Biological Networks and their Evolution

Hervé ISAMBERT

RNA dynamics and Biomolecular Systems Lab, CNRS-UMR168

Institut Curie, Paris, France

2nd IMSc Complex Systems School, The Institute of Mathematical Sciences, Jan 14 & 15, 2010

RNA Dynamics and Biomolecular Systems Lab

I. RNA Regulatory and Physical Networks

Institut Curie, CNRS, Paris

II. Evolution of Biological Networks

\$\$. Human Frontier, ANR, Ministère de la Recherche, Institut Curie, CNRS, Fondation PG de Gennes

RNA Switches and Networks

Evolution and Topology of Large Biological Networks

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms

V. Models, of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Biological Networks and their Evolution

I. Introduction: from Genomes to Networks

II. Different Types of Biological Networks

III. Properties of Biological Networks

IV.Network Evolution: from Genes to Organisms

V. Models, of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Genome size distribution

what was known before sequencing

5 decades (8 including viruses)

Even multimodal distribution within some species families

Sparrow 1976

Shotgun Genome Sequencing

Genome Sequencing Statistics

Organism	Complete	Draft assembly	In progress	total
Prokaryotes	<u>978</u>	1044	980	3002
Archaea	<u>67</u>	<u>13</u>	<u>36</u>	116
<u>Bacteria</u>	<u>911</u>	1031	944	2886
<u>Eukaryotes</u>	22	<u>187</u>	172	381
<u>Animals</u>	4	<u>75</u>	<u>60</u>	139
Mammals	2	<u>28</u>	<u>19</u>	49
Birds		<u>2</u>	1	3
<u>Fishes</u>		<u>3</u>	6	9
Insects	1	21	<u>7</u>	29
<u>Flatworms</u>		2	2	4
Roundworms	1	<u>9</u>	11	21
Amphibians			1	1
Reptiles			1	1
Other animals		<u>12</u>	<u>14</u>	26
<u>Plants</u>	2	<u>11</u>	<u>46</u>	59
Land plants	2	<u>8</u>	40	50
<u>Green Algae</u>		3	<u>6</u>	9
<u>Fungi</u>	10	<u>75</u>	<u>38</u>	123
Ascomycetes	8	<u>60</u>	25	93
<u>Basidiomycetes</u>	1	<u>10</u>	8	19
<u>Other fungi</u>	1	<u>5</u>	<u>5</u>	11
Protists	<u>6</u>	24	24	54
Apicomplexans	1	11	7	19
<u>Kinetoplasts</u>	1	2	5	8
Other protists	4	<u>10</u>	12	26
total:	1000	1231	1152	3383

NCBI, 29 Sept 2009

Life great complexity and diversity despite few genes... same genes...

Tetraodon 22,000

Arabidopsis 29,000

Paramecium 39,000

Wheat 75,000 ? (allohexaploid)

-> Evolution through Duplication-Divergence of Genes and Genomes

Biological Networks

Project of Genome Sequencing

Number of genes

- Yeast
- Tetraodon (fish)
- Human
- Arabidobsis thaliana (plant)

<u>Few genes</u> $\stackrel{??}{\longleftarrow}$ Complex processes

<u>Same genes</u> $\xrightarrow{??}$ Great diversity of organisms

→ **Combinatorics of genes** = Complexity of interactions

Combinatorial Gene Expression

Detailed interaction logic (AND/OR/NOT)

Biological Networks and their Evolution

I. Introduction: from Genomes to Networks

II. Different Types of Biological Networks

III. Properties of Biological Networks

IV.Network Evolution: from Genes to Organisms

V. Models, of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Biological Networks

- a) Physical Protein-Protein Interactions
- b) Transcriptional Regulations transcriptional stimulation/inhibition
- c) Enzymatic Reactions catalysis of enzymatic reactions
- d) Signal Transduction physical interactions, enzymatic reactions

Protein-Protein Interaction Networks

This representation

- Contains direct pairwise interactions
- Does not contain indirect interactions
- is a non oriented graph

• Experimental methods yeast two hybrids method *purified complexes*

Protein-protein interaction network of the Yeast S. Cerevisiae from H. Jeong et al., Nature 411 (2001)

Double hybrid method

Double hybrid method

Other method: Tandem Affinity Purification (TAP) + Mass spectroscopy of purified protein complexes

