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Course Targets

After this week, you should 

• know how to analyze and characterize networks

• understand the fundamental network models

• have insight into the evolution of networks

• know how network structure affects dynamic 
processes
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Outline
Mon 

Introduction, basic concepts, random networks
Tue

Small-world networks, Scale-free networks
Wed

Analytical techniques, Advanced network analysis
Thu

 Weighted networks, Percolation on networks
Fri

Communities and modularity, Dynamic networks
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Lecture 1
The Very Basics of Complex Networks
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Complex Systems
• Large number of interacting 

elements

• Interactions stochastic

• System adapts & evolves

• Emergence: elements may 
obey simple rules, yet the 
system behaves in a complex 
manner

• System behaviour arises from 
interaction structure: detailed 
understanding of elements in 
isolation won’t help!
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Emergence: an example
• Simple rules, complex behaviour

• Army ant raid patterns: rules for each ant

1. Walk randomly, but follow scent of pheromone
2. Deposit some pheromone while walking
3. If food is found, carry it back to nest
4. While carrying food, deposit lots of pheromone

NEST FOOD

E. Bonabeau et al.
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Complex Systems: How To Approach?

• Interactions between elements give rise to 
emergent behaviour

• This behaviour is apparent at the system level

• Studying isolated elements is not enough

• Variations in behaviour of elements often average 
out at the system level

• A “holistic”, system-level viewpoint is needed!
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Complex Systems: How To Approach?

Analytical approach
• Write down (coupled) differential 

equations for interactions
• Attempt to solve
• Usually no closed-form solutions; 

numerical solutions, phase space 
analysis, etc

Empirical data analysis
• How to detect patterns and 

structure in information?
• How to characterize the system 

instead of its building blocks?
• Multivariate methods etc

Simulations
• Postulate rules (e.g. the ant raids)
• Simulate and observe system 

behaviour
• Try to match empirical 

observations

The network approach
• Contains elements from all these
• Disregards (unnecessary) details
• Focus on the structure of 

interactions
• Statistical characterization of 

system
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The approach of (statistical) physics
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The approach of (statistical) physics

1. Make observations on Nature
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The approach of (statistical) physics

1. Make observations on Nature
2. Attempt to explain observations:

2.1.  Choose the right level of coarse-graining
• Quarks ⇒ nuclear particles ⇒ atoms ⇒ molecules ⇒ ... ⇒ macroscopic bodies ⇒ planets 

⇒ galaxies ⇒ Universe

2.2. Strip the problem to its simplest form
2.3. Formulate the problem in mathematical terms
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The complex network approach
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The complex network approach
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The complex network approach
1. Make observations on Nature
2. Attempt to explain observations:

2.1.  Choose the right level of coarse-graining

• Vertices or nodes ⇔ interacting elements

• Edges or links ⇔ interactions

2.2. Strip the problem to its simplest form

• Interaction structure ⇔ evolution and behaviour of system

2.3. Formulate the problem in mathematical terms

• Statistical analysis of network structure

• Dynamics of processes taking place on networks
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The Network View on Complex Systems

• Elements ⇔ vertices

• Interactions ⇔ edges

• An edge between vi and vj 
means vi and vj interact

• In reality, interactions can 
have different strengths, 
leading to weighted 
networks (to be discussed 
later)

Vertex Edge

person friendship

neuron synapse

WWW hyperlink

company ownership

gene regulation
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The real question:
Protein 1

Protein 2

Protein 3

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

How do we 
deal with 

such things?
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Examples of networks
scientific collaborations the stock market

Internet Sexual relationships

Newman et al Onnela et al

Potterat et al
Claffy et al
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More examples
Part of the metabolic
system of E. Coli
(E. Almaas et al,
Nature 427, 2004)

ALGALG

ANGANG

ARGARG

AULAUL

AUSAUS

BELBEL

BLR

BNGBNG

BRABRA

CANCAN
CHLCHL

CHNCHN

COLCOL

COSCOS

CROCRO

CZRCZR

DENDEN

DOMDOM

DRVDRV

ECUECU

EGYEGY

ESTEST

FINFIN

FRNFRN

GABGAB

GFRGFR

GRCGRC

GUAGUA

HONHON

HUNHUN

INDINDINSINS

IREIRE

IRNIRN

IRQIRQ

ISRISR

ITAITA
JPNJPN

KUWKUW

KZK

LIBLIB

LUXLUX

MALMAL

MEXMEX

MORMOR

NEWNEW

NIGNIG

NORNOR

NTHNTH

OMAOMA

PAKPAK

PANPAN

PERPER

PHIPHI

POLPOL

PORPOR

QATQAT

ROKROK
RUMRUM

RUSRUS

SAFSAF

SALSAL

SAUSAU
SINSIN

SLOSLO

SLVSLV

SPNSPN
SRISRI

SWDSWD
SWZSWZ

TAWTAW

THITHI

TRITRI

TUNTUN

TURTUR

UAEUAE

UKGUKG

UKR
USAUSA

VENVEN

metabolic networks
world trade

air transportation electronic communication records
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The Network View - 
Why Does It Work So Well?
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• A common framework applicable to many systems

