Community structure in networks

Levels of organization in networks

 Microscopic: nodes, edges, and their immediate surroundings, e.g. clustering

 Mesoscopic: structures containing many nodes and edges, e.g. communities, backbones

 Macroscopic: features at the network level, e.g. degree distributions, existence of hubs

Communities: a loose definition

- At the mesoscopic level, networks commonly display modular organization
- There are communities, groups of nodes with dense internal connections
- The idea is (deceivingly) simple; yet formally defining when nodes constitute a community is not!
- Communities = modules = clusters, terminology varies

Detecting communities

- A problem with no correct solution
- What we want is to divide assign community membership to each node, i.e. partition the network
- Outcome: community indices for each node:

```
node1 community1
node2 community1
...
node100 community12
...etc
```

- Has to be based on some definition of "community"
- The algorithm should be fast enough to be applicable for large networks

An early solution: the Girvan-Newman method

- Calculate the betweenness for all edges in the network.
- 2. Remove the edge with the highest betweenness.
- Recalculate betweennesses for all edges affected by the removal.
- Repeat from step 2 until no edges remain.

Girvan M. and Newman M. E. J., Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)

- Edges between clusters of densely connected nodes must have a high betweenness centrality
- Solution: think of these edges as bridges between communities and remove them to get the communities! So communities = connected components.
- Instead of a single partitioning, there will be a partitioning for each removal step

An early solution: the Girvan-Newman method

- Zachary's karate club, a famous example studied in social sciences
- The club split into two due to leaders' disputes
- First level of splitting with the GN method (circles, squares) corresponds to actual split

- This method is hierarchical, producing a tree structure of nested communities
- Such structures can be presented as dendrograms

Modularity - which partition is the best?

- The GN method produces many possible community divisions
- In order to select the "best" and most "natural" one, Newman proposed a quality function, the modularity:

$$Q = \frac{1}{2L} \sum_{i \neq j} \left(a_{ij} - \frac{k_i k_j}{2L} \right) \delta \left(\sigma_i, \sigma_j \right)$$

- L = number of edges in the network,
- a_{ij} = adjacency matrix element,
- k_i, k_j = degrees of i and j,
- σ_i , σ_j = community indices of i and j

- Modularity measures how many "excess" edges there are within communities, compared with a random null model
- $k_i k_j / 2L =$ expected number of edges between i and j in the random null model
- Random null model =
 configuration model, i.e.
 a network with an identical
 degree sequence but otherwise
 as random as it gets

Modularity Optimization

- The next, logical conclusion: instead of edge removal, just find the partition which optimizes modularity Q for the network!
- There are numerous ways of doing this, e.g. simulated annealing
 - Initially assign community indices randomly
 - Change index of node (nodes)
 randomly, accept change if Q higher,
 otherwise accept with small probability
 or reject
 - Repeat, decreasing lower-Q-acceptance probabilities

- Modularity optimization has been widely used
- Problems:
 - always assumes a single "correct" partitioning
 - finding the true optimum is a NP-hard problem
 - algorithms & heuristics stochastic; outcomes can differ a lot
 - optimizing a global quantity gives rise to problems...

Modularity Optimization: Deep Problems

- The use of a global reference leads to deep problems
- The optimal partition depends on the number of links in the network!
- Communities below a limiting size are not detected! This size depends on the number of links in the network.
- This is the resolution limit
- See Fortunato & Barthélemy, PNAS 104, 36 (2007)

4 clusters: modularity optimized

network extended so that new cluster joins by a single link: modularity optimized when clusters are merged!

Clique Percolation

- Palla et al, Nature 435, 814 (2005)
- Clique = fully connected subgraph
- Communities defined as sets of nodes belonging to adjacent k-cliques
- Adjacent = sharing k-1 nodes

Example: 3-clique communities

Clique Percolation

- One node can belong to multiple communities
- This makes sense especially for social networks

Clique Percolation - Practical Considerations

- If nodes do not participate in a clique, they are not assigned to any community (for sparse networks this can be a problem)
- Too small clique sizes can give rise to a giant clique community spanning almost the entire network
- So for extracting useful information, one has to choose a right clique size (in practice often k=3-5)
- Free software: http://www.cfinder.org/

Infomap: a method based on information flow & Huffman coding

Maps of information flow reveal community structure in complex networks, Martin Rosvall and Carl T. Bergstrom, PNAS 105, 1118 (2008).

