Community structure
in networks

Levels of organization in networks

¢ Microscopic: nodes, edges, and
their immediate surroundings,
e.g. clustering

Mesoscopic: structures
containing many nodes and
edges, e.g. communities,
backbones

Macroscopic: features at the
network level, e.g. degree
distributions, existence of hubs

Communities: a loose definition

At the mesoscopic level,
networks commonly display
modular organization

There are communities,
groups of nodes with
dense internal
conhections

The idea is (deceivingly) simple;
yet formally defining when nodes
constitute a community is not!

Communities = modules =
clusters, terminology varies

Detecting communities

A problem with no correct solution

What we want is to divide assign
community membership to each
node, i.e. partition the network

Outcome: community indices for

each node:

nodel communityl
node2 communityl

nodel00 communityl2
..etc

Has to be based on some definition
of “community”

The algorithm should be fast enough
to be applicable for large networks

“ - . o
. Comipunity 2 - .

An early solution:
the Girvan-Newman method

. Calculate the betweenness for all edges in the net-
work.
. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by
the removal.

. Repeat from step 2 until no edges remain.

Girvan M.and Newman M. E.|., Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)

Edges between clusters of densely connected nodes must have a high
betweenness centrality

Solution: think of these edges as bridges between communities and remove
them to get the communities! So communities = connected components.

Instead of a single partitioning, there will be a partitioning for each removal

step

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799

An early solution:
the Girvan-Newman method

of edges removed

® Zachary’s karate club, a famous example This method is hierarchical,
studied in social sciences producing a tree structure of

nested communities
® The club split into two due to leaders’

disputes Such structures can be presented as

dendrograms
First level of splitting with the GN

method (circles, squares) corresponds to
actual split

Modularity - which partition is the best?

® The GN method produces many Modularity measures how many
possible community divisions “excess” edges there are within

communities, compared with a
In order to select the “best” and random null model

most “natural” one, Newman

proposed a quality function, ki kj/ 2L = expected number of

the modularity: edges between i and j in the
random null model

. _l l\‘-'lw" :
)= — 1) — =2) & (a7,
’ 2L Z (” b2L) (73> 75) Random null model =

17) .
configuration model, i.e.
L = number of edges in the network, a network with an identical
ag = adjacency matrix element, degree sequence but otherwise

k. & = degrees of 1and, as random as it gets
0i, 0; = community indices of 7 and j

Modularity Optimization

® The next, logical conclusion: ® Modularity optimization has
instead of edge removal, just been widely used
find the partition which
optimizes modularity O ® Problems:

i .
for the network! ® always assumes a single
“correct” partitioning

There are numerous ways of finding the true optimum is a

doing this, e.g. simulated NP-hard problem

annealing _ o
algorithms & heuristics

stochastic; outcomes can
differ a lot

® |nitially assign community indices
randomly

Change index of node (nodes)

randomly, accept change if Q higher, optimizing a global quantity
otherwise accept with small probability - ise t bl
or reject gIVES IIs€ 1O prooiems...

Repeat, decreasing lower-Q-acceptance
probabilities

Modularity Optimization: Deep Problems

The use of a global reference
leads to deep problems

The optimal partition
depends on the number of
links in the network!

Communities below a

limiting size are not

detected! This size depends

on the number of links in the 4 clusters: modularity
network. optimized

This is the resolution limit

See Fortunato & Barthélemy,
PNAS 104, 36 (2007)

Kumpula et al, Eur. Phys. J. B
56, 41 (2007)

network extended so that new
cluster joins by a single link:
modularity optimized when
clusters are merged!

Clique Percolation

Palla et al, Nature 435, A m @ @

814 (2005) S

Example:
Clique = fully connected 3-clique communities
subgraph

Communities defined as
sets of nodes belonging
to adjacent £-cliques

Adjacent = sharing £-/
nodes

Clique Percolation

One node can belong to
multiple communities

This makes sense especially for
social networks

- A. M. Sudupe |. Giardina
*

kN P._Verrocchio
LA Fernayfd'gz-. \ b

» N
.

