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General Biological Questions

What accounts for the rhythmic activity?

Under what circumstances do synaptic
and Intrinsic properties of neurons
cooperate or compete?

What effect do multiple time scales have?

What are the underlying neural
mechanisms that govern behavior?



Translation to mathematics

What accounts for the rhythmic activity?
Periodic solutions in phase space

Under what circumstances do synaptic and intrinsic
properties of neurons cooperate or compete?

Effect of parameters on solutions
What effect do multiple time scales have?
Singular perturbation theory

What are the underlying neural mechanisms that govern
behavior?

Deriving mathematically minimal models that reveal
necessary and sufficient conditions



Short-term synaptic plasticity has been identified In
the majority of synapses in the central nervous
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Figure 2. Diversity of short-term plasticity in the CNS. A, Top, Climbing
fiber to Purkinje cell EPSCs (CF); middle, parallel fiber to Purkinje cell
EPSCs (PF); bottom, CA3 to CAl Schaffer collateral EPSCs (8C) re-
corded while stimulating afferents at 50 Hz for 10 stimuli at 34°C. Traces
are averages of four to six trials each. Stimulus artifacts were suppressed
for clanty. Vertical scale bar 1s 2, 400, and 60 pA for the CF, PF, and 5C
synapses, respectively. B, Average magnitude of the Sth-10th EPSC
normalized by the first EPSC plotted as a function of stimulus frequency
for the climbing fiber (top), the parallel fiber (middle), and the Schaffer
collateral (bottom) synapses. Data are shown as mean *+ SEM (n = 4-5).
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Figure 7. Presynaptic dynamics during Poisson stimulus trains. A, Ex-
amples of EPSCs recorded in response to an irregular stimulus train with
average rate 20 Hz at the climbing fiber {CF), parallel fiber (FF), and
Schaffer collateral {SC) synapases. Stimulus artifacts were suppressed for
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From Dittman et al., J. Neurosci, 2000.



Dynamics of short-term synaptic depression

Presynaptic neuron ‘ I l l l l

Postsynaptic conductance ’ v V\l\ » { \

reduction

Presynaptic neuron —ﬂ /’\\\/’\\\/’\\\ ’ ‘
Postsynaptic conductMr\

Tx = |nhibitory decay time constant
Tp = Depression time constant

Ta = Recovery from depression time constant



Plasticity: What's it good for?

In cortical circuits:
- Automatic gain control
- Network stabilization

- Population rhythm
generation

- Direction selectivity
- Novelty detection
- Coincidence detection

- Generation of frequency-
selective responses

Abbott, Nelson, Reyes, Markram, Tsodyks
Rinzel, Marder, Nadim etc...

In rhythm generating
networks:

« Multistability

* Phase maintenance
 Episodic Bursting

Also:

e Short-term habituation of
the mammalian startle
response

e Differential stimulus filtering
e On-off switching



What advantages does synaptic plasticity
confer upon a rhythmic network?

 The answer Is architecture dependent.

» Plasticity allows different parameters to be relevant to the

network at different frequencies or at different moments in the
rhythmic cycle.

* Plasticity can work synergistically with intrinsic neuronal
properties.

We will discuss several biologically motivated minimal
MATHEMATICAL examples:

(a2),,

We will also discuss in detail one ;

model with no plasticity that leads to A"t |
an interesting one-dimensional map. _ —




2-D model for single neurons

Based on Hodgkin-Huxley Formalism
&V'=F(V,w) **] pvidt=0 /dw/dt:O
<=

W= (W (V) - W) / 7, (V)
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0=F(V,w) dv/d{ =F(V,w)

w=(w,(V)-w)/z,(V) dw/d¢ =0



Model Effect of inhibition

e Inhibition lowers the V-nullcline

* If inhibition is strong enough, a curve
of “fixed points” is introduced on the
inhibited branches.

sLocal minima form a jump curve

[ dVv
—=FM,w)-1
<gdt (\/ ) syn
dw w_(V)-w
= — " lsyn = g max S(Vpre — Ein
K W) sm = g max S(Vpre)(V — Einn)

Return curve /

T Jump curve
w \

Curve of fixed points

V

Vo
synaptic
threshold



Inhibitory Synapse

Synaptic current: Isyn: ~ Omax S (Vpost _ Esyn)’ Esyn < Viest

1-s
T—H (\/pre V)—— (\/Q—Vpre)