Free software: http://www.tp.umu.se/~rosvall/code.html

Note: works for weighted networks too.

Communities in Weighted Networks

- Reasonable hypothesis: intracommunity weights are higher than intercommunity weights
- E.g. modularity optimization and the Potts method are then straightforward to generalize
- For clique percolation, a generalization based on intensities of cliques exists (computationally heavy!)

these should be detected by any unweighted method

unweighted network

"noise" added in form of low-weight edges

weighted network

Hierarchical community structure

- Small communities form larger communities, which form larger communities, etc.
- For weighted networks, weights can define this hierarchy (strongest weights define the smallest communities etc)

Sequential clique percolation

- Progressively threshold network, i.e. remove edges ordered by weight
- Simultaneously keep track of changes in k-clique communities
- A fast algorithm can be designed based on considering a bipartite clique network: just keep track of the connected components of a k-1 clique network

Sequential clique percolation: community hierarchy in an e-auction network

Kumpula et al, PRE 79, 026109 (2008)

Analysis of communities

Basic measures

- Size distribution of communities P(s)
- Edge densities inside communities $E_s/[0.5s(s-1)]$ as function of s
- Overall numbers of links inside/between communities
- If method allows for multiple community membership of a node (e.g. clique percolation), average # of communities per node; distribution of communities per node
- If extra information on nodes available (e.g. gender, age, nationality), relationship of these to community structure
- Community network: communities become nodes, numbers of links between communities become weighted links

Dynamic networks

Dynamic Networks

- Most studied networks are in fact "snapshots" of networks taken at a point in time, or aggregates over temporal activity
- What about the dynamics of networks?
- So far, studies have mostly focussed on the long time scale of network growth (e.g. whether attachment is preferential)

- Several time scales:
 - Fast time scale of link activation/deactivation
 - Longer time scale of link rearrangement
 - Long time scale of network growth & decline

Communities: further reading

- A thorough review:
 Santo Fortunato: Community detection in graphs,
 http://arxiv.org/abs/0906.0612
- Good doctoral dissertation:
 J. Kumpula, Community Structures in Complex Networks: Detection and Modeling, http://lib.tkk.fi/Diss/2008/isbn9789512296569/

Short time scales: contact sequences and time-respecting paths

- Consider a network where links activate and deactive at points in time
- E.g. contacts between people
- Anything which spreads on such a network will have to "respect" this sequence of contacts
- The set of nodes which can be reached from a node along timerespecting paths is analogous to a connected component

P. Holme, Phys. Rev. E 71, 046119 (2005)

Medium time scales: Community Dynamics

- First study so far: Palla et al, Quantifying Social Group Evolution, Nature 446, 664 (2007)
- Dynamics of communities: formation, merging, splitting, etc
- Data: co-authorships, mobile telephone call records
- Requires a lot from the community detection method!

Community Dynamics: Stability of Communities

- Results indicate that
 - Large communities persist in time if there is a continuous exchange of members communities remain, constituent people change!
 - Small communities persist if there is a small, persistent core of a few strong relationships

Medium to long time scales: edge dynamics & preferential attachment

Leskovec et al, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM KDD) (2008)

Medium to long time scales: dynamic networks, stationary distributions

- A. Gautreau et al, PNAS 106, 8847 (2009)
- Data: US airport network
- The network changes in time (nodes appear and disappear, degrees change, etc)
- Yet degree, strength and weight distributions remain stationary!

