
A Hands-on Session for Web Scraping
Md. Izhar Ashraf
ashraf@imsc.res.in

March 17, 2025

Contents
1 Introduction to Web Scraping 2

1.1 Definition and Purpose of Web Scraping 2
1.2 Importance of Web Scraping in Epigraphy 2
1.3 Legal and Ethical Considerations . 2

2 Understanding Web Basics 3
2.1 Building Blocks of a Webpage . 3
2.2 Understanding the Structure of a Webpage 4
2.3 Introduction to the Document Object Model (DOM) 6

3 Tools and Libraries for Web Scraping 7
3.1 BeautifulSoup . 7

3.1.1 Requests . 7
3.1.2 XPath (XML Path Language) Syntax 9

3.2 Scrapy . 11
3.3 Selenium . 12

4 Setting & installation of required packages 13

1

1 Introduction to Web Scraping
1.1 Definition and Purpose of Web Scraping

• Web scraping is the automated collection of data from websites, using software to
extract information for analysis or use in various applications.

• Imagine you’re an archaeologist, sifting through sand to uncover hidden treasures.
Web scraping is similar! Websites hold a vast amount of information, but it’s often
coded and not readily accessible.

• Think of websites like libraries with countless books. Scraping allows you to effi-
ciently target and collect specific information from those books, without reading
everything cover to cover.

1.2 Importance of Web Scraping in Epigraphy
• Epigraphy, the study of inscriptions or epigraphs as writing, often involves the

collection of data from various online databases, digital libraries, and archives.

• By employing web scraping techniques, researchers can automate the extraction of
valuable epigraphic data, including texts, translations, metadata, and images.

• This not only accelerates the research process but also enables the creation of
comprehensive datasets that can be used for further study.

1.3 Legal and Ethical Considerations
• While web scraping is a powerful tool for researchers, it’s crucial to navigate the

legal and ethical considerations involved.

• There are special files called “robots.txt” that tell web scrapers which parts of
a website are okay to access. It’s like a map showing where you can “dig” for
information.

• We also need to consider legal aspects like copyright. The information itself might
be freely available, but how it’s presented might be protected.

• Finally, websites can get overloaded if too many requests come in at once. It’s
important to be respectful and avoid overwhelming them.

• By following these guidelines, web scraping becomes a valuable tool for research
and knowledge sharing in epigraphy and beyond!

2

2 Understanding Web Basics
2.1 Building Blocks of a Webpage

• Websites are built with three key ingredients: HTML, CSS, and JavaScript [1].

• Think of them like the bricks, mortar, and electrical wiring of a house.

• HTML (HyperText Markup Language): The foundation, like bricks. It defines the
structure and content of a webpage, like headings, paragraphs, and images.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Page Title</title>
5 </head>
6 <body>
7 <h1>This is a Heading</h1>
8 <p>This is a paragraph.</p>
9 </body>

10 </html>

• CSS (Cascading Style Sheets): The decorator, like mortar. It defines the visual
style of the webpage, like fonts, colors, and layout.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Page Title</title>
5 </head>
6 <body>
7 <h1 style="color:blue;␣text -align:␣center;">This is a

↪→ Heading</h1>
8 <p style="color:red;␣text -align:␣center;">This is a

↪→ paragraph.</p>
9 </body>

10 </html>

• JavaScript (JS): The electrician, like wiring. It adds interactivity to webpages, like
animations or forms that respond to your clicks.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Change Text Color</title>
5 <script>
6 function changeColor() {
7 // Get a reference to the heading element
8 var heading = document.getElementById("myHeading");
9

10 // Change the heading 's text color

3

11 heading.style.color = "green";
12 }
13 </script>
14 </head>
15 <body>
16 <h1 id="myHeading" style="text -align:␣center;">This is a

↪→ Heading</h1>
17 <p style="color:red;␣text -align:␣center;">This is a

↪→ paragraph.</p>
18 <button onclick="changeColor()">Magic Button</button>
19 </body>
20 </html>

2.2 Understanding the Structure of a Webpage
• Imagine a webpage as a well-organized document. HTML tags create a hierarchy,

like headings and subheadings, to structure the content.

