
Origin of Life Part 2:
Core carbon synthesis



The deep core of carbon biosynthesis is the most 
important ecological universal to explain

Outline

• The chemistry, network structure, and 
energetics of carbon biosynthesis

• Implications for the problem of robust 
chemical order on earth, and a phase-
transition picture for origins?



Chemistry, energetics, and network 
structure of core carbon biosynthesis

• The TCA cycle and reducing metabolism are 
the core of biosynthesis

• Chemical and network properties of the 
reducing version of the TCA cycle

• Network self-amplification and feedback 
catalysis



Carbon anabolism today begins within the 
“Krebs” 
(or TCA) cycle

• TCA intermediates are 
synthetic precursors of:

• lipids (Acetate)

• sugars (Pyruvate)

• amino acids (several)

• nucleotides (OAA, AKG)

• porphyrins (Succinate)
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In oxidizing metabolism the Krebs cycle 
extracts energy from sugars

• Sugars fragment to 3-carbon pyruvate, 
which combines with water to make 
acetate, CO2, and reductant (NADH)

• Acetate combines with oxaloacetate 
(network catalyst) to make citrate

• Citrate breaks down with more water 
to make CO2, reductant, and recover the 
oxaloacetate

• Net cycle oxidizes sugars to CO2, and 
consumes two complex (pyruvate) 
molecules to make one (oxaloacetate) 
complex molecule
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“Older” reducing organisms use same 
reactions purely for biosynthesis 

• Reductive TCA  (rTCA) cycle 
extracts energy and builds  
biomass at the same time

• All the arrows in the reductive 
cycle go the same way:

• Reducing CO2 to acetate

• Producing complex 
biomolecules from simple inputs

• Many organisms can use the cycle 
in either direction (E.coli and yeast)
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Reduction and Oxidation (redox) powers 
TCA and other basic organic chemistry

• Transfer of an electron can 
lower or raise free energy

• The free energy change can be 
measured as a voltage if 
electrons move separately 
from substrates

• A pair like A-<===> A + e-  is known 
as a redox couple

• Voltage needed to halt        a 
general reaction is 
proportional to the free 
energy (with concentration)

• Voltages are expressed relative 
to a standard couple

overall reaction

http://www.life.uiuc.edu/
crofts/bioph354/redox.html

reference couple

general reaction schema

voltage equivalent

A− + B ! A + B−

A− ! A + e− B− ! B + e−

dni = νidξ de = νeFdξ

νeFE = −∆G0 −RT
∑

i

ln [Ci]
νi

H2(gas) ! 2H+ + 2e−

A− ! A + e−



The metabolic and physical structure of cells in 
relation to electron flow and redox energy
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“Capture of energy” is not separated from 
formation of biomass in a reducing world
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• Number of bonds 
transferred from 
HH to CH or HO 
measures redox 
energy of formation

• Small molecules of 
biochemistry 
sometimes have 
lowest free energy 
of formation per 
carbon



Electron transfer and formation energy 
also relate to physical roles of molecules

• rTCA acids ~ water-
soluble biomass

• acetate ~ sugars, 
switch from redox 
to phosphate energy

• fats and oils phase 
separate to make 
compartments

• amino acids couple 
to all these, so span 
all their solubilities
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Movement around the cycle reduces 
individual carbons (on average)
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rTCA is chemically simple and redundant
So easier to form by chance?

• Only 5 molecular groups 
and 5 reactions are 
required

• Enzymes for homologous 
reactions have often 
resulted from duplication 
of a common ancestor
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rTCA reactions are first order in complex 
molecules; may not require compartmentation

• Oxaloacetate converts 
a 6-body reaction for 
CO2 reduction to 
acetate into a sequence 
of simpler reactions

• No benefit from 
compartmentation in a 
pre-enzymatic world

• Suggests the cycle could 
have been a pre-cellular 
bulk-phase process
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rTCA molecules made from CO2, form 
functional groups that capture CO2
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Oxaloacetate is a network catalyst in 
either TCA direction
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Network autocatalysis (from topology) potentially 
creates exponential growth from small numbers