RE ‘.: % ‘ ,"',"’. P
W L /Stpessymmetry
1! N\ ¢ \ 74 T.’,. ."' ' .
J.d mg,;gf‘ém\ J‘f‘f\ j sj,‘{',.gera
s. PRI

D.lancaster ¢ pean

Clique Percolation - Practical
Considerations

If nodes do not participate in a
clique, they are not assigned to any
community (for sparse networks this
can be a problem)

Too small clique sizes can give rise to
a giant clique community spanning
almost the entire network

So for extracting useful information,
one has to choose a right clique size
(in practice often k=3-5)

Free software: http://
www.cfinder.org/

° Ribosome
ma biogenesis/assembly

No7

Hhtb/ S A Wn{‘nrmz
Ris3 / DNA packaging
Si !
Pph21, Ly % \\ & rhromatun assembly

Cdgﬁs

Pph220 / S 1 C'lromatm silencing

oRrpl4

Zds1
HBs4 oGic2
Bomo

tdcaz © Cae1 TNl
et

SNy
. (\%cw%ftﬁ(inmis

(septin ring)

O
Ste20 3.0,“1

http://www.cfinder.org
http://www.cfinder.org
http://www.cfinder.org
http://www.cfinder.org

Infomap: a method based on information
flow & Huffman coding

Maps of information flow reveal community structure in complex networks, Martin Rosvall and Carl T.
Bergstrom, PNAS 105, |1 18 (2008).

“0@ © 90

. . - ‘ ‘ ‘

. oooo . . ‘ ‘ @ ‘
. 11’0001)1011

Doom 11Z>ooo

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 0011 111 0000 11 01 101 100 101 01 0001 0 110011 00 11000 111 1011 10
1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1110 10001 111000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011111100111 11101111101 1110 0000 10100 0000 1110 10001 0111 011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
0100 10110 11010 10111 1001 0100 1001 10111 1001 0100 1001 0100 110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011
0011 0100 0011 0110 11011 0110 0011 0100 1001 10111 0011 0100 10111 000 10 000 111 0001 0 111 010 1010 010 1011 11000 10 011
0111 10001 1110 10001 0111 0100 10110 111111 10110 10101 11110

00011

Free software: http://www.tp.umu.se/~rosvall/code.html

Note: works for weighted networks too.

http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html

Communities in Weighted Networks

Reasonable hypothesis: intra=-
community weights are
higher than inter-
community weights

E.g. modularity optimization and
the Potts method are then
straightforward to generalize

For clique percolation, a
generalization based on
intensities of cliques exists
(computationally heavy!)

these should be
detected by any
unweighted method

“noise’” added in
form of low-weight

edges

unweighted network

Hierarchical community structure

Small communities form larger communities, which form larger
communities, etc.

For weighted networks, weights can define this hierarchy
(strongest weights define the smallest communities etc)

W

Sequential clique percolation

Progressively threshold i
network, i.e. remove edges o * » | 3-liques
ordered by weight o ,) 2. liques

Id))

Simultaneously keep track of *
: : " ’ .fm—ﬁb \
changes in k-clique communities b k=cliques | y | (k-)-clique network
" &

/\,

"B\

A fast algorithm can be designed \ ®

based on considering a bipartite
clique network: just keep track &€ : 3l. |
of the connected components ® 9
of a k-1 clique network AN & /B ; :

\
« y

'

Kumpula et al, PRE 79, 026109 (2008)

Sequential clique percolation:
community hierarchy in an e-auction network

Motor vehicles k - 3 b) Music
Collectibles iMovies

. . Antique
Electronic devices
Home

Computer components Women's clothing

Music Children's
clothing

) Jewelry, cosmetics
Movies

e Magazines

Literature Computer components
Electronic devices

Motor vehicles

Antique

Children’s
clothing

Video games
Women's clothing

. Video games

Fishing

Threshold weight Threshold weight

Kumpula et al, PRE 79, 026109 (2008)

Analysis of communities

Basic measures

Size distribution of communities P(s)

Edge densities inside communities
Es/[0.55(s-1)] as function of s

Overall numbers of links inside/between
communities

If method allows for multiple community
membership of a node (e.g. clique percolation),
average # of communities per node;
distribution of communities per node

If extra information on nodes available (e.g.
gender, age, nationality), relationship of these to
community structure

Community network: communities become nodes,
numbers of links between communities become
weighted links

Dynamic networks

Dynamic Networks

Most studied networks are in
fact “snapshots” of networks
taken at a point in time, or
aggregates over temporal activity

What about the dynamics of
networks?