Practical Tips & Tricks

Storing & handling network data

File formats:

I. Edge files (*.edg, ...)

- list of all edges
- if undirected network, edge i-j listed only once (j-i is not listed)
- one row contains: node1 node2 (weight)

2. GML (Graph Markup Language), (*.gml)

 lists node labels and then edges

```
undirected net
graph
 directed 0
 node
                    node ID's
    id 0
 node
    id 1
 node
    id 4940
                    edge endpoints
 edge
    source 8
    target 6
  edge
    source 8
    target 7
 edge
    source 9
    target 8
```

Storing & handling network data

- What kind of data structure should be utilized when simulating or analysing networks?
- Matlab users: if networks small enough (~thousands of nodes), use sparse matrices
- A=spalloc(N,N,2*E)
 creates an empty sparse
 adjacency matrix of size NxN,
 with space for E edges
- type help sparse for more

- Now just set an element to 1 if an edge exists between the endpoint nodes: A(2,5)=1
- If the network is undirected, also set the transpose: A (5, 2) = 1
- This matrix can also be used as the weight matrix W
- Note: requires that nodes are indexed 1..N (which, anyhow, is a good practice)

Storing & handling network data

- Matlab users: another solution is to use structures which list neighbours for each node
- node(1).neighbours=[2 3 8];
 node(2).neighbours=[1 4 16];
 etc...
- Memory-efficient
- For efficient & fast storage e.g. with
 C++, see Efficient data structures for sparse network
 representation, J. Hyvönen, J. Saramäki, and K. Kaski, Int. J. Comp. Math. 85, 1219 (2008)

- How to get network properties now?
- E.g. for the degree of node 1:

```
k=sum(A(1,:),1);
or
k=length(node(1).neighbours);
```

vector with degrees of all nodes:

```
k=sum(A,1);
or
for i=1:N,
   k(i)=length(node(i).neighbours);
end;
```

Example: E-R network model in Matlab

Degree Distributions

- Degree distribution P(k) discrete
- The crude method (not suggested):
 - simply count N(k)/N & plot
- Problem: not good enough for fat-tailed distributions due to missing values & noise at tail!

example: BA network, N=10000, averaged over 200 realizations

Estimating Degree Distributions: Logarithmic Binning

- Estimate probabilities of finding vertices within bins of multiplicative sizes
- Generate bin vector:

Here bin sizes

double; any other factor than 2 will

do as well, as long

as there are enough

data points within bin limits

(e.g. 1.2)

 $\downarrow \qquad \qquad \downarrow \qquad$

- Count numbers of nodes in each bin, i.e. # of nodes with degrees within bin limits, N_{bin}
- Divide by bin width to get $P_{bin} = N_{bin}/\Delta k_{bin}$
- Normalize P_{bin}

• Plot P_{bin} vs bin center degree

example: BA network, N=10000, averaged over 200 realizations

Note: for small degrees, e.g. in [1,10], linear bins are often used

Example: log binning with Python

Step I: generate bin limit vector

```
def generateLogbins(minvalue, maxvalue, factor, uselinear=True):
    '''Generates a binning vector containing bin limits
       for log-binning. Inputs:
       minvalue, maxvalue = min and max values of data (e.g. degrees) to be binned,
       factor = multiplicative factor for increasing bin size,
       uselinear=[True|False] for making the first 10 bins linear.'''
    if uselinear:
           # for degree distributions, the first 10 degrees are often
          # binned in linear bins. If so, set uselinear=True
        bins=[-0.5,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5]
        i=12
    else:
           # set the first bin lower limit s.t. first data point
          # falls in the bin center
        bins=[]
        bins.append(minvalue*2.0/(1+factor))
        i=1
    while bins[i-1]<maxvalue:
           # generate the rest of (log) bin limits. The next bin limit
          # is always the previous limit times the factor
        bins.append(bins[i-1]*factor)
        i+=1
    return bins
```