4 2"

Strong inhibition
Slow Equations in the silent phase

O=F (V , W) . g X S(V— Esyn) curve of fixed points
w=(w,(V)-w)/z,(V)

gmox

returri,curve

S'=—S/ 7«
___________________________________________________________ g*
Oinh = g max S Tih
W
Sisresetto 1 with a
pre-synaptic spike

Weak inhibition



Models for depressing synapses

Like other phenomenological reset models of Abbot et al, Markram &Tsodyks
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Effect of depression on post-synaptic cell

curve of fixed points G ax

gpec]k

return curve

*

S is reset to current
value of dg_max vylth each Ogesk
pre-synaptic spike

1 _ e—TI nact / Ta

Opesk = {J max

1 . e—TI nact / T e—TAct | 78

P (but increasing only T,....)



Bistablility in feedback networks (., Manor, Nadim, 2001)
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Two modes of oscillations

* A cell-controlled high frequency mode (weak synapse)

» A synapse-controlled low frequency mode (strong synapse)
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Feedback + plasticity forces the synaptic strength to specific values

We can use this observation in other contexts



Bistablity of anti-phase solutions

Motivated by experimental work of Nadim et al (2001,2005)

Inhibitory
Depressing

Oscillator~___“ Oscillator

Commonly found solutions that arise in such networks are anti-phase
spikes.

But what if we could get neuron 1 to fire two spikes in a row?



Bistability between 1-1 antiphase and
2-2 antiphase flrlng (Booth, B. 2009)

- Cell 2 is
transiently
inhibited allowing
Its synapse to
recover more
fully.

- Stronger
inhibition to Cell 1
allows Cell 2 to
spike twice.

- Cell 1 synapse

alsn recovers

1 (mV)
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Synaptic Variables s, d

g, =0.38 mS/cm’
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Multistability and clustering in globally
|nh|b|t0ry networks (Chandrasekaran, Matveev, B. 2009)

e Synapses from | to P are inhibitory and depressing
e Synapses from P to | are excitatory

* | fires whenever any P, fires
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Periodicity condition in w
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tm_]is the time it takes the leading cell to reach the jump curve

n = number of clusters (n=2 shown above)



Periodicity condition in g
* |f g(0)=g,, what interspike interval t,, IS
needed to allow g(t,,)=g,.
g —T1go r — e—Tact/ 5

tin(go) = Tp In =
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We can derive an n-dimensional map and use linearization to prove stability of solutions



Localized Activity in Excitatory Networks

(Rubin, B. 2004, also see Drover and Ermentrout)

Bump — no Toggle-switch —
depression with depression
0 cell number 20 0 cell number 20

Strong synapses

“Weak” stable synapses
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Episodic bursting in respiratory systems

Motivated by experimental work of Wilson (B., Lewis, Wilson, 2005)

e Spontaneous population bursts are
observed in cortex, hippocampus etc. and
also during development (chick spinal
cord, tadpole breathing)

 Tsodyks et al and O’'Donovan & Rinzel's
group have models for such behavior
which involve synaptic plasticity.

« Our example is really, really basic.




Experimental Observations

Wilson et al 2002
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Overlaid traces show that the
buccal cycles continue
—*| | predictably from last lung burst.

Overlaid traces show
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at same point in buccal cycle
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A bioloqgically constrained minimal model

Facilitating
inhibitory synapse

B ® L

Excitatory synapse

’

VL = - lion = GimnSs[VL-Einn] ~ Morris-Lecar type equations
W= [Wa.(VL)—wi ]/t (VL)

Ve = - lion - gechL[VB'Eexc]

Wg'= [W..(Vg)— Wg]/T (VB)

8" = v[1l-s]s.(vi) - ns[1-s.(vi)]

Sg” = Y ds-Sg]S-(Ve) - kSp[1-S.(Ve)]

dg” = [1-dg]d..(Ve)/Ts - ds[1-d..(V8)]/Tp W
v, = lung voltage, vz = buccal voltage
S, = excitatory synaptic gating V

Sg = inhibitory synaptic gating, d; = facilitation/de-facilitation gating



Bistability of Lung Oscillator

20} : | Fixed Points-

_apk HB SN

Ia

.. . . PP

e System undergoes a subcritical Hopf-Bifurcation

» Oscillations arise/disappear via saddle-node bifurcations

* In between bifurcation points, there is a region of bistability

* Nothing special about I,



Episodic nature of lung and buccal
driven ventilation
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T, determined by the facilitation time constant T,
Tg determined by de-facilitation time constant Tg.