So far, studies have mostly
focussed on the long time scale
of network growth (e.g. whether
attachment is preferential)

® Several time scales:

Fast time scale of link
activation/deactivation

Longer time scale of
link rearrangement

Long time scale of
network growth &
decline

Communities: further reading

A thorough review:

Santo Fortunato: Community detection in graphs,
http://arxiv.org/abs/0906.06 |2

Good doctoral dissertation:

J. Kumpula, Community Structures in Complex Networks: Detection and
Modeling, http://lib.tkk.fi/Diss/2008/isbn9789512296569/

http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/0906.0612
http://lib.tkk.fi/Diss/2008/isbn9789512296569/
http://lib.tkk.fi/Diss/2008/isbn9789512296569/

Short time scales: contact sequences
and time-respecting paths

Consider a network where links
activate and deactive at points in
time

E.g. contacts between people

Anything which spreads on such
a network will have to “respect”
this sequence of contacts

The set of nodes which can be

reached from a node along time- T

respecting paths is analogous to : \\0 , R\
8‘]O 6 - 8.]O ().:;‘

a connected component 5,40 7540

P. Holme, Phys. Rev. E 71, 046119 (2005)

Medium time scales:
Community Dynamics

First study so far: Palla et al, Growth
Quantifying Social Group ‘
Evolution, Nature 446, 664 l

(2007) >

Contraction

Dynamics of communities:
formation, merging, splitting, etc

Data: co-authorships, mobile
telephone call records

Requires a lot from the
community detection method!

Results indicate that

Community Dynamics:
Stability of Communities

Large communities persist in
time if there is a continuous
exchange of members -
communities remain,

4 Y
large,

. .
__hon-stationary ,

constituent people change!

Small communities persist if
there is a small, persistent
core of a few strong
relationships

Medium to long time scales: edge
dynamics & preferential attachment

Probability
that a new edge
connects to node

of degree d \ .

gyt —— - T pe(detd’ —'

Linear
dependence
observed: p(d)e d

Edge probablily, pe(d)
Edge probablity, p,(d)

lIIlIl L 1 IlllIlI

10" 10° 10" 10°

Destination node degree, d Destination node degiee, d
(¢c) FLICKR (d) DELICIOUS

T pgld)ed ——

Edge probeability, pe(d|
Edge pobability, pe(d|

10 10° 10’ 10°
Destination nods degree, d Desiination node degree, d

(¢) ANSWERS (f) LINKEDIN

Leskovec et al, ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (ACM KDD) (2008)

Medium to long time scales: dynamic
networks, stationary distributions

A. Gautreau et al,
PNAS 106, 8847 (2009)

Data: US airport network

The network changes in time
(nodes appear and disappear,
degrees change, etc)

Yet degree, strength and weight
distributions remain stationary!

US Airport Network

B

— 01/1992
06/1996
12/1998

— 09/2000
LA I L LI

Practical Tips & Tricks

Storing & handling network data

graph undirected net

[
directed 0

File formats: node
. Edge files (*.edg, ...) -
o list of all edges

e if undirected network, edge
i-j listed only once (j-i is not
listed)

ohe row contains:

nodel node2 (weight)

— edge endpoints
edge & g

[

2. GML (Graph Markup target
Language), (*.gml) :

edge

. [
e |ists node labels and then source

target
edges :

edge
[
source
target
]
]

Storing & handling network data

What kind of data structure
should be utilized when
simulating or analysing networks!?

Matlab users: if networks small
enough (~thousands of nodes),
use sparse matrices

A=spalloc(N,N,2*E)
creates an empty sparse
adjacency matrix of size NxN,
with space for £ edges

type help sparse for more

Now just set an element to 1 if
an edge exists between the
endpoint nodes:A(2,5)=1

If the network is undirected, also
set the transpose:A(5,2)=1

This matrix can also be used as
the weight matrix W

Note: requires that nodes are
indexed 1. .N (which, anyhow, is
a good practice)

Storing & handling network data

Matlab users: another solution is to
use structures which list neighbours
for each node

node(1l).neighbours=[2 3 8];
node(2) .neighbours=[1 4 16];

etc...
Memory-efficient

For efficient & fast storage e.g. with

C++, SE€E€ Efficient data structures for sparse network

representation, J. Hyvonen, J. Saramaki, and K. Kaski, Int. . Comp.

Math. 85, 1219 (2008)

How to get network properties now!?