Example: log binning with Python

Step II: count # of nodes in bins, divide by width to get distribution

```
# first initialize a vector that counts the number of data points
# within each bin (e.g. degrees)
Nbin=[]
for i in range(len(bins)-1):
         Nbin.append(∅)
# go through each degree in the network, and find which bin the
# degree belongs to. Increase the number counter of that bin by
# one.
for k in degrees:
         mybin=findbin(bins,k)
         Nbin[mybin]+=1
# next, calculate probability density per bin, and also bin centers
Pbin=[]
bincenters=[]
for i in range(len(bins)-1):
         binwidth=bins[i+1]-bins[i]
         # to get prob. density, divide number of data points by bin width
         Pbin[i]=Nbin[i]/binwidth
         bincenters[i]=(bins[i+1]-bins[i])/2.0
# finally normalize probabilities to sum to one
Pbin=Pbin/sum(Pbin)
```

```
def findbin(bins,value):
    '''Finds out the bin where input param value belongs to.
   Uses range halving for fast output - move lower and upper limits
    of search according to whether the input param value is higher or
    lower than the bin limit in the middle of the (lower,upper) range.
   Inputs: bins - list of bin limits,
   value - value to be found within bin limits'''
   lowerlimit=0
   upperlimit=len(bins)-1
   while (upperlimit-lowerlimit)>1:
       halfpoint=int(ceil(0.5*(upperlimit+lowerlimit)))
        if (value>=bins[halfpoint]):
           lowerlimit=halfpoint
       else:
           upperlimit=halfpoint
   return lowerlimit
```

Example: log binning with Matlab

```
function [P,kc]=logbin(Nk,kmax,factor);
                         % Nk: vector whose k:th element= #of nodes of degree k, kmax=max k
                         bins=0.5:10.5; % vector of bin LOWER LIMITS
create bin limit vector:
                                        % up to 10, bins LINEAR, after 10, LOGARITHMIC
linear up to 10, then
                         i=12;
limits multiplied by
                         while bins(i-1) < kmax,
                             bins(i)=bins(i-1)*factor; % factor controls bin spread
const factor
                         end;
                         Nbin=zeros(1,length(bins)); % vector for total # of vertices in bin
count how many
                         for k=1:length(Nk), % here Nk is SORTED in ascending k
vertices in each bin
                             if k>=bins(bin+1), % if k exceeds lower bin limit of next bin
                               bin=bin+1; % move to next bin
                             end;
                             Nbin(bin)=Nbin(bin)+Nk(k); % add data vect contents to bin sum
                         end;
                         for i=1:length(bins)-1,
                                                      % divide by bin width
divide by bin width
                             width=bins(i+1)-bins(i);
                             Nbin(i) = Nbin(i) / width;
                         end;
                         for i=1:length(bins)-1,
calculate bin center
                             kc(i)=0.5*(bins(i)+bins(i+1)); % vector of bin centers
degrees
                         end;
                         P=Nbin(1:length(bins)-1);
normalize
                         P=P/sum(Nk); % probability density vector, normalized
```

Estimating power law exponents (the crude, easy way)

- Fit a line to log(P(k)) vs log(k)
- If the distribution follows a power law, this typically happens at the tail, so the fitting range has to be chosen
- Exponents tend to be underestimated!
- Left: BA networks: fit Υ=2.83,
 true Υ=3 at large N

(BA power law is asymptotic, actually P(k) = 2m(m+1)/k(k+1)(k+2), and N=10000 is not large enough)

example: BA network, N=10000, averaged over 200 realizations

For learning how to **properly** statistically test the hypothesis whether the data is a power law (or some other distribution), see

A. Clauset et al, SIAM Review 51, 661-703 (2009)

(also at http://arxiv.org/abs/0706.1062)

Estimating Degree Distributions: Cumulative Distributions

For power laws

$$P(k > k') \sim \sum_{k'=k}^{\infty} k'^{-\gamma} \sim k'^{-(\gamma-1)}$$

i.e. the cumulative distribution is also a power law

- For other distributions,
 depends... (exp → exp, lognormal
 → something strange, etc)
- Recipe: sort nodes by degree, for each degree count how many nodes have a higher degree, divide by N

example: BA network, N=10000, averaged over 200 realizations

Log-binned averages

- Just as for degree distribution, create bin vector
- For your quantity of interest, e.g. C(k), calculate the average for nodes with degrees inside the bin
- Plot as function of bin centers

world-wide airport network

Clustering coefficient

• If using (sparse) adjacency matrix, easy to calculate:

```
t=0.5*diag(A^3);
% vector with # of triangles
around each node
k=sum(A,1); %degrees

c=zeros(1,N);
for i=1:N,
if (k(i)>1), c(i)=2*t(i)/(k(i)*
(k(i)-1));
end; end;
```

