Summary:VWhat We Have Learned So Far

¢ Real-world networks: o Watts-Strogatz

small-world {. Short Path |engths Small World model:

phenomenon ngh Clustering ® short Pa.th |engths

® Broad degree ® high clustering

distributions, often ® almost constant
power laws degrees

P(k) < k77
e Barabasi-Albert

. : scale-free model:
® Erdos-Renyi model:
® short path lengths
® Short path lengths
® power-law degrees
® Poisson degrees .
® no clustering, but

® No clustering simple variants fix this




The Barabasi-Albert Scale Free Model

A model of network growth . Take a small seed network,
e.g.a few connected nodes

Based on the principle of

preferential attachment - . Let a new node of degree m

“rich get richer!” enter the network

Yields networks with a power- . Connect the new node to
law degree distribution existing nodes such that the
probability of connecting to
2m2 node i of degree k; is

k3 ki
T =
Zi ki

P (k) =

(average degree <k>=2m) Repeat 2.-3. until N nodes.




Scale-Free Network Models: Summary

® For growing networks, The fundamental model: Barabasi-
preferential attachment Albert, where
yields power-law degree
distributions o

2m
P (k) 73

To be exact, it has to be linear:

ki

T

TSk |
Z@ ! Several mechanisms lead to the
preferential attachment principle!

(If superlinear,“winner takes it all” and in the
end one node has ALL the links! If sublinear, we
get a stretched exponential degree distribution)

(if mixed, e.g. combination of linear preferential
and random attachment, we get exponents
larger than 3!)




More Network Characteristics
&

Network Analysis




Degree Correlations

® “If the degree of a vertex is ® In practice this is
k, does this affect the cumbersome to calculate
degrees of its neighbours?” (esp. in data analysis)

We could investigate the Hence the average nearest-
conditional probability neighbour degree ku(k) is

P(k:" k) typically used

of the neighbour having 1 - 1 -
P

degree k’ knn (k) = N,
iski=k

JEV;




Degree Correlations

In practical network analysis,
kan(k) is simply calculated by
averaging over all neighbour
degrees for each £

Assortativity: positive degree

correlations, kux(k) increasing
with &

Disassortativity: negative
degree correlations, ku:(k)
decreasing with k

Alternative method: the
assortativity coefficient (Pearson
correlation coefficient)

(kM i) (R >

.'}’ C —

T e

r positive: assortative mixing

r negative: disassortative mixing




Degree Correlations:Visualized Example

maximal correlations no correlations maximal anticorrelations

a) b) c)

|

=

Trusina et al, PRL 92, 2004

Three networks with same degree sequence, differently rewired




Degree Correlations: Examples

Social network based on S. Cerevisiae protein interactions
mobile telephone calls and genetic regulation

T T T T L A | T T T T L E .
5 Nelghbour averdge degres ] - Maslov, Sneppen, Science 296 (2002) A
o Neighbour average degree (numCalls weighted) |7
~ Neighbour average degree (totalTime weighted)
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Onnela et al

Average connectivity of a neighbor

degree k
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Connectivity of a node

A interactions
O regulatory network

Social networks are almost always assortative, biological networks disassortative




kun(k) for uncorrelated networks

« Let’a first calculate the probability
that a vertex of degree £k is
connected to a vertex of degree &’

In uncorrelated networks,

this is equal to the probability that
the vertex in the other end of a
random link has degree & k'

.2
there are P(K')N vertices of degree k', and kK’ <k >
times this number of edge ends points to them o <k>

KP(K)N  KP(k)
kYN (k)
T
there are altogether N<k> edge ends .

Pk k) =




kun(k) for the BA model

Take a small seed network « First we need an expression for
- €g 4 connected vertices the degree of vertex i at time ¢

Create a new vertex with
m edges « Let’s write the rate equation:

Connect the m edges to existing {'_)fc.g- LTJ
vertices with a probability
proportional to their degree £, ie It

the probability . of choosing ;E_é

vertex i is .
- kz > i ki =2mt + Ng ~ 2mt Z? JE Vi
i ki - k;

T

M,

Repeat 2.-3. until the network
has grown to desired size
of N vertices




kun(k) for the BA model

Now let’s solve this by integration

k() = m (?) o

Since

N
(k) = D k(=N
T =1

(7 =“time of birth” of vertex i)

Let us now assume that as far as
correlations go, BA networks
correspond to random nets:

ity )

N -
]_ 9 - 4\
vy (7)

m — i
t '.E' — J_ {I

m*In N
(k)

].].]. _:\' (<k>:27’l/I)

we finally get

Ko (k) = % In V.




