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Course Targets

After this week, you should
® know how to analyze and characterize networks
® understand the fundamental network models
® have insight into the evolution of networks

® know how network structure affects dynamic
processes
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Qutline

Mon
Introduction, basic concepts, random networks

Tue
Small-world networks, Scale-free networks

Wed
Analytical techniques, Advanced network analysis

Thu
Weighted networks, Percolation on networks
Fri
Communities and modularity, Dynamic networks
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L ecture |

The Very Basics of Complex Networks
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Complex Systems

® |arge number of interacting
elements

® Interactions stochastic
® System adapts & evolves

¢ Emergence: elements may
obey simple rules, yet the
system behaves in a complex
manner

® System behaviour arises from
interaction structure: detailed
understanding of elements in
isolation won'’t help!
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Emergence: an example

® Simple rules, complex behaviour
¢ Army ant raid patterns: rules for each ant

Walk randomly, but follow scent of pheromone
Deposit some pheromone while walking
If food is found, carry it back to nest

While carrying food, deposit lots of pheromone

W —

E. Bonabeau et al.
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Complex Systems: How To Approach!?

Interactions between elements give rise to
emergent behaviour

This behaviour is apparent at the system level
Studying isolated elements is not enough

Variations in behaviour of elements often average
out at the system level

A “holistic”, system-level viewpoint is needed!
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Termiral button
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Complex Systems: How To Approach!?

Analytical approach

Write down (coupled) differential

equations for interactions
Attempt to solve

Usually no closed-form solutions;
numerical solutions, phase space
analysis, etc

Empirical data analysis

How to detect patterns and
structure in information!?

How to characterize the system
instead of its building blocks?

Multivariate methods etc

Simulations
Postulate rules (e.g. the ant raids)

Simulate and observe system
behaviour

Try to match empirical
observations

The network approach
Contains elements from all these
Disregards (unnecessary) details

Focus on the structure of
interactions

Statistical characterization of
system
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The approach of (statistical) physics
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The approach of (statistical) physics

Make observations on Nature
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The approach of (statistical) physics

Make observations on Nature
Attempt to explain observations:

2.1. Choose the right level of coarse-graining
. Quarks = nuclear particles = atoms = molecules = ... = macroscopic bodies = planets

= galaxies = Universe

2.2. Strip the problem to its simplest form

2.3. Formulate the problem in mathematical terms
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The complex network approach
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The complex network approach

Make observations on Nature
Attempt to explain observations:
2.1. Choose the right level of coarse-graining

* \Vertices or nodes ¢ interacting elements
 Edges or links < interactions
2.2. Strip the problem to its simplest form

* Interaction structure < evolution and behaviour of system

2.3. Formulate the problem in mathematical terms
e Statistical analysis of network structure

*  Dynamics of processes taking place on networks
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The Network View on Complex Systems

® Elements < vertices Vertex Edge

® Interactions < edges person friendship
® An edge between v; and v; neuron synapse
means v; and vjinteract WWW Dl
® |n reality, interactions can .
company ownership

have different strengths,
leading to weighted gene regulation
networks (to be discussed

later)
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The real question

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

Protein 3

mn 2

Prote

Protein 1

How do we

deal with
such things?

13
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Examples of networks

scientific collaborations

the stock market
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metabolic networks
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The Network View -
Why Does It Work So Well?
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The Network View -
Why Does It Work So Well?

® A common framework applicable to many systems
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® A common framework applicable to many systems
e Different systems can be studied with same

methods
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MANY NETWORKS SHARE SIMILAR
CHARACTERISTICS
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The Network View -
Why Does It Work So Well?

® A common framework applicable to many systems
e Different systems can be studied with same

methods
A “birds-eye” view on the system

MANY NETWORKS SHARE SIMILAR
CHARACTERISTICS

These are because similar processes shape the
networks
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Fundamentals: network

® Network (phys.)
= graph (math, comp. sci.)