• Each element has tags (like labels) that define its purpose (e.g., heading, paragraph,
image).

• By understanding this structure, we can pinpoint the specific data we want to
scrape.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Change Text Color</title>
5 <style>
6 .center -content {
7 text -align: center;
8 }
9 table {

10 margin: auto; /* Centers the table */
11 }
12 </style>
13 <script>
14 function changeColor() {
15 // Get a reference to the heading element
16 var heading = document.getElementById("myHeading");
17

18 // Change the heading 's text color
19 heading.style.color = "green";
20 }
21 </script>
22 </head>
23 <body>
24 <h1 id="myHeading" style="text -align:␣center;">This is a

↪→ Heading</h1>

4

25 <p style="color:red;␣text -align:␣center;">This is a
↪→ paragraph.</p>

26

27

28 <div class="center -content">
29 <button onclick="changeColor()">Magic Button</button>
30

31

32 <!-- Adding a simple table -->
33 <table id="table1" border="1">
34 <caption>Demo Table 1</caption>
35 <tr>
36 <th>Column 1</th>
37 <th>Column 2</th>
38 <th>Column 3</th>
39 </tr>
40 <tr>
41 <td>Row 1, Cell 1</td>
42 <td>Row 1, Cell 2</td>
43 <td>Row 1, Cell 3</td>
44 </tr>
45 <tr>
46 <td>Row 2, Cell 1</td>
47 <td>Row 2, Cell 2</td>
48 <td>Row 2, Cell 3</td>
49 </tr>
50 </table>
51

52

53

54 <!-- Adding another simple table -->
55 <table id="table2" border="1">
56 <caption>Demo Table 2</caption>
57 <tr>
58 <th>ID</th>
59 <th>Site Name</th>
60 </tr>
61 <tr>
62 <td>101</td>
63 <td>Harappa</td>
64 </tr>
65 <tr>
66 <td>102</td>
67 <td>Mohenjo -daro</td>
68 </tr>
69 <tr>
70 <td>103</td>
71 <td>Rakhigarhi</td>

5

72 </tr>
73 </table>
74 </div>
75 </body>
76 </html>

2.3 Introduction to the Document Object Model (DOM)
• The Document Object Model (DOM) is a way to represent a webpage’s structure

as a tree.

• Each element on the page becomes a node in this tree, with parent-child relation-
ships reflecting the HTML hierarchy.

• Understanding the DOM is crucial for web scraping tools like BeautifulSoup to
navigate and extract specific data from a webpage.

1 document
2 |- html
3 |- head
4 | |- title: "Change␣Text␣Color"
5 | |- style
6 | | `- (.center -content and table styles)
7 | `- script: function changeColor()
8 `- body
9 |- h1#myHeading (style="text -align:␣center")

10 |- p (style="color:red;␣text -align:␣center")
11 |- br
12 `- div.center -content
13 |- button (onclick="changeColor()")
14 |- br
15 |- br
16 |- table#table1 (border="1")
17 | |- caption: "Demo␣Table␣1"
18 | |- tr
19 | | |- th: "Column␣1"
20 | | |- th: "Column␣2"
21 | | `- th: "Column␣3"
22 | |- tr
23 | | |- td: "Row␣1,␣Cell␣1"
24 | | |- td: "Row␣1,␣Cell␣2"
25 | | `- td: "Row␣1,␣Cell␣3"
26 | `- tr
27 | |- td: "Row␣2,␣Cell␣1"
28 | |- td: "Row␣2,␣Cell␣2"
29 | `- td: "Row␣2,␣Cell␣3"
30 |- br
31 `- table#table2 (border="1")

6

32 |- caption: "Demo␣Table␣2"
33 |- tr
34 | |- th: "ID"
35 | `- th: "Site␣Name"
36 |- tr
37 | |- td: "101"
38 | `- td: "Harappa"
39 |- tr
40 | |- td: "102"
41 | `- td: "Mohenjo -daro"
42 `- tr
43 |- td: "103"
44 `- td: "Rakhigarhi"

3 Tools and Libraries for Web Scraping
Python is ideal for web scraping with its simple syntax and powerful libraries like Beau-
tifulSoup, Requests, and Scrapy make data extraction efficient and accessible for all skill
levels.