More correlation measures:
the rich-club coefficient

How connected are high-degree
vertices among themselves!?

The rich-club coefficient

2E>k
N.x(N.x—1)

¢ (k) =

measures how many edges £~
exist among the N> vertices of
degrees higher than £, divided by

the maximum possible number
N: >k(N >k= 1 )/ 2

It is useful to compare the values
against randomized reference
networks

Randomized reference: rewire
the network whilst retaining its
degree sequence, getting rid of
correlations (the configuration
model)
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Colizza et al., Nature Physics 2, 2006
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Betweenness Centrality

® Measures the amount of flow
through a vertex (or an edge), if
each vertex sends e.g. a signal
through all other vertices via
shortest paths

Formally: number of shortest
paths going through vertex/edge,
such that the contribution of
each path is divided by its
multiplicity (if any)

Computationally demanding, for

a good algorithm see M. E.|.
Newman, Phys. Rev. E 64,016132
(2001)




Betweenness Centrality: An Example

1. Lambariaschi

- Guadagni 12, Ginori

. Bischan

highest betweenness

abuan

/ Centrality

Madic
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£ 014, Sakiati

PN 15. Pazzi

Marriages between influential families in 13th century Florence




Betweenness Centrality: An Example

Betweenness calculated for edges: red=high




Closeness & Eigenvector Centrality

Closeness: measures how far, on
the average, a vertex is from all
other vertices:

1
) j£i dig

where d;; is the distance along
links from i to;

Coi =

Eigenvector: assigns relative
scores to all nodes in the network
based on the principle that
connections to nodes having a
high score contribute more to the
score of the node in question

A measure of "influence”




PageRank

kout (])

PR(i1) = PageRank of i, d = damping factor, N = number of pages, vi= in-neighbourhood of i

JEV;

In essence, a “damped” version of eigenvector centrality

Corresponds to a random surfer following
hyperlinks, who continues with probability d
(assumed for Google to be 0.85), and jumps
to a random page with probability 1-d




PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey @cs.stanford.edu and page @cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/
To engineer a search engine is a challenging task. Search engines index tens to hundreds of
millions of web pages involving a comparable number of distinct terms. They answer tens of
millions of queries every day. Despite the importance of large-scale search engines on the web,
very little academic research has been done on them. Furthermore, due to rapid advance in
technology and web proliferation, creating a web search engine today is very different from three
years ago. This paper provides an in-depth description of our large-scale web search engine -- the
first such detailed public description we know of to date. Apart from the problems of scaling
traditional search techniques to data of this magnitude, there are new technical challenges involved
with using the additional information present in hypertext to produce better search results. This
paper addresses this question of how to build a practical large-scale system which can exploit the
additional information present in hypertext. Also we look at the problem of how to effectively deal
with uncontrolled hypertext collections where anyone can publish anything they want.

Keywords
World Wide Web, Search Engines, Information Retrieval, PageRank, Google




Subgraphs & Motifs

Subgraph: any set of nodes in the
network, and the edges

connecting them
g “eo " I

Clique: a fully connected ¢ o’ o
subgraph

directed subgraphs of order 3

cliques

cHee

k-clique: clique with & vertices

Motif: subgraph occurring in a
network at a number significantly
higher than in randomized
counterpart

randomization:

epick two random links
*exchange endpoints
*repeat




Counting Motifs: Z-score

average number of times the

number of times the subgraph M _ _
subgraph M in randomized

occurs in an empirical network

\ reference ensemble

oy — <.n_5:?11d>

ol and
Vi

|

standard deviation of n,,
in reference ensemble




Normalized 2 score

Motifs: Example

Triad Significance Profile
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Milo et al., Science 303, 1538 (2004)




Motifs: Conservation in
Evolution

Table 1 Evolutionary conservation of motif constituents

* Yeast (S. Cerevisiae)
.. . MNatural Random
prOtem InteraCtlonS Number of conservation  conservation Conservation

yeast motifs rate rate ratio

=

9,266 13.67% 4.63% 2.94
167,304 4.99% 0.81% 6.15
3,846 20.51% 1.01% 20.28
3,649,591 0.73% 0.12% 5.87
1,763,891 2.64% 0.18% 14.67
9,646 6.71% 0.17% 40.44
164,075 7.67% 0.17% 45.56
12,423 18.68% 0.12% 157.89
2,339 32.53% 0.08% 422.78
25,749 14.77% 0.05% 279.71
1,433 47.24% 0.02% 2,2bb.67