Note: c is not defined for vertices of degree 1! Here, it is chosen to be 0 for these

- If using link lists, you have to use loops to get the # of links in the neighbourhood of each vertex
- Then just average over all vertices of each degree to get c(k) & plot c(k) vs k on (usually log-log)
- OR, average in logarithmic bins, ie over all vertices falling in each bin & plot as function of bin center degrees

Network Visualization

- The not-so-easy target: to map a hyperdimensional object into 2D
- Many algorithms exist, most are variations of the following:
 - Nodes = repulsive electric charges, amount of charge equals degree
 - Links = springs
 - Then just balance the tensions, i.e. minimize energy, using simulated annealing or other tricks

Network Visualization: Freeware Packages

- PAJEK (Win only),
 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
- Himmeli (Win/Mac/Linux)
 http://www.finndiane.fi/software/himmeli/
 - Himmeli allows for weighted networks.
 - There is also an online version (data in through a web interface, images out).

Network data

- Mark Newman's data and link collection: http://www-personal.umich.edu/~mejn/netdata/
- Uri Alon's pages (biological networks, also motif analysis software): http://www.weizmann.ac.il/mcb/UriAlon/

Software - Community Detection

- INFOMAP http://www.tp.umu.se/~rosvall/code.html
- CFinder (clique percolation) http://www.cfinder.org/

Software - Network Visualization

- Himmeli http://www.finndiane.fi/software/himmeli/
- Pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Software - General

• iGraph, a general network library (C++, R, Python): http://igraph.sourceforge.net/

Research groups, laboratories, people

- Institute for Scientific Interchange, Torino, Italy: http://www.isi.it/
- CABDyN Complexity Center, Oxford, UK: http://www.cabdyn.ox.ac.uk/
- Center for Models of Life, Niels Bohr Institute, Denmark: http://cmol.nbi.dk/index.php
- Large Graphs and Networks Group at UCL, Louvain-la-Neuve, Belgium: http://www.inma.ucl.ac.be/networks/
- Institute for Cross-Disciplinary Physics and Complex Systems, Mallorca, Spain: http://ifisc.uib.es/
- Albert-László Barabási's group: http://www.barabasilab.com
- Nicholas Christakis at Harvard Dept. of Sociology: http://www.wjh.harvard.edu/soc/faculty/christakis/
- Mark Newman: http://www-personal.umich.edu/~mejn/
- My department in Helsinki: http://www.becs.hut.fi/

Video lectures

- http://videolectures.net/janos_kertesz/
- http://videolectures.net/albert_laszlo_barabasi/
- http://videolectures.net/shlomo_havlin/
- http://videolectures.net/mark_newman/
- http://videolectures.net/alessandro_vespignani/
- http://videolectures.net/santo_fortunato/

Doctoral theses with good introductory texts on complex networks (+lots of references)

- Jussi Kumpula: Community structure in complex networks detection and modeling. http://lib.tkk.fi/Diss/2008/isbn9789512296569/isbn9789512296569.pdf
- Tapio Heimo: Complex networks and spectral methods: an econophysics approach to equity markets http://lib.tkk.fi/Diss/2009/isbn9789512297313/isbn9789512297313.pdf
- Riitta Toivonen: Social networks: modelling structure and dynamics.

 http://www.lce.hut.fi/~rtoivone/publications/DissertationIntroduction RiittaToivonen.pdf

My contact details

- email: jari.saramaki@tkk.fi
- Skype: jari.saramaki
- web page: http://www.lce.hut.fi/~jsaramak/