® A network is a collection of vertices
V and edges E

® [is a set of pairs of elements of V

® |f the pairs are ordered, we have
directed networks; otherwise they
are undirected

® |f no self-edges and no multiple
edges are allowed, the network is
simple

® We only deal with these!

undirected

V={ijkLm;
E={ij.il jl.jk, lk,Im}

directed

V={ijklm}
E={ijjiiljljk,
kl,Im,ml}
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Fundamentals: neighbours, degree

® \Vertex v; is a heighbour of
vertex vjif {i,j}e E

® Vertex v;is a 2nd (order) neighbour
of vertex v if {i,j},{j.k}e E, {i,kK}E E

® The number of neighbours k of a
vertex has is called its degree

® |n directed networks, one can
distinguish between in- and out-
degrees ki, kous

® The probability distribution p(k) of
degrees is one of the central
concepts in network analysis

Tuesday, January 5,2010
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Fundamentals: density, subgraphs

The edge density of a network of N ® Graph {V’,E’} is a subgraph of V,
vertices is the ratio of numbers of if VeV EeE
existing edges |E| and possible edges ® Fully connected subgraphs of k nodes
/2N(N-1): are called k-cliques:
2|E|
0=
e o X & @
Real-world networks are typically k= f=4 k=5 =

sparse, i.e. their density is low

If all edges exist, i.e. p=1, the network
is fully connected

Tuesday, January 5,2010 19



Fundamentals: paths, diameter

® The sequence of edges {i,;},{j.,k},...,

{p,q} defines a path between

vi and v, 2
® The length [ of the path is just its

number of edges

® The distance d;jbetween two vertices
is the length of the shortest path =0
connecting the vertices

® The longest shortest path of the
network is its diameter d
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Fundamentals: components

® A connected component is a
subset of vertices with at least one
path connecting each of them

® A network may consist of a single
connected component (a

connected network) or several of
those

® Distances between nodes in disjoint @

components are not defined (infinite)

® For directed graphs, any vertex has an .\ C{.

in-component (set of nodes with
paths to it) and out-component (set O o
of nodes with paths from it)
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Special network types

Tree Forest
* there are no loops * collection of trees

* has N-1 edges

R e

Regular networks
*“know one part, you know the rest”

O—O0O0-00

338
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Bipartite networks

® Two types of nodes, links only between nodes of different type

Scientific collaborations Metabolic reactions

Publication | Publication 2 Chemical A Chemical C

Reaction X

Chemical B Chemical D

Scientist | Scientist 2 Scientist 3 Scientist 4
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Bipartite networks

Can be collapsed into nodes of one type

Publication | Publication 2

Scientist | Scientist 2 Scientist 3 Scientist 4

Publication | Publication 2

Scientist | . Scientist 2

Scientist 3

Scientist 4
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Storing & representing
networks

® |et us label the vertices 1,2,....N ® Mathematically, one typically uses an
® The network can be represented as a adjacency matrix A:

list of edges: _ ol SR

ISt ot edges A@'j — 1,1f{2,]} c b

|

— 0,if{i,j} ¢ E

A Jw LW o |~ |~
(O I L I A (GVR (VI | \)
>
Il
S O = = O
S O = O =
ot (O e
—_ O = O O
S == O O

® Sometimes neighbour lists are used:

node (1) .neighbours=[2 3] ® For computational purposes, directly

representing the network as a matrix
consumes too much memory!
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On (Stochastic) Network Models

Stochastic sets of rules for generating networks

Target: to see what network features result from
or can be explained by the rules

Complex models can be viewed as agent-based
models

® “Agent’ = node = e.g. individual

® Rules mimick behaviour of agents

Tuesday, January 5,2010
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Erdos-Renyi Networks

Erdos-Rényi network: Construction:
® An entirely random network ® Connect N vertices
of given size randomly
® “Zeroth-order ® FEach pair is connected with
approximation” of real- probability p
world networks .
® That’s it!

