: if S is a logistic
end-while. function, then S’(x) =
S(X)(1 — S(X))




Unsupervised Learning

O Training samples contain only input
patterns

® No desired output is given (teacher-less)

O Learn to form classes/clusters of sample
patterns according to similarities among
them

m Patterns in a cluster would have similar
features

= No prior knowledge as what features are
Important for classification, and how many
classes are there.



Ways to realize competition in NN

oLateral inhibition

w;, w;; <0
output of each node feeds @D 4@

to others through inhibitory
connections (with negative weights)

.- ii Wi
oResource competition N\
= output of node k is distributed y

to
node i and j proportional to w;, W, Wik
and wy, , as well as x; and X;
= self decay

= biologically sound




Issues 1in LLanguage

O Language acquisition
= How Is language acquired or learned?

O Language representation

= How are the symbols of language represented
IN memory?

O Language processing

= What factors influence the processing of
language?

39



How do we learn language?

o Chomskyan view
= Innate knowledge of possible rules of
language
= Children create hypotheses about how these
rules apply to the language they are learning

= We have mental representations of these rules

O Alternate view

= No explicit representation of rules, although
performance can be described in terms of
rules

40



Symbolic vs Dynamic

O Rules

O Representations (symbolic/sub-
symbolic/graded)

O Innate vs learned
0o Competence vs Performance
O Time

41



Past-tense acquisition (Brown, 1973)

O 1) specific forms learnt — both regular and
iIrregular

O 2) overgeneralisation of irregular verbs
= e.g. wented, goed, eated

O 3) correct pronunciation of both regular
and irregular verbs

Correct
production

time

42



Rumelhart & McClelland’s (1986) Model

O Architecture

m Single layer pattern associator
Inputs: present tense (460 units)
Outputs: past tense (460 units)
m Words represented as sets of Wickelfeatures

m Extra networks at back & front of pattern associator to

encode/decode Wickelfeatures from phonological
representation

Fluad

Peitarn Agsoclator Dacoding/Binding
Engading

PR Modiliabla Gannoctizng Network

Phanalagieal + + Prﬂnn'lc;g:?::.
reproaariatan WacheHzaturs faprasania
6l 100 borm Wickallealute i u i pas! fensa
voprescalatian rupeasenltian
o repl fom al pas: tonsp
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Rumelhart & McClelland’s (1986) Model

O Word representation

= Phonological form:/kAm/ = came

= But, indistinguishable from /mAK/ or /Akm/
O Wickelphones

= Context sensitive: #kA, KAm, Am#

= Can be analysed along 4 dimensions
e.g. /A/= long, low, vowel, front

O Wickelfeatures

44



Training & Results

O Training sets
= 10 high frequency words (8 irregular)
= 410 medium frequency words (76 irregular)
= 86 low frequency words (14 irregular)
® Trained on high frequency only; then medium
frequency added; low frequency used later
O Results
= U-shaped curve

= Overgeneralisation
Come - comed, camed
Eat - eated
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Implications

O Links between regular verb stems and past tense
forms can be described using rules, but is
governed by a mechanism which does not use
explicit rules

O Knowledge of past-formation is distributed
across the network

O Links between irregular verb stems and past
tense forms are encoded in same set of weights

O In a rule-based account, there would need to be
a rule for producing regular verbs and a list of
exceptions (irregulars)

46



Pinker & Prince (1988)

O The U-shaped curve is a result of the way
In which the input was presented, not
anything to do with the properties of the
network

= The middle of the curve coincides with the
addition of the medium frequency verbs

= Network is flooded by regular verbs — forces
network to generalise

O In real language input, there is no such
discontinuity
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Pinker & Prince (1988)

0 R&M model does a poor job of
generalizing to some novel verbs
= mail 2> membled
= tour - toureder

m Model doesn’t conceive of stem-+suffix

Cannot encode the formula for creating a past-tense
ending

O Task decomposition
= Past tense treated as autonomous

O Wickelphones & Wickelfeatures

48



Plunkett & Marchman’s (1991)
Response

O Model of past-tense acquisition using back-
propagation network
= 3 layer network, 20 units per layer
® No discontinuity in input
= Didn’t use wickelfeatures
O Parametric studies

74% of tokens irregular — regular not learned
74% of tokens regular — irregular not learned

50/50 (about the same as parental input)— network
performed well

No global U-shaped curve

Micro U-shaped curves — corresponds better to child data
as global U-shaped curve is a myth.

49



Time and Recurrent Neural Nets

O SRNs can learn language R
based on statistical s,
Information available In N e —
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Time and Recurrent Neural Nets

O SRN and mental lexicon

O SRN with complex sentences which contained number
agreement between nouns and verbs, different types of
verbs (transitive/intransitive), and nouns modified by
relative clauses (Elman, 1991).

