
Summary: What We Have Learned So Far

• Real-world networks:

• Short path lengths

• High clustering

• Broad degree 
distributions, often 
power laws

• Erdös-Renyi model:

• Short path lengths

• Poisson degrees

• No clustering

• Watts-Strogatz 
Small World model:

• short path lengths

• high clustering

• almost constant 
degrees

• Barabási-Albert 
scale-free model:

• short path lengths

• power-law degrees

• no clustering, but 
simple variants fix this

P (k) ∝ k−γ

{small-world 
phenomenon



The Barabási-Albert Scale Free Model

• A model of network growth

• Based on the principle of 
preferential attachment - 
“rich get richer!”

• Yields networks with a power-
law degree distribution

1. Take a small seed network, 
e.g. a few connected nodes

2. Let a new node of degree m 
enter the network

3. Connect the new node to 
existing nodes such that the 
probability of connecting to 
node i of degree ki is

4. Repeat 2.-3. until N nodes.(average degree <k>=2m)



Scale-Free Network Models: Summary

• For growing networks, 
preferential attachment 
yields power-law degree 
distributions

• To be exact, it has to be linear:

(If superlinear, “winner takes it all” and in the 
end one node has ALL the links! If sublinear, we 
get a stretched exponential degree distribution)

(if mixed, e.g. combination of linear preferential 
and random attachment, we get exponents 
larger than 3!)

• The fundamental model: Barabási-
Albert, where

• Several mechanisms lead to the 
preferential attachment principle!



More Network Characteristics
& 

Network Analysis



Degree Correlations

• “If the degree of a vertex is 
k, does this affect the 
degrees of its neighbours?”

• We could investigate the 
conditional probability

of the neighbour having 
degree k’

• In practice this is 
cumbersome to calculate 
(esp. in data analysis)

• Hence the average nearest-
neighbour degree knn(k) is 
typically used
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Degree Correlations

• In practical network analysis, 
knn(k) is simply calculated by 
averaging over all neighbour 
degrees for each k

• Assortativity: positive degree 
correlations, knn(k) increasing 
with k

• Disassortativity: negative 
degree correlations, knn(k) 
decreasing with k

• Alternative method: the 
assortativity coefficient (Pearson 
correlation coefficient)

• r positive: assortative mixing

• r negative: disassortative mixing



Degree Correlations: Visualized Example

maximal correlations no correlations maximal anticorrelations

Three networks with same degree sequence, differently rewired

Trusina et al, PRL 92, 2004



Degree Correlations: Examples

Maslov, Sneppen, Science 296 (2002)

S. Cerevisiae protein interactions 
and genetic regulation

interactions
regulatory network

degree k
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Social network based on 
mobile telephone calls

Onnela et al

Social networks are almost always assortative, biological networks disassortative



knn(k) for uncorrelated networks

• Let’a first calculate the probability
that a vertex of degree k is
connected to a vertex of degree k’

• In uncorrelated networks,
this is equal to the probability that
the vertex in the other end of a
random link has degree k’:

• Now

there are altogether  N<k> edge endsthere are altogether  N<k> edge ends

there are P(k’)N  vertices of degree k’, and k’
times this number of edge ends points to them

there are P(k’)N  vertices of degree k’, and k’
times this number of edge ends points to them



knn(k) for the BA model

• First we need an expression for
the degree of vertex i at time t

• Let’s write the rate equation:

1. Take a small seed network
- eg 4 connected vertices

2. Create a new vertex with
m edges

3. Connect the m edges to existing
vertices with a probability
proportional to their degree k, ie
the probability πi of choosing
vertex i is

4. Repeat 2.-3. until the network
has grown to desired size
of N vertices

1. Take a small seed network
- eg 4 connected vertices

2. Create a new vertex with
m edges

3. Connect the m edges to existing
vertices with a probability
proportional to their degree k, ie
the probability πi of choosing
vertex i is

4. Repeat 2.-3. until the network
has grown to desired size
of N vertices



knn(k) for the BA model

• Now let’s solve this by integration

• Let us now assume that as far as
correlations go, BA networks
correspond to random nets:

• Since

we finally get

(i = “time of birth” of vertex i)

(<k>=2m)



More correlation measures: 
the rich-club coefficient

• How connected are high-degree 
vertices among themselves?

• The rich-club coefficient

measures how many edges E>k 
exist among the N>k vertices of 
degrees higher than k, divided by 
the maximum possible number 
N>k(N>k-1)/2

• It is useful to compare the values 
against randomized reference 
networks

• Randomized reference: rewire 
the network whilst retaining its 
degree sequence, getting rid of 
correlations (the configuration 
model)



Rich-club coefficient: examples

ratio of φ(k) in orig. nets to φ(k) in randomized counterparts

Colizza et al., Nature Physics 2, 2006



Betweenness Centrality

• Measures the amount of flow 
through a vertex (or an edge), if 
each vertex sends e.g. a signal 
through all other vertices via 
shortest paths

• Formally: number of shortest 
paths going through vertex/edge, 
such that the contribution of 
each path is divided by its 
multiplicity (if any)

• Computationally demanding, for 
a good algorithm see M. E. J. 
Newman, Phys. Rev. E 64, 016132 
(2001) 
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Betweenness Centrality: An Example

Marriages between influential families in 13th century Florence

highest betweenness
centrality



Betweenness Centrality: An Example

Sample from a large social network based on telephone calls

Betweenness calculated for edges: red=high



Closeness & Eigenvector Centrality

• Closeness: measures how far, on
the average, a vertex is from all
other vertices:

where dij is the distance along
links from i to j

• Eigenvector: assigns relative
scores to all nodes in the network
based on the principle that
connections to nodes having a
high score contribute more to the
score of the node in question

• A measure of ”influence”



PageRank

• In essence, a “damped” version of eigenvector centrality

• Corresponds to a random surfer following 
hyperlinks, who continues with probability d 
(assumed for Google to be 0.85), and jumps
 to a random page with probability 1-d

PR(i) =
1− d

N
+ d
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PR(i) = PageRank of i, d = damping factor, N = number of pages, νi= in-neighbourhood of i



PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.



Subgraphs & Motifs

• Subgraph: any set of nodes in the
network, and the edges
connecting them

• Clique: a fully connected
subgraph

• k-clique: clique with k vertices

• Motif: subgraph occurring in a
network at a number significantly
higher than in randomized
counterpart

directed subgraphs of order 3

cliques

k=3 k=4 k=5 k=6

randomization:  
•pick two random links
•exchange endpoints
•repeat



Counting Motifs: Z-score

number of times the subgraph M
occurs in an empirical network

average number of times the 
subgraph M in randomized 
reference ensemble

standard deviation of nM
in reference ensemble



Motifs: Example

Milo et al., Science 303, 1538 (2004)



Motifs: Conservation in 
Evolution

Wuchty et al., Nature Genetics 35, 176 (2003)

• Yeast (S. Cerevisiae)
protein interactions

• Find out motifs in the
interaction network

• Find out orthologs
for proteins in higher
eucaryotes (eg humans)

• Calculate fraction of
motifs where each protein
has an ortholog



Weighted Networks



Vertex Edge Weight

person friendship closeness

neuron synapse
synaptic 
strength

WWW hyperlink none

company ownership % owned

gene regulation
level of 

regulation

Weighted networks
• Elements ⇔ vertices

• Interactions ⇔ edges

• An edge between vi and vj 
means vi and vj interact

• In reality, interactions can 
have different strengths, 
leading to weighted 
networks 
