Remarks about feedback networks

 Plasticity allows regeneration of synaptic
currents.

* Plasticity plays a role in setting the
network frequency and thereby forces the
synapse to operate at a strength dictated
by that frequency.

* Plasticity allows certain parameters to be
relevant for certain solutions (synapse
controlled or cell controlled)



Feedforward Networks

« Often these are driven by a pacemaker or
external inputs.

e By controlling the period of these inputs,
the level of plasticity in the network can be
fine tuned — differs from the feedback

case. o |l

Synaptic strength

Period of pacemaker



Phase control of the pyloric rhythm
(Cancer borealis)
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Atz
Atz
g1 = P Phase of LP and PY remains constant as the period of
At the pacemaker PD changes (Hooper, 94,95).
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(Manor,B., Booth, Nadim, 2004)

@ Inhibition

Oscillator Follower
-l |—)l -
O - Tc:-:? -~ Tln-:I:ICT -
[ At
At

Which parameters determine the time At at which F fires?

Simple premise: A t should be a function of synaptic strength.



Depressing vs. non-depressing synapse In
an O-F network

P =600 msec P =1200 msec

WM M

F no-dep

V:40 mV

|g: 50 nS/cm’

500 ms

dep

|
Postsynaptic conduc}tance

no-dep and dep W i K
no-dep \\

 Period P changed by varying O’s interburst interval




Phase vs. period in O-F network

For non-depressing synapse:

1.0 Depressin
 Time delay At is constant i Non-depressing
« Phase ¢ = At/ P decreases like .

1/P z
. o

For depressing synapse: 0

e At small P (weak inhibition), £
Intrinsic properties of F
determine ¢ 0.2-

* Atlarger P (stronger inhibition), | | | 3
(l) determined by Synaptic 0.50 0.75 1.00 1..25 1.50 1.75
properties 1 —Tinact/ 7o " ®

—€
gpeak o g max 1 —Tinact/ 7o ~—TAct/ (75
— e
—At/ 7« —At/ T
C1Q0peskE + C2€ =g~



Remarks about feedforward networks

* In a feed forward network, the period of the oscillator and
thus the strength of its synapse can be fine tuned.

* For phase control, without depression, phase can be
chosen at exactly one value of the period. Depression
creates a range of periods for which the phase of the
postsynaptic cell can be assigned.

» Plasticity again allows certain parameters, intrinsic or
synaptic, to be relevant to the network at different

frequencies.



Mathematically intersting example
based on pyloric CPG

W

Oscillator-follower network
governed by inhibition
without plasticity

PY contains an A-current
that delays the first spike of
the burst

What effect does A-current
have on the dynamics of the
feed-forward network?

Joint work with Farzan
Nadim and Yu Zhang 2009
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Morris-Lecar Model for F
dv

e—=f(v,w)
dt |
dw  w_(v)—w A G /s,
dt 7,V a [
=l ) AN
~GeM (WIV-E]-gWVv-E]

« Let € << 1, use singular perturbation
theory

- Define sets of slow and fast equations
to govern flow on slow manifold and the
fast transitions between the branches of
the slow manifold

 In the absence of input, F is boring — interaction between F and
synaptic input from O is what will make the problem interesting.



Effect of O’s inhibition on F

£ d_v: f(V,W)— gsyn S(V - Eqn)
dt

dw w_(v)-w

dt 7, (V)

s=0when O isinactive
s=1when O is active

-l P -

O =71 = "';—Tlnc:lm -

Inhibition

F

At

* Inhibition lowers the V-nullcline

S=1




Effect of A-currenton F

%: f(v,W)— g (Wh [V—E,] |

dw w_(vV)—w
dt 7,(v)
(1-h

dh | 7

d |-h

— ifv>v,
L

Ifv<yv,

m

= ' a,=a,*
V Vh I N . .
Inactivation ™ a,>a*

L ow voltage activation & inactivation V=Y  ofy,
thresholds v=v,

» Creates a new stable middle branch « h and w are slow, v

 h variable decays along middle and right s fast

branches



Effect of A-current and O’s
Inhibition on F
(a) L (b) _v-onulicline wp

w-nullcline

— — --’ T
FP -
1 /\dECFEESIHQ

S »



w-h slow manifold
(a) (b)

v-nullcline
v-nullcline

w-nullcline w-nullcline
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Trajectories on w-h slow manifold

