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General Biological Questions

• What accounts for the rhythmic activity?
• Under what circumstances do synaptic 

and intrinsic properties of neurons 
cooperate or compete?

• What effect do multiple time scales have?
• What are the underlying neural 

mechanisms that govern behavior?



Translation to mathematics

• What accounts for the rhythmic activity?
Periodic solutions in phase space

• Under what circumstances do synaptic and intrinsic 
properties of neurons cooperate or compete?

Effect of parameters on solutions
• What effect do multiple time scales have?

Singular perturbation theory
• What are the underlying neural mechanisms that govern 

behavior?
Deriving mathematically minimal models that reveal
necessary and sufficient conditions



Short-term synaptic plasticity has been identified in 
the majority of synapses in the central nervous 

system.

From Dittman et al., J. Neurosci, 2000.
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Plasticity: What’s it good for?
In cortical circuits:

• Automatic gain control
• Network stabilization
• Population rhythm 

generation
• Direction selectivity
• Novelty detection
• Coincidence detection
• Generation of frequency-

selective responses

In rhythm generating 
networks:
• Multistability
• Phase maintenance
• Episodic Bursting

Also:
• Short-term habituation of 
the mammalian startle 
response
• Differential stimulus filtering
• On-off switching

Abbott, Nelson, Reyes, Markram, Tsodyks
Rinzel, Marder, Nadim etc…



What advantages does synaptic plasticity 
confer upon a rhythmic network?

• The answer is architecture dependent.
• Plasticity allows different parameters to be relevant to the 

network at different frequencies or at different moments in the 
rhythmic cycle.

• Plasticity can work synergistically with intrinsic neuronal 
properties.

We will discuss several biologically motivated minimal 
MATHEMATICAL examples:

We will also discuss in detail one 
model with no plasticity that leads to 
an interesting one-dimensional map. 



2-D model for single neurons
Based on Hodgkin-Huxley Formalism
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Model       Effect of inhibition
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• Inhibition lowers the V-nullcline

• If inhibition is strong enough, a  curve 
of “fixed points” is introduced on the 
inhibited branches.

•Local minima form a jump curve
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Inhibitory Synapse
Synaptic current: Isyn= - gmax s (vpost – Esyn),  Esyn < vrest
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Models for depressing synapses
Like other phenomenological reset models of Abbot et al, Markram &Tsodyks
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Effect of depression on post-synaptic cell
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Bistability in feedback networks (B., Manor, Nadim, 2001)

Cell controlled Synapse controlled



Slow manifold for the silent

state of the E neuron

Jump curve

Return curve
We use a one-dimensional 
map to measures the value 
of d whenever E is on the 
return curve

E-cell

depression

I-cell



Two modes of oscillations
• A cell-controlled high frequency mode (weak synapse)

• A synapse-controlled low frequency mode  (strong synapse)

Feedback + plasticity forces the synaptic strength to specific values

We can use this observation in other contexts



Bistablity of anti-phase solutions
Motivated by experimental work of Nadim et al (2001,2005)

Oscillator

1 2

Oscillator

Inhibitory
Depressing

Commonly found solutions that arise in such networks are anti-phase 
spikes.

But what if we could get neuron 1 to fire two spikes in a row?



Bistability between 1-1 antiphase and 
2-2 antiphase firing (Booth, B. 2009)

• Cell 2 is 
transiently 
inhibited allowing 
its synapse to 
recover more 
fully.
• Stronger 
inhibition to Cell 1 
allows Cell 2 to 
spike twice.
• Cell 1 synapse 
also recovers



Bifurcation diagram of n-n antiphase
solutions
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Multistability and clustering in globally 
inhibitory networks (Chandrasekaran, Matveev, B. 2009)

• Synapses from I to P are inhibitory and depressing

• Synapses from P to I are excitatory 

• I fires whenever any Pk fires



• 1- and 3-cluster solutions also exist

• interspike interval of I decreases with number of clusters

• cluster solutions are periodic



Periodicity condition in w

is the time it takes the leading cell to reach the jump curve

n = number of clusters (n=2 shown above)



Periodicity condition in g
• If g(0)=g0, what interspike interval tin is 

needed to allow g(tin)=g0.
/actTr e βτ−=

We can derive an n-dimensional map and use linearization to prove stability of solutions