• Oxaloacetate (C4) is a 
network catalyst for C 
reduction

• Fission of citrate 
generates two cycle 
intermediates

• Regeneration of Oxa 
from Ace gives two 
seeds from one
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Some comments on self-amplification

• Any ordered process subject to random events 
must be self-amplifying -- life as a whole is

• All models for emergence of living order have 
assumed this property (Eigen hypercycle)

• The surprise is that self-amplification should be 
contained in such a simple network core

• Only biosynthesis has such a simple core: all 
networks containing energy systems or self-
replication must be huge to be self-contained



Quantitative analysis of network properties of 
self-amplifying cycles such as rTCA
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The graph theory of chemistry is hypergraphs

• Suppose we want to capture the concentration 
dependence and stoichiometry of a network

• Each mole of reagent into a reaction is a named line

• Each reservoir of reagent is a named vertex

• Each reaction (transition state) is a labeled line

• All inputs and transition states share a vertex

• Then the TCA graph as                                    
a network producing                                   
acetate looks like



Graph reduction and effective networks

Start with rate equations for a basic reaction

Two basic reactions with intermediate 
species X imply a conservation law in 

steady state

Remove species X and aggregate rate 
constants in an effective reaction



Example of removal of internal chemical 
species which preserved

total network flows

“Needless” internal nodes 



Dehydration/rehydration  
appears to have internal 

structure, but it all cancels



Removal of remaining nodes isolates 
input/output and network catalysis



rTCA cycle is a miniature model of what 
all of life does: self-catalyzed energy flow



This can be mathematically modeled, and 
shows a spontaneous transition to order
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Implications for the problem of robust 
biochemical organization on earth

• The general concept of phase transition as 
an answer to the problem of robust order

• The interpretation of phase transition in a 
dynamical setting



What significance do we assign 
to such network properties?

• Self-amplification in a small, simple 
network that could have formed by 
chance

• Feedback-structure of the amplifier 
causes thresholds for self-
maintenance

• Makes us think of phase transitions as 
the concept explaining robust order



Why is spontaneous order a problem 
to explain?

• Energy is related to probability for near-equilibrium systems

• Morals to the story:

• We might expect one bonded atom per mole by chance

• A kinetic theory must overcome these probabilities in a structured way

kBT ≈ 2.6× 10−2eV

H-bond energy ≈ 0.02− 0.3 eV

UV photon energy ≈ 3− 124 eV
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How does phase transition solve the 
problem of robust order?

• A frozen system is “as disordered as it can 
be”

• Even un-complex boundary conditions can 
drastically reduce disorder within a system

• The boundary conditions that cause life to 
be more ordered than equilibrium are 
chemical stresses

• Much of “self-organization” can be 
understood as dynamical phase transition



Self-organization is common when it leads to 
channels

• Common in                  everyday                     
experience

• Depend on “weakness” under 
stress, and positive feedback

• Should we understand the origin 
of metabolic chemistry as a 
phase transition in geochemistry?



Stable structures arise at “bottlenecks”
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The channel picture of rTCA (a network point)

• Note: 4 sources; 3 
atom types

• Chemical potential 
drives C and e- 
through the network
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A thermodynamic picture of a necessary 
origin of life on earth

• Lifeless earth, driven by mantle 
convection, is a metastable state 

• Life emerged and remained 
because it creates unique 
relaxation channels

• Emergence took place in stages 



Lessons from equilibrium phase 
transitions to apply to dyanamics

• Order can form without 
“downward causation” of 
any nontrivial kind

• Order is not easy to form, 
and cannot be taken for 
granted scientifically

• The predictable aspects of 
order determine what kinds 
of accidents are possible



Some summary questions

• Should we better describe the “origin of life” 
as the “emergence of a biosphere”?

• Is a phase transition to organic synthesis the 
correct point of departure?

• Are the order parameters of that phase 
transition the core biochemical pathways?

• Why then is biochemical order only found in 
the context of much additional hierarchical 
control flow and evolutionary dynamics? 
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