(b) 7y

(2) t,

Parameters determine

location of the fixed point
curve

w and h time constants ©,
determine flow on slow
manifold

Exit through UK implies
return to LB, exit through ©.,
LK implies jump to RB :
When UK, LK, FP all
Intersect at one point,

then singular flow is

w-nullc

\ * ,
\ -+ decreasing

O

G

o

-
W

T
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n:m periodic solutions

« By changing time (a)J\ 6 ,

constant for h on MB

and/or maximal F =
conductance g, of A- 1 4
current, trajectory can 8 t
spend more time on MB O | [

* Here the trajectory
spends a full O cycle on (b)
MB

 We call thisa 2:1 KK
solution, 2 cycles of O for ™.,

1 cycle of F




Deriving a one-dimensional map

e Variables to start with (v, w, h, s, v5) (5)

e Singular perturbation takes care of v (4)

e sisslavedto v, (3)

e on MB, assume w dynamics faster than h dynamics (2)

 Record the value of h every time inhibition is removed,
l.e. when s changes from 1to O (1)

* Plus a few more small assumptions yields the one-
dimensional map.

1 T

(1+[h”‘1exp(— Ti +(—-— 1 )t —Lexp(-

(1 7 7 7
h" = hh hh hm hi

" exp(——) it >T, (o)

hm

) ift"<T. (&)

t "is the time on MB

hn—l _E .
t "=z |nJa v, ~E] in the nt" cycle (c)

! f (VG’WFP)




Dynamics of the map
 For different values of g,, we obtain different solutions
 Discontinuity moves left as g, Is increased
» Global bifurcation when fixed point disappears
 One-dimensional map accurately captures dynamics of

full system
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g,= 6.0 Iterates of the map ¢,-5-
IPeriodl 2 | | Period 2

3
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8.8 7 0.8 -
el 1 0.6 [

g,=5.0 There must be something g,=5.0
No Period 2 other than period 1 and 2! Period 3

H
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//——{ Bifurcation T
| s arise
when fixed
points of
iterates
disappear




he case g, = 5.53

No period 1, 2, i g No Period 4
8.8 _,_’3—/ _ 1 0.8 | /
A L —

"RG0

Yes Period 5

How many different solutions are there? ///

Can we predict what kinds of solutions will

arise? " i '




Bifurcation diagram

* Reveals a rich variety of nim periodic solutions
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Generalized Pascal Triangle

* Farey Rule
a:b@c:d:(a+C):(b+d) '_1;1_\ ?:1 3:1_ 4:1 ...

e Between each v ¢
n:1 interval lies a “2@,.,,.3:21‘@,.‘2:1
countable infinity
. . . 114 43 32 B3 21
of periodic orbits
 Related to 1:1[5:4| 4:3 7:5 3:2 8:5[5:3) 7:4 2:1
porder collision F/ 5 l/\
nifurcations o o
Yorke et al). TY IS s
? ) \ ? / \[\ ¢ f 7 f’\'. f
* Biological o VYV (VY \ | | Aol VN
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Remarks

 Interaction between A-current of F cell with the
synaptic current from O responsible for
Interesting dynamics.

o Simple feed-forward model gave rise to a one-

dimensional map with rich bifurcation structure,
that in some parameter regimes described the

dynamics of full five-dimensional system.

e Geometric singular perturbation theory and
dynamical systems techniques ideal for studying
small neuronal networks.




Conclusion

Plasticity expands the dynamic capabilities of a network.

In particular, it allows different parameters to control the
network at different frequencies or at different moments
In the cycle.

How plasticity is used depends both on network
architecture and on intrinsic properties of neurons.

Mathematical modeling and analysis can provide insights
that are not readily seen from experiments alone.

Modeling also gives rise to interesting mathematical
problems

On-going work on a variety of related problems.

Work supported by National Science Foundation (US)
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