Protein-Protein Interaction Networks

Databases

• **BIND** (Biomolecular Interaction Network Database) various methods, many taxons

http://bind.ca

• **MPact** of MIPS (Munich Information Center for Protein Sequences) various methods, yeast *S. Cerevisiae*

http://mips.gsf.de/genre/proj/mpact

• DIP (Database of Interacting Proteins) various methods, many taxons

http://dip.doe-mbi.ucla.edu

and many others

Transcriptional Regulation Networks

This representation

- Contains direct regulational relationships Transcription Factors → Regulated targets
- Different regulations are independent
- Is an **oriented** graph

Transcriptional regulation network of *E.Coli*

Transcriptional Regulation Networks

Experimental methods: Chormatin Immunoprecipitation

Genome-Wide Location analysis

http://ecocyc.org/

Databases

- Regulon DB http://regulondb.ccg.unam.mx/ transcriptional regulation of the bacterium E. Coli
- EcoCyc Database transcriptional regulation of the bacterium E. Coli

Data of publications

Uri Alon's group (E. Coli & S.Cerevisiae) Data of Lee *et al.(2002)* (GWLA for *S.Cerevisiae*) Data of Balaji et al (2006) (S. Cerevisiae)

Exemple: analyse du cycle cellulaire de la levure

Exemple : développement de l'oursin de mer

Circuit de gènes dans le développement de l'oursin de mer

Silencing and Epigenetics Regulation

Post-transcriptional regulation through RNA Interference

RNA silencing pathways in different organisms (Meister & Tuschl, Nature, sept 2004)

miRNAs (lin-4/let-7) in developmental timing of C elegans (Cell, 1993; Nature, 2000)

Riboswitches (metabolite-induced conformational change)

Breaker et al. 2002–2004

RNA-based regulation through RNA switch control

Bacillus subtilis

combine : antisense interaction + structural switching

RNA Switches and Networks

Signal Transduction Networks

Example : chemotaxis

RAS Signaling Pathways

— cytokinesis / adhesion / mobility — cancer

Kinetic Proof Reading behind Irreversible Steps

Translation Error Corrections

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms

V. Models, of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Topology of Biological Networks

Numbers of links, nodes, nodes of a given degree k L, N, N_k (global quantities)

Degree distribution p_k Mean degree $\langle k \rangle$ (local quantities, 1st neighbours only)

Average connectivity of neighbours g_k (2nd neighbours)

Clustering coefficient C_k (*local topology*)

Motifs (topology at a greater scale)

 $p_k = \frac{N_k}{N}, \quad \langle k \rangle = \sum_{k=1}^{N} k p_k = \frac{2L}{N}$

 $g_{k} = \frac{\sum_{i:n:of(k)} d_{i}}{kN_{k}}$

 $C_k = \frac{2N_{\Delta,k}}{k(k-1)N_k}$
Yeast Protein–Protein Interaction Network

BIND (version 11/08/2005)

N=4576, L=9395, N₄=4228, <k>=4.03

Mpact

Comparaison MPact/BIND PPI Network of Yeast S. Cerevisiae

Yeast Protein–Protein Interaction Network

BIND (version 11/08/2005)

N=4576, L=9395, N_A=4228, <k>=4.03

Mpact

Comparaison MPact/BIND PPI Network of Yeast S. Cerevisiae

Yeast Protein–Protein Interaction Network

Comparaison MPact/BIND PPI Network of Yeast S. Cerevisiae BIND (version 11/08/2005) N=4576, L=9395, N_Δ=4228, <k>=4.03 Mpact N=4153, L=7417, N_Δ=1799, <k>=3.57

Approximative power law

$$p_k \propto k^{-\alpha-1}$$
, $\alpha \sim 2.5$

$$g_k \propto k^{-\delta-1}$$
, $\delta \simeq -0.2$

These networks are not random!!!!!

Exponential versus Scale-free Network Topology

Modularity of Protein Interaction Networks

Topology of Bacterial Transcription Networks

E.coli shallow Transcription Network

No large scale feedbacks but 60% autoregulators (AR)

Hierarchy with Mostly Self-Regulatory Feedback

Hierarchy with few Transcriptional Layers

Escherichia coli

Bacillus subtilis

Bacteria versus Eukaryote Transcriptional Hierarchy

S. cerevisiae has long transcriptional cascades

while bacteria have short ones

Cosentino–Lagomarsino, Jona, Bassetti & Isambert, PNAS 2007 Sellerio et al., Mol BioSyst 2009

Eléménts positifs et négatifs

mmm

Pres	ence	Expression	
R1	R ₂	AND	
Yes	Yes	OFF	
Yes	No	ON	
No	Yes	OFF	
No	No	OFF	

Horloges Circadiens : homologie des circuits

Topology of Oriented Biological Networks

Zhu et al. Genes Dev (2007)