N=10
p=1/5

) J <k>=1.8
(|P9él|I 3IE.I]d9t;S6) 6\{/0/0

ErdGs, P; Rényi,A. (1959). "On Random Graphs. I.". Publicationes Mathematicae 6: 290-297.
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Erdos-Réenyi Networks: Averages

Average number of edges: Average degree:

There are N(N-1)/2 pairs of nodes

Each connected with probability p (k) = 2(F) _ p(N—1) ~pN
Hence the average number of N
edges

(E) = pN (N — 1) /2

Tuesday, January 5,2010
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A Small Detour: Ensembles

® What do we exactly mean when
we say that the average degree
of an E-R network is p(N-1)?

® There is a multitude of possible
realizations of an E-R network
with N, p fixed

® These are drawn from the
ensemble of all possible
realizations

Properties of model networks
are to be considered as
averages within this
ensemble

Each realization within the
ensemble comes with its own
probability

For a single realization, the
expected average degree is

p(N-1)

Tuesday, January 5,2010
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Example ensemble

N=3, p=1/3

7, = probability of
realization of network
<k> = avg degree in j

“‘/00.\00:0

m,~0.3 m, ~0.15 ns~ 0.15 m,~ 0.15
<k>=0 <k,>=2/3 <k;>=2/3 | <k,>=2/3

NN Lo A

s ~0.15 g~ 0.15 n; ~0.15 g ~ 0.04
<k;>=4/3 <kg>=4/3 <k,>=4/3 <kg>=2
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The Degree Distribution

“If a random vertex is picked,
what is the probability that its
degree equals k?”

Denote by pi(k) the probability
that vertex i has degree k

For the whole network

N
o
P(k) =+ > pi(k)
=1

For E-R networks, all vertices are
alike, so pi(k) = P(k) for all i

® Erdos-Reényi networks:

P(k) =e"

(for large N, such that <k>=pN=const)

k
(k) <k‘>

k!

Pk)
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Average shortest path length

The average shortest path length
<[>, characterizes the
compactness of the network

N
1
(4 N (N —1) +

i\J,i#]

Sometimes the diameter
d=max(l;) is used instead
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Average shortest path length
in E-R networks

Let us assume that there is a
single connected component (a
strong assumption, we’ll get back
to this)

Then for E-R networks

(I) < In N

The path length grows very
slowly with network size; paths
are short even for very large E-R
networks

for comparison:

3 1D chain

ER networks
10° .

107

< J=

N

“E-R networks are
infinite-dimensional”

1 L0 1 1l 1 L0 1l 1 11 1 1l 1 [ B
10° 10 10° 0 1t
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Components in E-R networks

When <k> is small, an E-R
network consists of several
disjoint components

For a high enough value of <k>,
a giant connected
component appears

The size of the giant component
is of the order of network size,
even when N— o

This transition from a
fragmented to a connected
phase is called the percolation
transition

1

<k> small

<k>large
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Connected component sizes

<s> = average number
of vertices in

10 ————
components i 1
other than the -
giant g -

S = (number of
vertices in
giant) /N

1

de
=
i

[

average component size <s>
relative giant component size S

0 —— 0
0 / 1 2 3 4 5

small components average degree <k>
grow in size until . _ .
giant appears, then this curve is, strictly
join the giant, leaving when <k>=1, giant speaking, valid only for
only very small component appears ER networks where
disconnected parts and starts growing N— so that p¥=const

in size ("the percolation

transition”)
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Erdos-Renyi Networks:
Summary of features

® Degree distribution ® Overall: no correlations,
Poisson (degrees of all all edges exist
nodes close to average) independently of each
other;“as random as it
® Path lengths short, grow gets”’
logarithmically with
system size ® Very “homogeneous”
networks

® Connectivity depends
on average degree -
there is a percolation
transition
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