E.g. for the degree of node I:
k=sum(A(1l,:),1);

or
k=length(node(1l).neighbours);

vector with degrees of all nodes:

k=sum(A,1);

or

for i=1:N,
k(i)=length(node(i).neighbours);

end;

http://www.lce.hut.fi/%7Ejsaramak/datapaper.pdf
http://www.lce.hut.fi/%7Ejsaramak/datapaper.pdf
http://www.lce.hut.fi/%7Ejsaramak/datapaper.pdf
http://www.lce.hut.fi/%7Ejsaramak/datapaper.pdf

Example: E-R network model in Matlab

N=1000;
p=0.05;

A=spalloc(N,N,2*p*N*(N-1));
% creates a N*N sparse matrix with space for pN(N-1) edges
% (twice the expected number, just to be sure)

for i=1:N;
for j=(i+1):N;
r=rand(1l,1);
if r<p,
A(i,])=1;
A(J,1)=1;
end;
end;
end;

Degree Distributions

» Degree distribution P(k) discrete example: BA network, N=10000,
averaged over 200 realizations

* The crude method (not
suggested):

 simply count N(k)/N & plot

* Problem: not good enough for
fat-tailed distributions due to
missing values & noise at tail!

Estimating Degree Distributions:
Logarithmic Binning

Estimate probabilities of finding ® Plot Pyin vs bin center degree

vertices within bins of
multiplicative sizes example: BA network, N=10000,
averaged over 200 realizations
Hlere bin sizes ® Generate bin vector:

double; any other

factor than 2 will | | I I >

[] | .
do as well, as long — & 2k, 4k, 8k, 16k,) Tail much

as there are enough

data points within o SmOOther “
bin limits e Count numbers of nodes in each ‘

(eg 1.2)
) bin, i.e. # of nodes with degrees
within bin limits, N

Divide by bin width to get
Pyin= Npin /Nkpin

Normalize Py,
® = |og-binned

Note: for small degrees, e.g.in [I,10], linear bins are often used

Example: log binning with Python

Step |:generate bin limit vector

def generatelLogbins(minvalue,maxvalue, factor,uselinear=True):
"''Generates a binning vector containing bin limits
for log-binning. Inputs:
minvalue, maxvalue = min and max values of data (e.g. degrees) to be binned,
factor = multiplicative factor for increasing bin size,
uselinear=[True|False] for making the first 10 bins linear.'''

if uselinear:
for degree distributions, the first 10 degrees are often
binned in linear bins. If so, set uselinear=True

bins=[-0.5,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5]
i=12

else:

set the first bin lower limit s.t. first data point
falls in the bin center

bins=[]
bins.append(minvaluex2.0/(1+factor))
i=1

while bins[i-1]<maxvalue:

generate the rest of (log) bin limits. The next bin limit
is always the previous limit times the factor

bins.append(bins[i-1]xfactor)
i+=1

return bins

Example: log binning with Python

Step ll: count # of nodes in bins, divide by width to get distribution

first initialize a vector that counts the number of data points
within each bin (e.g. degrees)

Nbin=[]

for i in range(len(bins)-1):
Nbin.append(0)

go through each degree in the network, and find ch bin the
degree belongs to. Increase the number coun of that bin by
one.

for k in degrees:
mybin=findbin(bins, k)
Nbin[mybin]+=1

next, calculate probability density per bin, and also bin centers

Pbin=[]
bincenters=[]

for i in range(len(bins)-1):

binwidth=bins[i+1]1-bins[i]

to get prob. density, divide number of data points by bin width

Pbin[i]=Nbin[i]/binwidth
bincenters[i]l=(bins[i+1]-bins[i])/2.0

finally normalize probabilities to sum to one
Pbin=Pbin/sum(Pbin)

def findbin(bins,value):

"''Finds out the bin where input param value belongs to.

Uses range halving for fast output - move lower and upper limits
of search according to whether the input param value is higher or
lower than the bin limit in the middle of the (lower,upper) range.
Inputs: bins - list of bin limits,

value - value to be found within bin limits'''

lowerlimit=0
upperlimit=1len(bins)-1

while (upperlimit-lowerlimit)>1:
halfpoint=int(ceil(0.5%(upperlimit+lowerlimit)))
if (value>=bins[halfpoint]):
lowerlimit=halfpoint
else:
upperlimit=halfpoint

return lowerlimit

Example: log binning with Matlab

function [P, kc]=logbin (Nk, kmax, factor);

% Nk: vector whose k:th element= #o0of nodes of degree k, kmax=max k
bins=0.5:10.5; % vector of bin LOWER LIMITS

create bin limit vector: K .
% up to 10, bins LINEAR, after 10, LOGARITHMIC

linear up to 10, then i=12;

limits multiplied by while bins(i-1)<kmax,
const factor bins (i)=bins (i-1) *factor; % factor controls bin spread
i=1+1;

end;
Nbin=zeros (1, length(bins)); % vector for total # of vertices in bin
bin=0;
count how many for k=1:length (Nk),
vertices in each bin if k>=bins (bin+l), if k exceeds lower bin limit of next bin
bin=bin+1; move to next bin

end;