* Find out motifs in the
interaction network

» Find out orthologs
for proteins in higher
eucaryotes (eg humans)

 Calculate fraction of
motifs where each protein
has an ortholog
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Wouchty et al., Nature Genetics 35, 176 (2003)




Weighted Networks




Weighted networks

Elements < vertices

Interactions <& edges

An edge between v; and v;
means v; and vjinteract

In reality, interactions can
have different strengths,

leading to weighted
networks

Vertex

person

Edge

friendship

Weight

closeness

neuron

synapse

synaptic
strength

WWW

hyperlink

none

company

ownership

% owned

gene

regulation

level of
regulation




Weighted Networks: Fundamentals

Let us denote the weight
between 7 and j by wj;

(Usually) w;; >0 and w;; =0 means
that there is no edge

The weights w; form
a weight matrix W,

analogous to the adjacency
matrix

For undirected networks, WI=W

If weights wi; = {0,1}, W=A

The notion of degree is readily
generalized for weighted
networks; the strength of a
vertex is defined as

N
=1




Strength Distributions of Real-VWorld Networks

scientific collaborations

® Just as for the degree, we can o

investigate the strength
distributions P(s) of networks

And (unsurprisingly), these tend to
be broad and have power-law-like L

1 1 1
ta I I S Iz (number of collaborators)

1 [ T B B
10'
s (number of papers)

Evidently this has to do with the
fact that degrees and strengths are world-wide airport network
related |

Scientific collaboration “weights” from
the bipartite co-authorship network:

or oF! I
0; 0 p runs over all papers
n, = # of authors of p

poal ool
10" 10
k (zon-stop connections)
llllllzl lllll|3l “lll|.“ll‘lllsl LAl
10° 100 10" 100
s (airport traffic)




Strength-Degree Correlations

How does the (average) strength
behave as function of degree?

If <s|k>=k<w=>,i.e.the dependency
is linear, weights and degrees are
uncorrelated

However other kinds of
dependencies have been
observed; often <s|k>ockP

For B>1, high-degree nodes attract
higher-weight edges

s (number of papers)
[
]

s (airport trafTic)

scientific collaborations

[
LAAS

* Real data
o Randomized weights

s ~ k(w)

S
A)
2 2 s 2 a2 a2 a2l 2 . 2 4 2 a2 2.

]01 lﬂ:
k (number of collaborators)

world-wide airport network

==k <w>
o Randomized weights

— K
® Real dara

K (non-stop connections)




A "generalized” version of the BA
model

Power-law distributions of
degrees, strengths and weights

U 0

s stwt O ,.

o

Barrat, Barthelemy, Vespignani, Phys Rev Lett 92, 228701 (2004)

The Barrat-Barthélemy-Vespignani Model

Take a small seed network

Create a new vertex with
m edges of weight w,

Connect the m edges to existing
vertices with a probability
proportional to their strength s:

'/‘.'l- .

S,
I - "4
Zk P2

Update weights of edges of the
selected vertices according to

: . J
S;

Repeat 2-4.




The Barrat-Barthélemy-Vespignani Model

The exponents of strength, degree,
and weight power laws depend on
the weight addition parameter

The strength and degree power-law
exponents YE[2,3]

Recall that for natural networks
with P(k)<kcY, yE[2.3], whereas

(almost) all unweighted models
yield y=3

...s0 one possible explanation for
real-world exponents is that
weights are involved!




How To Generalize Other Quantities

For some quantities simply ® Often, the actual meaning and
weighting the contributions of definition of weights plays a role
edges by wy/(3; wij ) works fine

E.g. should “weighted path
For example, one can consider lengths™ be defined as
the weighted average nearest- [=ywijor [=] wi ?

neighbour degree
Some other quantities can be

kY = — Z (1; j0; defined in numerous ways (which
i might indicate that the wrong

question is being asked...)
Evidently, all weighted quantities

should be equal to their

unweighted counterparts if
wii = {0.15




Case Example: The Weighted
Clustering Coefficient

Barrat & Barthélemy & Vespignani: Onnela, Saramiki, Kaski, Kerteész:

| X
| (W 0w ) 177
k,’(k,'_ l),EA Vatik j/\)

V 'l + \"’Vl'k -~ -
| E 5 ik Cio=
Vix 2

Holme et al:

E w if 3% ik Wi

: 3
~ jik W

Cin= T (WW, o W
maX(W’)E H/'I'jw’ki ( max )ii
ik

...same idea, different formulas, different behaviour...