3.1 BeautifulSoup
Beautiful Soup [2], started by Leonard Richardson, is a Python package used for parsing
HTML and XML documents, including those with malformed markup. It creates a
parse tree that facilitates data extraction from HTML, making it highly useful for web
scraping. However, it lacks the capability to download web pages on its own, a function
complemented by the Requests library.

3.1.1 Requests

Requests is a straightforward Python library for HTTP requests, essential for retriev-
ing web content. Paired with BeautifulSoup, it efficiently manages web scraping tasks.
Beautiful Soup is a Python library for parsing HTML and XML documents. It provides
idiomatic ways of navigating, searching, and modifying the parse tree. Here’s a concise
cheat sheet of its basic syntax and functions:

Creating a Soup Object

To parse a document, you first need to create a BeautifulSoup object, which represents
the document as a nested data structure:

1 from bs4 import BeautifulSoup
2 # Parse HTML from a string
3 soup = BeautifulSoup(html_doc , 'html.parser')
4 # Parse HTML from a file
5 with open("index.html") as file:
6 soup = BeautifulSoup(file , 'html.parser')
7 # Parses XML content
8 soup = BeautifulSoup(xml_content , 'lxml')

7

Navigating the Tree

BeautifulSoup offers multiple ways to navigate and search the parse tree:
1 # Accessing tag names
2 soup.title
3 # Accessing tag attributes
4 soup.title.name
5 soup.title.string
6 soup.title['attribute']
7 # Navigating using tag names
8 soup.body.a
9 # Navigating using methods

10 soup.find_all('a')
11 soup.find(id='link3')

Searching the Tree

BeautifulSoup’s search methods allow you to find elements based on their attributes, text
content, or filter functions:

1 # Find all tags with a specific name
2 soup.find_all('a')
3 # Find the first tag with a specific name
4 soup.find('title')
5 # Find tags using keyword arguments
6 soup.find_all(id='link2')
7 soup.find_all(href=True)
8 # Searching by CSS class
9 soup.find_all("a", class_="sister")

10 # Using string arguments
11 soup.find_all(string="Elsie")
12 # Using regular expressions
13 import re
14 soup.find_all(string=re.compile("Dormouse"))
15 # Using a list
16 soup.find_all(["a", "b"])

Modifying the Tree

You can also modify the HTML or XML tree in various ways:
1 # Changing tag names and attributes
2 tag.name = 'blockquote'
3 tag['attribute'] = 'new␣value'
4 # Adding and removing tags
5 new_tag = soup.new_tag('a', href="http://www.example.com")
6 soup.body.append(new_tag)
7 tag.extract() # removes a tag from the tree

This cheat sheet covers the basics to get started with BeautifulSoup for web scraping
tasks. For more detailed information, refer to the official BeautifulSoup documentation.

8

Example code

1 import requests
2 from bs4 import BeautifulSoup
3

4 # The URL of the website you want to scrape
5 url = 'http://example.com/news'
6 # Use Requests to get the webpage content
7 response = requests.get(url)
8 # Create a BeautifulSoup object and specify the parser
9 soup = BeautifulSoup(response.text , 'html.parser')

10 # Find all 'h2' elements with a class 'article -title'
11 article_titles = soup.find_all('h2', class_='article -title')
12 # Loop through the list of titles and print them
13 for title in article_titles:
14 print(title.text.strip())

3.1.2 XPath (XML Path Language) Syntax

XPath (XML Path Language) is a query language designed for navigating and selecting
nodes from an XML document. It allows for precise location of elements, attributes, text,
and more within XML files using a path-like syntax.
XPath expressions can be used to navigate through elements and attributes in an XML
document, making it a powerful tool for XML querying and transformation tasks.