Discrete g values



Localized Activity in Excitatory Networks
(Rubin, B. 2004, also see Drover and Ermentrout)

Bump – no 
depression

Toggle-switch –
with depression

“Weak” stable synapses

Strong synapses

Depressed synapses



Episodic bursting in respiratory systems
Motivated by experimental work of Wilson (B., Lewis, Wilson, 2005)

• Spontaneous population bursts are 
observed in cortex, hippocampus etc. and 
also during development (chick spinal 
cord, tadpole breathing)

• Tsodyks et al and O’Donovan & Rinzel’s
group have models for such behavior 
which involve synaptic plasticity.

• Our example is really, really basic.



Lung EpisodeBuccal Episode

Overlaid  traces show 
that the lung bursts begin
at same point in buccal cycle
as in PIR.

Overlaid  traces show that the 
buccal cycles continue 
predictably from last lung burst.

Experimental Observations
Wilson et al 2002

Lung Area

Buccal Area



A biologically constrained minimal model

B L

Facilitating
inhibitory synapse

Excitatory synapse

vL = lung voltage, vB = buccal voltage
sL = excitatory synaptic gating
sB = inhibitory synaptic gating, dB = facilitation/de-facilitation gating

Morris-Lecar type equations

w

v

vL′ = - Iion - ginhsB[vL-Einh]
wL′= [w∞(vL)– wL]/τ (vL)
vB′ = - Iion - gexcsL[vB-Eexc]
wB′= [w∞(vB)– wB]/τ (vB)
sL′ = ν[1-sL]s∞(vL) - ηsL[1-s∞(vL)]
sB′ = γ[dB-sB]s∞(vB) - κsB[1-s∞(vB)]
dB′ = [1-dB]d∞(vB)/τα - dB[1-d∞(vB)]/τβ



Bistability of Lung Oscillator

• System undergoes a subcritical Hopf-Bifurcation
• Oscillations arise/disappear via saddle-node bifurcations
• In between bifurcation points, there is a region of bistability
• Nothing special about Iapp

Iapp

Fixed Points

Periodic branch

HB SN



Episodic nature of lung and buccal 
driven ventilation

VL= black
VB = gray

dB= black
sB = gray

TL determined by the facilitation time constant τα. 
TB determined by de-facilitation time constant τβ. 

B L



Remarks about feedback networks

• Plasticity allows regeneration of synaptic 
currents.

• Plasticity plays a role in setting the 
network frequency and thereby forces the 
synapse to operate at a strength dictated 
by that frequency.

• Plasticity allows certain parameters to be 
relevant for certain solutions (synapse 
controlled or cell controlled)



Feedforward Networks

• Often these are driven by a pacemaker or  
external inputs.

• By controlling the period of these inputs, 
the level of plasticity in the network can be 
fine tuned – differs from the feedback 
case.

Period of pacemaker

gmax

Synaptic strength



Phase control of the pyloric rhythm
(Cancer borealis)
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φ Phase of LP and PY remains constant as the period of
the pacemaker PD changes (Hooper, 94,95).

What role does plasticity play in setting phase?
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O F

Oscillator Follower

Inhibition

P
t∆=φ

Which parameters determine the time ∆ t at which F fires?

Simple premise: ∆ t should be a function of synaptic strength.

(Manor,B., Booth, Nadim, 2004)



Depressing vs. non-depressing synapse in 
an O-F network

P = 600 msec P = 1200 msec

• Period P changed by varying O’s interburst interval

O

F no-dep

F dep

Postsynaptic conductance
no-dep and dep

dep

no-dep



Phase vs. period in O-F network
For non-depressing synapse:
• Time delay ∆t is constant
• Phase φ = ∆t / P decreases like 

1/P

For depressing synapse:
• At small P (weak inhibition), 

intrinsic properties of F 
determine φ

• At larger P (stronger inhibition), 
φ determined by synaptic 
properties
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Remarks about feedforward networks

• In a feed forward network, the period of the oscillator and 
thus the strength of its synapse can be fine tuned.

• For phase control, without depression, phase can be 
chosen at exactly one value of the period. Depression 
creates a range of periods for which the phase of the 
postsynaptic cell can be assigned.