O Rules as attractors

O Recurrent neural networks can “learn” distinctions such as
subject and object, and generalisations of words at
positions not experienced by the network (Elman, 2004).
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A model of Reading

O Max Coltheart’s multi-route model of reading aloud

O Symbolic (rule based), not a connectionist, model
(McClelland, Seidenberg, Plaut, Kello, etc.)

O Passes psychological reality test because it predicts
speC|f|c error types in reading aloud regular words (e.qg.,

“few”), exceptlon words (e.g., “sew”), and pronounceable
non-words (e.g., “tew”)

O Passes neural reality test because it predicts specific
effects of brain damage on reading

m Phonological dyslexia

; Dual-Route
m
Surface dysl_eX|a Model of
m Deep dyslexia reading !
[ | etC Coltheart (1978), identification

Coltheart et al.(2001) \
orthographic
input lexicon !\

(PINT)

Spelling-sound -
correspondences I Semantic

. system
(rule-based conversion) y

Phonological
output lexicon ‘/
(palnt)

Phoneme
system

!

Speech




Can connectionism account for human
cognition?

O Learning driven by examples

O Knowledge of rules is emergent
= Multitude of sub-symbolic representations
0 I(_:Ii)mplex Interaction produces behaviour which is rule-
ke
O Knowledge of rules remains implicit
= Cannot analyse own activity
= Cannot form symbolic representations of rules

O To model human development adequately,
connectionist systems must be able to:

m Treat own representations as objects for further
manipulation

® Do so independently of continual training input
m Retain copies of original networks
= Form new structured representations

53
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Promise of Connectionist Models

From the early association models to recurrent models incorporating
time, models have been proposed for specific language related
phenomena.

Some models for phenomena like past tense acquisition show
reasonable similarities to human behaviour showing the promise of
these models.

These approaches also show a possible way that rules could develop
In a system without explicit knowledge of those rules.

Neural nets show that simple cognitive tasks can be performed
without employing features that could correspond to beliefs, desires
and plans.

These models also hold promise in integrating findings from
neuroscience and other areas into models for language processing.

Connectionist models may also provide a seam less interface for
combining models for other aspects of cognition like perception,
attention and memory.
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Dynamical Approaches




Markov Models

O Hindustani Music

khamaj

bilawal yaman

kafi poorvi

- bhairav

todi
asaveri

bhairavi

Bhairavi



Dynamic Modelling: An example

Two stabla patterns in finger wagging
experiments, relative phase 0 and 4.

The proposed nonlinear model has two
attractors at relative phases 0 and %4.

Nature of stable points dependent on

rate
Model predictions

At higher rates, the finger wagging will

settle to the O relative phase pattern.
only two stable patterns.

Critical slowing down

Critical fluctuations

Similar effects in speech coupling

Haken—-Kelso-Bunz Model
for Finger Wagging

V= —acos ¢ - bcos 2p

the 2 terms Om
separatoly v \

potential vV
function

ok
‘\

Phase
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Arguments from Phonology

O O

Look for periodicity in behaviour and patterns.

Speech typically shows cyclic repetition of similar events and a
task that has been used to study speech timing is the “speech
cycling” task.

Subjects were asked to say a phrase (Give the dog a bone) and
were asked to time it so that they begin the phrase with a beep
from a metronome. The rate of beeps in the metronome was
iIncreased and the phase angle of the onset of a particular word
(bone) with the first word (Give) of the phrase and the first word
of the next phrase was measured. It was found that there was
tendency for the phase onset of the syllable of interest to be
around 1/2.

Other experiments manipulating speech timing and results were
found that were similar to those on motor behaviour (Kelso,
1995). These results show the influence of timing in speech
perception and production arguing for the necessity of dynamic
approaches to speech
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Ambiguous Figures - Reversals

AN




Multistability

O Multistability is a phenomenon in visual
perception that occurs when your percept varies
from one state to another though the stimulus in
front of you Is non-variant

O Multistablity in the percept formation —
underlying mechanism Perceptual organization

O Philosophically — to do with consciousness.
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Nonlinear dynamics of bistability

O Reversal rate histogram for Necker cube -
RFR depicts a gamma distribution (De
Marco et al. 1977)

O Switching related gamma band synchrony
between parietal and frontal areas with
alpha band activity in occipital (Nakatani,
2006)

O Switching times behave as a 1/f noise and

possess very long range correlation (Gao
et al. 2006)
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Switching times
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Hurst Parameter Results

Table 1| The Hust pammaer fir natual time senmes from ten
Mecker cube and ten hino@lar mvalry subjecs

Mecke ELrvalry
(L& 053"
S 042
S 063
L& 066
072 066
072 067
075 0.73
076 0.77
R 0.77
R 0.78

For 19 of these A, the estimmaied hlehhood was less tham 0.00]
Fern ocurmenaes m 1,000 or more shuffies) that H m ther shuffed

tme semes was at keasl ax large a5 1 m ther naturally ondened time
sries. For the Ath sulyect (mdicaded by *), whose H ey was the
smallest found, the esimaded likddihood was 0005 (3 such
accwrrences gut of 9,000 shuffies)
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Multistability — ERP Results
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Attentional Blink

O

O

Targets are presented one at
a time very briefly.