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

• A “birds-eye” view on the system

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

• A “birds-eye” view on the system

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

• A “birds-eye” view on the system

• MANY NETWORKS SHARE SIMILAR 
CHARACTERISTICS

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

• A “birds-eye” view on the system

• MANY NETWORKS SHARE SIMILAR 
CHARACTERISTICS

16Tuesday, January 5, 2010



The Network View - 
Why Does It Work So Well?

• A common framework applicable to many systems

• Different systems can be studied with same 
methods

• A “birds-eye” view on the system

• MANY NETWORKS SHARE SIMILAR 
CHARACTERISTICS

• These are because similar processes shape the 
networks
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Fundamentals: network

• Network (phys.) 
= graph (math, comp. sci.)

• A network is a collection of vertices 
V and edges E

• E is a set of pairs of elements of V
• If the pairs are ordered, we have 

directed networks; otherwise they 
are undirected

• If no self-edges and no multiple 
edges are allowed, the network is 
simple

• We only deal with these!

i

j
l

k

m

i

j
l

k

m

undirected

directed

V={i,j,k,l,m}
E={ij,il,jl,jk,lk,lm}

V={i,j,k,l,m}
E={ij,ji,il,jl,jk,
     kl,lm,ml}
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Fundamentals: neighbours, degree

• Vertex vi is a neighbour of 
vertex vj if {i,j}∈ E

• Vertex vi is a 2nd (order) neighbour 
of vertex vk if {i,j},{j,k}∈ E, {i,k}∉ E

• The number of neighbours k of a 
vertex has is called its degree  

• In directed networks, one can 
distinguish between in- and out-
degrees kin, kout

• The probability distribution p(k) of 
degrees is one of the central 
concepts in network analysis

i
j

k

l

kj=3

ki=1kl=2

kk=2
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• The edge density of a network of N 
vertices is the ratio of numbers of 
existing edges |E| and possible edges 
½N(N-1): 

• Real-world networks are typically 
sparse, i.e. their density is low

• If all edges exist, i.e. ρ=1, the network 
is fully connected

• Graph {V’,E’} is a subgraph of V, 
if  V’ ∈ V, E’ ∈ E

• Fully connected subgraphs of k nodes 
are called k-cliques:

Fundamentals: density, subgraphs

€ 

ρ =
2 E

N N −1( )

k=3 k=4 k=5 k=6
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• The sequence of edges {i,j},{j,k},...,
{p,q} defines a path between 
vi and vp

• The length l of the path is just its 
number of edges

• The distance dij between two vertices 
is the length of the shortest path 
connecting the vertices

• The longest shortest path of the 
network is its diameter d

Fundamentals: paths, diameter

l = 2

d=2

l=2
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• A connected component is a 
subset of vertices with at least one 
path connecting each of them

• A network may consist of a single 
connected component (a 
connected network) or several of 
those

• Distances between nodes in disjoint 
components are not defined (infinite)

• For directed graphs, any vertex has an 
in-component (set of nodes with 
paths to it) and out-component (set 
of nodes with paths from it)

Fundamentals: components
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Special network types
Tree
• there are no loops
• has N-1 edges

Forest
• collection of trees

Regular networks
•“know one part, you know the rest”
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Bipartite networks
• Two types of nodes, links only between nodes of different type

Scientific collaborations

Scientist 1 Scientist 2 Scientist 3 Scientist 4

Publication 1 Publication 2

Metabolic reactions

Chemical A

Chemical B

Reaction X

Chemical C

Chemical D
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Bipartite networks
• Can be collapsed into nodes of one type

Scientist 1 Scientist 2 Scientist 3 Scientist 4

Publication 1 Publication 2

Scientist 1 Scientist 2

Scientist 3

Scientist 4

Publication 1 Publication 2
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Storing & representing 
networks

• Let us label the vertices 1,2,...,N
• The network can be represented as a 

list of edges:

• Sometimes neighbour lists are used:
node(1).neighbours=[2 3]

• Mathematically, one typically uses an 
adjacency matrix A:

• For computational purposes, directly 
representing the network as a matrix 
consumes too much memory!