Structures of Regulatory Networks

Coherent and Incoherent Feedforward Loops

Speed up genetic response

Demand Rule in Gene Regulation

Savageau PNAS (1977)

Demand Rule in Gene Regulation

Table 2.	Nature of regulator correlates with demand for
	expression of regulated genes

	Nature of regulator		Demand for expression		Lysine	
a	Ob-	Pre-	Pre-	Ob-	Tryptophan	
System ^a	served	dicted	dicted	served	Histidine	
Inducible catabolic pathways					Isoleucine-valine Inducible biosynthetic	
Arabinose	Activator		High	High	enzymes (within	
Galactose	Repressor		Low	Low	repressible bio-	
Glycerol	Repressor		Low	Low	synthetic pathways)	
Histidine	Repressor		· Low	Low	Isoleucine-valine	
Lactose	Repressor		· Low	Low	Tryptophan ^c	
Maltose	Activator		• High	High		
Rhamnose	Activator		• High	High	Donioillind.e	
Mannose	?	Activator	•	· High	Tetrograling	
Tryptophan	?	Activator		- High	Chloremphenicold	
Xylose	?	Activator		High	Erythromycin ^d	
Repressible biosyn-					Inducible prophages	
thetic pathways					λ	
Arginine	Repressor		Low	Low	P1	
Cysteine	Activator		• High	High	P2	
Isoleucine-valine ^b	Activator		High	High	P22	

Savageau PNAS (1977)

Lysine Tryptophan Histidine Isoleucine-valine Inducible biosynthetic enzymes (within repressible bio-	Repressor Repressor ? ?	Activator Activator	Low Low High High
synthetic pathways) Isoleucine–valine Tryptophan ^c Inducible drug	Activator Repressor	→ High → Low	High ?
Penicillin ^{d.e} Tetracycline Chloramphenicol ^d Erythromycin ^d Inducible prophages	Repressor Repressor ? ?	Low Low Repressor Repressor	Low Low Low Low
λ P1 P2 P22	Repressor Repressor Repressor Repressor		Low Low Low Low

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 2000

Hierarchical Networks ??!

Very Preliminary Conclusion

Biological Networks are NOT Random Graphs!

but is it for FUNCTIONAL reason ?? or is it because they CANNOT be random by CONSTRUCTION ?? Very Preliminary Conclusion

Biological Networks are NOT Random Graphs !

but is it for FUNCTIONAL reason ?? or is it because they CANNOT be random by CONSTRUCTION ??

Then what sense does it make to compare them to randomized graphs ??

Very Preliminary Conclusion

Biological Networks are NOT Random Graphs ! but is it for FUNCTIONAL reason ?? or is it because they CANNOT be random

by CONSTRUCTION ??

Then what sense does it make to compare them to randomized graphs ??

"Nothing in biology makes sense... ... except in the light of evolution" Theodosius Dobzhansky (1973)

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms

V. Models, of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms Gene Homology (ex RNA pol and Ribosome) Evolution of Eukaryotes 'Evolution of prokaryotes

tarTapcheRBYZ

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Protein Homology at the level of Domains

Bacillus subtilis

Homo sapiens

Domain Folds

Protein Oligomers and Group Symmetry

Oligomeric state	Number of homooligomers	Number of heterooligomers	Percent
Monomer	72		19.4
Dimer	115	27	38.2
Frimer	15	5	5.4
<u> Tetramer</u>	62	16	21.0
Pentamer	1	1	0.1
lexamer	20	1	5.6
Teptamer	1	1	0.1
)ctamer	3	6	2.4
lonamer	0	0	0.0
)ecamer	1	0	0.0
Indecamer	0	1	0.0
Dodecamer	4	2	1.6
ligher oligomers	8		2.2
olymers	10		2.7

Homodimers Interaction Surface Symmetry

Xayaphoummine, Viasnoff, Harlepp & Isambert, NAR, 35, 614 (2007)

Sequence alphabet D=20 (protein) D=4 (nucleic acid) letters Number of sequences of N letters D^{N}

Xayaphoummine, Viasnoff, Harlepp & Isambert, NAR, 35, 614 (2007)

Sequence alphabet D=20 (protein) D=4 (nucleic acid) letters Number of sequences of N letters D^{N}

Number of Neutral Letters J in the N letters (degrees of freedom) Number of Sequences with the same function $\Omega = D^{J}$ Sequence entropy $J = \log_{D} \Omega$

Xayaphoummine, Viasnoff, Harlepp & Isambert, NAR, 35, 614 (2007)