Nbin (bin)=Nbin (bin)+Nk(k); % add data vect contents to bin sum
end;
for i=1:1length(bins) -1, divide by bin width

width=bins (i+1)-bins (1) ;

Nbin (i)=Nbin (1) /width;
end;

% here Nk is SORTED in ascending k

divide by bin width

calculate bin center for i=l:length(bins)-1, |
degrees kc(1)=0.5* (bins (i) +bins(i+1l)); % vector of bin centers

end;

P=Nbin(l:length (bins)-1);
P=P/sum (Nk); % probability density vector, normalized

normalize

Estimating power law exponents (the crude, easy way)

® Fita line to log(P(k)) vs log(k) example: BA network, N=10000,
averaged over 200 realizations

® |f the distribution follows a ——
power law, this typically happens o dus2
at the tail, so the fitting range has -
to be chosen

fit: P(K) oc k25°

Exponents tend to be
underestimated!

0g(P(K))

Left: BA networks: fit Y=2.83,
true Y=3 at large N

| Iog (k)
(BA power law is asymptotic, actually
P(k) = 2m(m+1)/k(k+1)(k+2),
and N=10000 is not large enough)

® = yused in fit

For learning how to properly statistically test the hypothesis whether
the data is a power law (or some other distribution), see

A. Clauset et al, SIAM Review 51, 661-703 (2009)
(also at http://arxiv.org/abs/0706.1062)

http://arxiv.org/abs/0706.1062
http://arxiv.org/abs/0706.1062

Estimating Degree Distributions:
Cumulative Distributions

® For power laws example: BA network, N=10000,

x averaged over 200 realizations
Pk> k)~ Y K7~ k=00

f(':r'-.'
l.e. the cumulative distribution is
also a power law

For other distributions,
depends... (exp — exp, lognormal
— something strange, etc)

Recipe: sort nodes by degree, for
each degree count how many

nodes have a higher degree,
divide by N

Log-binned averages

® Just as for degree distribution, world-wide airport network
create bin vector —

= Kk <w>
E o Randomized weights

R
k

® For your quantity of interest, c.8. * Real data

C(k), calculate the average for
nodes with degrees inside the

bin

—
e
=
—
—
-
.
-
S
—
.
—_—
-
o~
—~
——
.
-
e
—
-
S—
v g

® Plot as function of bin centers T
K (non-stop connections)

Clustering coefficient

* If using (sparse) adjacency matrix,
easy to calculate:

t=0.5*diag (A"3);

$ vector with # of triangles
around each node

k=sum(A,1); %Sdegrees

c=zeros(1l,N);

for 1=1:N,

if (k(i)>1), c(i)=2*t(1)/(k(i)*
(k(1)-1));

end; end;

* If using link lists, you have to use
loops to get the # of links in the
neighbourhood of each vertex

* Then just average over all vertices of
each degree to get c¢(k) & plot c(k) vs
k on (usually log-log)

* OR, average in logarithmic bins, ie
over all vertices falling in each bin &
plot as function of bin center degrees

Note: c is not defined for vertices of degree 1!
Here, it is chosen to be O for these

Network Visualization

The not-so-easy target: to map a
hyperdimensional object into 2D

Many algorithms exist, most are
variations of the following:

Nodes = repulsive electric
charges, amount of charge
equals degree

Links = springs
Then just balance the
tensions, i.e. minimize energy,

using simulated annealing or
other tricks

Network Visualization: Freeware Packages

PAJEK (Win only),
http://vlado.fmf.uni-1j.s81/
pub/networks/pajek/

Himmeli (Win/Mac/Linux)

http://www.finndiane.fi/
software/himmeli/

e Himmeli allows for
weighted networks.

* There is also an online
version (data in through a
web interface, images out).