Typically the presentation of
the target as well as the
blank interval is of a duration
around 100 ms.

Participants have to detect
two targets (T1 and T2) and
the rest of the stimuli are
distractors.

Target T1 appears first
followed by target T2 and the
temporal gap (lag) between
T1 and T2 are varied.

The basic finding is that
accurate identification of
target T2 is poor for lag 2.

The performance improves
with higher lag and reaches
asymptote around lag 6 or 7.

100

80

# single target cond. * dual target cond.

1 2 3 4 5 8
Relative serial position of T2
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AB Results

0.03

0.02
Sl
0.01

-0.01

156 1 05 0 05 1 15

Time (s)

Fig. 4 Synchronization (SI) in the target-related network. a The
“noAB” condition (solid line) shows a stronger SI during stimulus
presentation compared to the “AB” condition (dashed line). 0 ms
corresponds to the onset of the first target. The beginning of the
letter stream ranges from —880 to —580 ms. The SI time courses
were smoothed with a Savitzky-Golay filter (polynomial order: 3,
frame length: 600). b SI for the components of five successive
stimuli. Zero on the x-axis corresponds to a 60 ms long window

0.015

0.01

-0.01

698
Time after T1 presentation (ms)

114 260 406 552

centered at 260 ms after presentation of the first target. The other
windows were shifted by multiples of the SOA (146 ms). Position 2
corresponds to the target component of the second target (for AB
and noAB condition). For each window the mean SI i1s shown.
Conditions are patiern-coded (noAB: solid; AB: dashed; target:
dash-dot; distractor: dotted). The dashed horizontal lines mark the
extent of SI in trials containing only distractors
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AB Results
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Fig. 5 Source waveforms from left temporo-parietal (a), right-
temporo-parietal (b) and frontal (¢) areas for Lagl trials (T2
immediately following TI1; T1-T2 SOA =100 ms, ISI=50 ms),
adapted from Kessler et al. (2005b). Letter onsets are indicated by
“L17 to “L4” on the x-axis. At the top of each panel a graph
compares amplitude means in the Lag 1 and in the distractor
condition. Asterisks denote the 5% (single) and the 1% (double)

significance levels. In left temporo-parietal areas (a) only one M300
component for T1 and T2 is observed that might reflect a single or
two overlapping target-related processes. In right temporo-parietal
areas (b) two target-related M300 components (grey bars) are
observed on top of regular biphasic responses that mirror the
occipital pattern (cf. Fig. 2). In PFC (¢) two distinct target-related
M300 components are the dominant waveform patterns
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Visual Search (Deborah Acks)

Find
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Visual Search Task

Find the upright
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Method

O Each trial contained 81 Ts.
O 400 trials lasting 2.5 hours.

O Eight 20-minute sessions separated by 5-
minute rest

O Generation V dual purkinje-image (DPI)
tracker




Map trajectory ot eyes:

O Duration & X,y coordinates for each
fixation.
m Differences between fixations

Xy — X1 & Yn = Yn+1

m Distance = (x2 + y?)1/2
m Direction = Arctan (y/Xx).



Results

Conventional search stats...

What's the central tendency?
» 24 fixations per trial

* 7.6 seconds per trial

» Mean fixation duration = 212 ms

» 10,215 fixations across compl ete search experiment.



Dominant Frequencies

“Color’ of noise _ |
____________ ... White Noise

1/f 9 noise -- flat spectrum= no
correlation across data points
Short & Longrange= 0
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Power Spectra of raw fixations
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Power Spectra of first differences
across tixations
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Distance across eye fixations
(X2 + y?) 1/2
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Distance across eye fixations
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Summary of results:

O Seqguence of...
= Absolute eye positions --=> 1/f brown noise
= local random walk

O Differences & distance-across-fixations
--> —~1/f pink noise
= Subtle long-term memory.



From perceptual to brain dynamics

O Are the spontaneous changes experienced
In perceptual patterns the outcome of
similar events in brain activity?

0 what kind of dynamics governs these
changes in the brain?

O Brain dynamics as a necessary
requirement for the dynamics of our
mental states
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Consciousness and Complexity

O Tononi, Edelman, Anil Seth
O Simultaneous Differentiation and Integration

O “Small parts of a system are independent,
large parts are comparatively integrated”
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Coherence Intervals

O Subsystems of the brain will remain In
quasi-stable phase synchrony for as long
as It takes to pass information between
them. Periods with this function are called
coherence intervals (van Leeuwen &
Baaker, 1995).

O Coherence intervals as “filter” for
INformation
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Thanks
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