1 2
1 3
2 3
3 4
3 5
4 5

2

1

3

5

4

€ 

A =

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

i     j
Aij = 1, if {i, j} ∈ E

= 0, if {i, j} /∈ E
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On (Stochastic) Network Models

• Stochastic sets of rules for generating networks

• Target: to see what network features result from 
or can be explained by the rules

• Complex models can be viewed as agent-based 
models

• “Agent” = node = e.g. individual

• Rules mimick behaviour of agents
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Erdös-Rényi Networks

Erdös-Rényi network: 

• An entirely random network 
of given size

• “Zeroth-order 
approximation” of real-
world networks

Construction:

• Connect N vertices 
randomly

• Each pair is connected with 
probability p

• That’s it!

Pál Erdös
(1913-1996)

N = 10
p = 1/5

<k> = 1.8 

Erdős, P.; Rényi, A. (1959). "On Random Graphs. I.". Publicationes Mathematicae 6: 290–297.
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Erdös-Rényi Networks: Averages

Average number of edges:

• There are N(N-1)/2 pairs of nodes
• Each connected with probability p
• Hence the average number of 

edges

Average degree:
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A Small Detour: Ensembles

• What do we exactly mean when 
we say that the average degree 
of an E-R network is p(N-1)?

• There is a multitude of possible 
realizations of an E-R network 
with N, p fixed

• These are drawn from the 
ensemble of all possible 
realizations

• Properties of model networks 
are to be considered as 
averages within this 
ensemble

• Each realization within the 
ensemble comes with its own 
probability

• For a single realization, the 
expected average degree is 
p(N-1)
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Example ensemble

N=3, p=1/3

π2 ~ 0.15
<k2>=2/3

π3~ 0.15
<k3>=2/3

π4~ 0.15
<k4>=2/3

π5 ~ 0.15
<k5>=4/3

π6 ~ 0.15
<k6>=4/3

π7 ~ 0.15
<k7>=4/3

π8 ~ 0.04
<k8>=2

π1 ~ 0.3
<k1>=0

πj = probability of 
realization of network j
<kj> = avg degree in j

πj = probability of 
realization of network j
<kj> = avg degree in j
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The Degree Distribution

• “If a random vertex is picked, 
what is the probability that its 
degree equals k?”

• Denote by pi(k) the probability 
that vertex i has degree k

• For the whole network

• For E-R networks, all vertices are 
alike, so pi(k) = P(k) for all i

• Erdös-Rényi networks:

(for large N, such that <k>=pN=const)
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Average shortest path length

• The average shortest path length 
<l>, characterizes the 
compactness of the network

• Sometimes the diameter 
d=max(lij) is used instead
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Average shortest path length 
in E-R networks

• Let us assume that there is a 
single connected component (a 
strong assumption, we’ll get back 
to this)

• Then for E-R networks

• The path length grows very 
slowly with network size; paths 
are short even for very large E-R 
networks

for comparison:

1D chain
2d lattice

ER networks

“E-R networks are 
infinite-dimensional”
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Components in E-R networks

• When <k> is small, an E-R 
network consists of several 
disjoint components

• For a high enough value of <k>, 
a giant connected 
component appears

• The size of the giant component 
is of the order of network size, 
even when N→∞

• This transition from a 
fragmented to a connected 
phase is called the percolation 
transition

<k> small

<k> large

34Tuesday, January 5, 2010



Connected component sizes

average degree <k>

re
la

tiv
e 

gi
an

t c
om

po
ne

nt
 s

iz
e 

S

S = (number of
vertices in
giant) / N

S = (number of
vertices in
giant) / N

when <k>=1, giant
component appears
and starts growing
in size (”the percolation
transition”)

when <k>=1, giant
component appears
and starts growing
in size (”the percolation
transition”)

<s> = average number
of vertices in
components
other than the
giant

<s> = average number
of vertices in
components
other than the
giant

small components
grow in size until
giant appears, then
join the giant, leaving
only very small
disconnected parts

small components
grow in size until
giant appears, then
join the giant, leaving
only very small
disconnected parts

av
er

ag
e 

co
m

po
ne

nt
 s

iz
e 

<s
>

this curve is, strictly
speaking, valid only for
ER networks where
N→∞ so that pN=const
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Erdös-Renyi Networks: 
Summary of features

• Degree distribution 
Poisson (degrees of all 
nodes close to average)

• Path lengths short, grow 
logarithmically with 
system size

• Connectivity depends 
on average degree - 
there is a percolation 
transition

• Overall: no correlations, 
all edges exist 
independently of each 
other, “as random as it 
gets”

• Very “homogeneous” 
networks
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