Online resources

Network data

Mark Newman’s data and link collection: http://www-personal.umich.edu/~mejn/netdata/

Uri Alon’s pages (biological networks, also motif analysis software):
http://www.weizmann.ac.il/mcb/UriAlon/

Software - Community Detection

INFOMAP - http://www.tp.umu.se/~rosvall/code.html

CFinder (clique percolation) - http://www.cfinder.org/
Software - Network Visualization

Himmeli - http://www.finndiane fi/software/himmeli/

Pajek - http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Software - General

iGraph, a general network library (C++, R, Python): http://igraph.sourceforge.net/

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html
http://www.cfinder.org
http://www.cfinder.org
http://www.finndiane.fi/software/himmeli/
http://www.finndiane.fi/software/himmeli/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://igraph.sourceforge.net
http://igraph.sourceforge.net

Online resources

Research groups, laboratories, people

Institute for Scientific Interchange, Torino, Italy: http://www.isi.it/

CABDyN Complexity Center, Oxford, UK: http://www.cabdyn.ox.ac.uk/

Center for Models of Life, Niels Bohr Institute, Denmark: http://cmol.nbi.dk/index.php

Large Graphs and Networks Group at UCL, Louvain-la-Neuve, Belgium: http://www.inma.ucl.ac.be/
networks/

Institute for Cross-Disciplinary Physics and Complex Systems, Mallorca, Spain: http://ifisc.uib.es/

Albert-Laszl6 Barabasi’s group: http://www.barabasilab.com

Nicholas Christakis at Harvard Dept. of Sociology: http://www.wijh.harvard.edu/soc/faculty/christakis/

Mark Newman: http://www-personal.umich.edu/~mejn/

My department in Helsinki: http://www.becs.hut.fi/

http://www.isi.it
http://www.isi.it
http://www.cabdyn.ox.ac.uk
http://www.cabdyn.ox.ac.uk
http://cmol.nbi.dk/index.php
http://cmol.nbi.dk/index.php
http://www.inma.ucl.ac.be/networks/
http://www.inma.ucl.ac.be/networks/
http://www.inma.ucl.ac.be/networks/
http://www.inma.ucl.ac.be/networks/
http://ifisc.uib.es
http://ifisc.uib.es
http://www.barabasilab.com
http://www.barabasilab.com
http://www.wjh.harvard.edu/soc/faculty/christakis/
http://www.wjh.harvard.edu/soc/faculty/christakis/
http://www-personal.umich.edu/~mejn/
http://www-personal.umich.edu/~mejn/
http://www.becs.hut.fi
http://www.becs.hut.fi

Online resources

Video lectures

http://videolectures.net/janos_kertesz/

http://videolectures.net/albert_laszlo_barabasi/

http://videolectures.net/shlomo_havlin/

http://videolectures.net/mark_newman/

http://videolectures.net/alessandro_vespignani/

http://videolectures.net/santo_fortunato/

http://videolectures.net/albert_laszlo_barabasi/
http://videolectures.net/albert_laszlo_barabasi/
http://videolectures.net/shlomo_havlin/
http://videolectures.net/shlomo_havlin/
http://videolectures.net/mark_newman/
http://videolectures.net/mark_newman/
http://videolectures.net/alessandro_vespignani/
http://videolectures.net/alessandro_vespignani/
http://videolectures.net/santo_fortunato/
http://videolectures.net/santo_fortunato/

Online resources

Doctoral theses with good introductory texts on complex networks (+lots of
references)

Jussi Kumpula: Community structure in complex networks - detection and modeling.

http://lib.tkk.fi/Diss/2008/isbn9789512296569/isbn97895 12296 569.pdf

Tapio Heimo: Complex networks and spectral methods: an econophysics approach to equity markets

http://lib.tkk.fi/Diss/2009/isbn97895122973 13/isbn97895122973 | 3.pdf

Riitta Toivonen: Social networks: modelling structure and dynamics.
http://www.lce.hut.fi/~rtoivone/publications/Dissertationlntroduction_RiittaToivonen.pdf

My contact details

email: jari.saramaki@tkk.fi
Skype: jari.saramaki

web page: http://www.Ice.hut.fi/~jsaramak/

http://lib.tkk.fi/Diss/2008/isbn9789512296569/isbn9789512296569.pdf
http://lib.tkk.fi/Diss/2008/isbn9789512296569/isbn9789512296569.pdf
http://lib.tkk.fi/Diss/2009/isbn9789512297313/isbn9789512297313.pdf
http://lib.tkk.fi/Diss/2009/isbn9789512297313/isbn9789512297313.pdf
http://www.lce.hut.fi/~rtoivone/publications/DissertationIntroduction_RiittaToivonen.pdf
http://www.lce.hut.fi/~rtoivone/publications/DissertationIntroduction_RiittaToivonen.pdf
mailto:jari.saramaki@tkk.fi
mailto:jari.saramaki@tkk.fi
http://www.lce.hut.fi/~jsaramak/
http://www.lce.hut.fi/~jsaramak/