• Plasticity again allows certain parameters, intrinsic or 
synaptic, to be relevant to the network at different 
frequencies.



Mathematically intersting example 
based on pyloric CPG 

• Oscillator-follower network 
governed by inhibition 
without plasticity

• PY contains an A-current 
that delays the first spike of 
the burst

• What effect does A-current 
have on the dynamics of the 
feed-forward network?

• Joint work with Farzan 
Nadim and Yu Zhang 2009



Morris-Lecar Model for F
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• Let ε << 1, use singular perturbation 
theory

• Define sets of slow and fast equations 
to govern flow on slow manifold and the 
fast transitions between the branches of 
the slow manifold

• In the absence of input, F is boring – interaction between F and 
synaptic input from O is what will make the problem interesting.



Effect of O’s inhibition on F

• Inhibition lowers the V-nullcline

Inhibition
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Effect of A-current on F
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•Low voltage activation & inactivation 
thresholds v=vh

• Creates a new stable middle branch

• h variable decays along middle and right 
branches

v=vh

• h and w are slow, v 
is fast



Effect of A-current and O’s 
inhibition on F



w-h slow manifold
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Trajectories on w-h slow manifold

• Parameters determine 
location of the fixed point 
curve

• w and h time constants 
determine flow on slow 
manifold

• Exit through UK implies 
return to LB, exit through 
LK implies jump to RB

• When UK, LK, FP all 
intersect at one point, 
then singular flow is 
inconclusive (f), (g)



n:m periodic solutions

• By changing time 
constant for h on MB 
and/or maximal 
conductance gA of A-
current, trajectory can 
spend more time on MB

• Here the trajectory 
spends a full O cycle on 
MB

• We call this a 2:1 
solution, 2 cycles of O for 
1 cycle of F



Deriving a one-dimensional map
• Variables to start with (v, w, h, s, vO) (5)
• Singular perturbation takes care of v (4)
• s is slaved to vO (3)
• on MB, assume w dynamics faster than h dynamics (2)
• Record the value of h every time inhibition is removed, 

i.e. when s changes from 1 to 0 (1)
• Plus a few more small assumptions yields the one-

dimensional map.
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Dynamics of the map
• For different values of gA, we obtain different solutions
• Discontinuity moves left as gA is increased 
• Global bifurcation when fixed point disappears
• One-dimensional map accurately captures dynamics of 

full system

2:1 (gA= 8) 3:2 (gA= 5)

1:1 (gA= 4) 3:1 (gA= 20)



Iterates of the mapgA = 6.0
Period 2

gA = 5.7
Period 2

There must be something 
other than period 1 and 2!

gA = 5.0
No Period 2

Bifurcation
s arise 
when fixed 
points of 
iterates 
disappear

gA = 5.0
Period 3



The case gA = 5.53

No Period 4No period 1, 2, 
3

Yes Period 5

How many different solutions are there?

Can we predict what kinds of solutions will 
arise?



Bifurcation diagram
• Reveals a rich variety of n:m periodic solutions



Generalized Pascal Triangle
• Farey Rule 

• Between each 
n:1 interval lies a 
countable infinity 
of periodic orbits

• Related to 
border collision 
bifurcations 
(Yorke et al).

• Biological 
relevance?

: : ( ) : ( )a b c d a c b d⊕ = + +



Remarks
• Interaction between A-current of F cell with the 

synaptic current from O responsible for 
interesting dynamics.

• Simple feed-forward model gave rise to a one-
dimensional map with rich bifurcation structure, 
that in some parameter regimes described the 
dynamics of full five-dimensional system.

• Geometric singular perturbation theory and 
dynamical systems techniques ideal for studying 
small neuronal networks.



Conclusion
• Plasticity expands the dynamic capabilities of a network.
• In particular, it allows different parameters to control the 

network at different frequencies or at different moments 
in the cycle.

• How plasticity is used depends both on network 
architecture and on intrinsic properties of neurons.

• Mathematical modeling and analysis can provide insights 
that are not readily seen from experiments alone.

• Modeling also gives rise to interesting mathematical 
problems

• On-going work on a variety of related problems.
• Work supported by National Science Foundation (US) 

and Fulbright-Nehru Program (US & India)