Sequence alphabet D=20 (protein) D=4 (nucleic acid) letters Number of sequences of N letters D^{N}

Number of Neutral Letters J in the N letters (degrees of freedom) Number of Sequences with the same function $\Omega = D^{J}$ Sequence entropy $J = \log_{D} \Omega$ Conservation Law : N = I + J

where I = N - J is the Information Content

Xayaphoummine, Viasnoff, Harlepp & Isambert, NAR, 35, 614 (2007)

Sequence alphabet D=20 (protein) D=4 (nucleic acid) letters DN Number of sequences of N letters

Number of Neutral Letters J in the N letters (degrees of freedom) $\Omega = D^{J}$ Number of Sequences with the same function

Sequence entropy $J = \log_{\Omega} \Omega$

Conservation Law: N = I + J

where I = N - J is the Information Content

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms Gene Homology (ex RNA pol and Ribosome) Evolution of Eukaryotes 'Evolution of prokaryotes

tarTapcheRBYZ

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Homologies between RNA Polymerases

Homologies between RNA Polymerases

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms Gene Homology (ex RNA pol and Ribosome) Evolution of Eukaryotes 'Evolution of prokaryotes

tarTapcheRBYZ

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

The Ribosome

The Ribosome

The Ribosome

33 Euk – Arc – Bac Universal Ribosomal Proteins34 Euk – Arc only Homologous Ribosomal Proteins

Ribosomal Protein S8 in Archaea and Bacteria

Universal Ribosomal Proteins bwn Eukaryotes, Archaea and Bacteria

Remaining Homologous Proteins bwn Eukaryotes and Archaea

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- **III.** Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms Gene Homology (ex RNA pol and Ribosome) Evolution of Eukaryotes

tarTapcheRBYZ

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Mechanisms of Genome Evolution

 Random mutations (nucleotide substitutions) synonymous (the same aminoacid) nonsynonymous (a different aminoacid) nonsense codon modifications (Stop)

- Recombinations crossing over/gene conversion
 exchange of homologous sequences between homologous chromosomes
 non reciprocal exchange (loss of one of the variant sequences)
- Deletions and Insertions unequal crossing over gene deletion and local gene duplication —> shuffling of protein domains
- Global gene duplication whole genome duplication replication of chromosomes without segregation

Long suspected... recently proved!

Mechanisms of Genome Evolution

Random mutations (nucleotide substitutions)

synonymous (the same aminoacid) nonsynonymous (a different aminoacid) nonsense codon modifications (Stop)

- Recombinations crossing over/gene conversion
 exchange of homologous sequences between homologous chromosomes
 non reciprocal exchange (loss of one of the variant sequences)
- Deletions and Insertions unequal crossing over gene deletion and local gene duplication —> shuffling of protein domains
- Global gene duplication whole genome duplication replication of chromosomes without segregation

Recently proved!!!

Implies important genetic modifications!!

Whole Genome Duplication in Yeast Genome Kellis et al. 2004

Whole Genome Duplication in Yeast Genome Kellis et al. 2004

Whole Genome Duplications in Evolution

Whole Genome Duplications in Evolution

Evolution by Duplication Divergence

→ Point mutations (substitutions) continuously occuring 10⁻³ fixed events/ nucleotide / MY

- → Duplication of single genes and groupes of genes high frequency at evolutionary timescale 10⁻³ fixed events/ gene /MY
- → Duplication of chromosomes and of whole genome rare events 1 fixed event (100, 200 MV=10⁻³)

1 fixed event / 100-200 $MY=10^{-3}$ events/ gene /MY

Evolution by Duplication Divergence

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Number of shared partners

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Number of shared partners

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Number of shared partners

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Proba to share k+ partners : k=1 WGD dupli > 20 x random pairs k=10 WGD dupli > 1,000 x random pairs

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Proba to share k+ partners : k=1 WGD dupli > 20 x random pairs k=10 WGD dupli > 1,000 x random pairs

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- **III.** Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms Gene Homology (ex RNA pol and Ribosome) Evolution of Eukaryotes

tarTapchcRBYZ

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris

Genome Size Restriction of Free-living Prokaryotes

+500 sequenced genomes

+500 sequenced genomes

+500 sequenced genomes

Biological Networks and their Evolution

- I. Introduction: from Genomes to Networks
- II. Different Types of Biological Networks
- III. Properties of Biological Networks
- IV.Network Evolution: from Genes to Organisms

V. Models of Biological Network Evolution

Hervé ISAMBERT, Institut Curie, Paris