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Diffie and Hellman in 1976 propose a new method
for key exchange

Used a so-called trap-door one-way function

Easy to compute in one direction but ‘hard’ to
invert

Diffie and Hellman suggested that a similar idea
may be used to provide public key encryption and
authentication scheme

That set R-S-A in action

A public key encryption scheme
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Web servers and browsers to secure web traffic

Privacy and authenticity of email

Secure remote login sessions

Electronic payment system

Can you find out more and exactly how?
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RSA Encryption – Description



(WIKI)

Public Key Encryption Scheme

A triple of PPT algorithms (G,E,D)

1. G(1λ)← (Pk, Sk)

2. E(Pk,m)← CT

3. D(Sk,CT)←m. (E and D are consistent)
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• Setup(1λ): Choose two large primes p, q and
set n = pq. Let ϕ(n) := (p − 1)(q − 1).

Choose an odd number e s.t (e, ϕ(n)) = 1.
Compute d s.t ed ≡ 1 mod (ϕ(n)).

Publish Pk = (e, n) and keep secret Sk = d.

• Encrypt(Pk,m): The sender encrypts any
m< n as

CT =me mod (n).

• Decrypt(Sk,CT): The receiver decrypts CT as
m = CTd mod (n).

Textbook RSA
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Euler ϕ function: Is a arithmetic function equalling
the number of positive integers less than n and
relatively prime with n.

For p, prime ϕ(p) = p − 1, for n = pq, where p, q
are prime ϕ(n) = (p − 1)(q − 1).

Euler’s Theorem: If n and  are coprime then
ϕ(n) ≡ 1 mod (n).

The set of all y < n with (y, n) = 1, say
{1, . . . , ϕ(n)} equals { · 1, . . . ,  · ϕ(n)}.
(Why?)

So
∏

  =
∏

  ·  = ϕ(n)
∏

  mod (n).

Euler Connection
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RSA Decryption Theorem

For almost all m, we have m = CTd mod (n).

Let ed = kϕ(n) + 1.

So CTd =med =mkϕ(n)+1 mod (n).

If (m,n) = 1, we can apply Euler theorem and
obtain the required result.

Otherwise, decryption can not be done. But this
happens with very less probability.

(When does this happen?)

Decryption is Correct
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• Choosing Primes: Choose a random integer
and use AKS primality test algorithm.

• Testing (e, ϕ(n)) = 1 and inverting e to obtain
d: Inverse of  modulo m exists if and only if
(,m) = 1.

Use (extended) Euclidean algorithm. Find , y
such that e + ϕ(n)y = 1.

• Modular Exponentiation: Square-and-multiply.

Computational Issues
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Choose a random positive integer of requisite size

Use AKS (deterministic) polytime algorithm to test
whether it is prime

There also exist some randomized algorithms
which can be used

Theorems about distribution of primes guarantee
that you are bound to succeed

π(N) ≈ N/ log(N)
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Given  > b GCD such that (, b) =  + by

r0 = , r1 = b, r+1 = r−1 − qr

s1 = , s1 = 0, s+1 = s−1 − qs and
t0 = 0, t1 = 1, t+1 = t−1 − qt

End if rk+1 = 0. Then (, b) = rk = sk + tkb

EEA Correctness
Given , b EEA outputs , y, d such that

d = (, b) =  + by.

{r} is decreasing, so the algorithm terminates

(r−1, r) = (r, r+1) and s + bt = r

Extended Euclidean Algorithm
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Let us compute (240,46)

240 = 5 × 46 + 10, s = 1, t = −5

46 = 4 × 10 + 6, s = −4, t = 21

10 = 1 × 6 + 4, s = 5, t = −26

6 = 1 × 4 + 2, s = −9, t = 47

4 = 2 × 2 + 0, s = 23, t = −120

2 = −9 × 240 + 47 × 46

Extended Euclidean Algorithm –
Illustation
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Say you want to compute 537 mod (19)

37 = 25 + 22 + 20

So 537 = 52
0 × 52

2 × 52
5
mod (19)

Keep squaring 5 mod (19) and multiply requisite
terms: 51, 52, (52)2 = 54, (54)2 = 58, (58)2 = 516,
(516)2 = 532 all modulo 19

Write down the algorithm and estimate the
complexity of this method

Other methods like Motgomery laddering are also
used

Modular Exponentiation
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RSA Security



Textbook RSA is not even semantically secure

In fact, semantic security is a weak notion

It is deterministic

The adversary can distinguish ciphertext for 1
and 0, as he can himself encrypt

Ciphertext is malleable

Particular attacks for e = 3
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Must make the encryption function
non-deterministic

Even if the message space is small
non-deterministic encryption will ensure different
ciphertexts for same message

Padding: Encrypt padded message and remove
padding after decryption

PKCS (Public Key Cryptography Standard), OAEP
(Optimal Asymmetric Encryption Padding) provide
padding schemes

Making RSA secure is a huge research area

Some Fixes
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RSA Problem

Given (n, e) and a CT =me mod (n) from the RSA
encryption scheme, determine m.

Factoring

Given n = pq, find p.

Integer factorization is hard

If an algorithm for factoring is known, then ϕ(n)
can be computed, the d can be found and RSA
problem solved

Is factoring as hard as RSA problem? – Not known

RSA vs. Factoring
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No poly-time algorithm known for factoring

Many recent advances in so-called index calculus
methods for factoring. Number Field Sieve (NFS)
and its generalizations yield subexponential
methods

CADO-NFS and MSIEVE projects give very efficient
implementations

Prof. Veni Madhavan and his team at IISc are
researching on this issue

Thorsten Kleinjung, Joppe W Bos, Arjen K Lenstra.
"Mersenne Factorization Factory"

Algorithms for Factoring
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https://factorable.net/index.html

Look at RSA public keys (N,e) available on the
internet

If not sufficient randomness is used while
generating n, results in weakness

They could succeed in finding private keys of
0.5% of TLS hosts and 0.03% SSH hosts because
the modulii shared a non-trivial factor

Mining Your Ps and Qs: Detection of Widespread
Weak Keys in Network Devices Nadia Heninger,
Zakir Durumeric, Eric Wustrow, J. Alex Halderman
21st USENIX Security Symposium, August 2012

Recent Attack on RSA Public keys
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