Example code

1 from lxml import etree
2 import requests
3 # Fetch the HTML content
4 url = 'https://www.example.com/'
5 response = requests.get(url)
6 html_content = response.text
7 # Parse the HTML
8 parser = etree.HTMLParser()
9 tree = etree.fromstring(html_content , parser)

10 out_list= tree.xpath("//div/text()")

9

Table 1: XPath syntax
Syntax Description

nodename Selects nodes with the name nodename
/ Selects from the root node
// Selects nodes from the current node that match the se-

lection no matter where they are
. Selects the current node
.. Selects the parent of the current node
@ Selects attributes
* Selects all elements/nodes regardless of their name
@* Selects all attributes of the current node
node() Selects all nodes (element, attribute, text, namespace,

processing-instruction, comment, and document nodes)
[n] Selects the n-th node (1-based index)
| Combines two expressions, selecting nodes that match

either expression
//book[1] Selects the first book element
//book[last()] Selects the last book element
//book[position()<3] Selects the first two book elements
//book[@attr] Selects all book elements that have an attribute named

attr
//book[@attr='value'] Selects all book elements where the attr attribute has

the value ’value’
//book[price>35.00] Selects all book elements with price elements having a

value greater than 35.00
//title[@lang='en'] Selects all title elements with a lang attribute value

of ’en’

10

3.2 Scrapy
For more complex web scraping projects, Scrapy, a comprehensive open-source web crawl-
ing and scraping framework, comes into play. Unlike BeautifulSoup, which is more suited
for simple, direct web page extraction, Scrapy is built to scrape and crawl at scale. It
allows for the extraction of data from websites and the automation of web interactions,
making it a formidable tool for gathering data from multiple pages or even entire websites.

Scrapy Project Setup

Start a new Scrapy project:
1 scrapy startproject myproject

This creates a new Scrapy project with the name myproject.
Generate a Spider:

1 scrapy genspider myspider example.com

This command generates a spider named myspider for the domain example.com.

Scrapy Components

Spider: Classes that define how a site will be scraped, including how to perform the
crawl (i.e., follow links) and how to extract structured data from their pages.
Basic spider example:

1 import scrapy
2

3 class MySpider(scrapy.Spider):
4 name = 'example_spider'
5 start_urls = ['http://example.com']
6

7 def parse(self , response):
8 # Parsing code here

Item: Standard Python classes used to define the data structure for items you scrape.
Example:

1 import scrapy
2

3 class MyItem(scrapy.Item):
4 name = scrapy.Field()
5 description = scrapy.Field()

Item Pipeline: Process and filter the items returned by spiders. Defined in ITEM_PIPELINES
setting.
Pipeline example:

1 class MyPipeline:
2 def process_item(self , item , spider):
3 # Process item here
4 return item

11

Basic Commands

Running a Spider:
1 scrapy crawl myspider

This command runs the spider named myspider.
Shell:

1 scrapy shell 'http://example.com'

Opens the Scrapy shell for the given URL, allowing you to test your extraction code
interactively.

Selectors

Scrapy uses selectors to extract data from HTML documents. There are two types of
selectors: CSS and XPath.
CSS:

1 response.css('title::text').get()

XPath:
1 response.xpath('//title/text()').get()

Requests and Responses

Following Links:
1 yield response.follow(next_page , self.parse)

Form Requests:
1 yield scrapy.FormRequest(url='http://example.com/login',
2 formdata={'user': 'john', 'pass': '

↪→ secret'},
3 callback=self.after_login)

3.3 Selenium
Essential for dynamic web pages, Selenium automates browser actions, enabling inter-
action with JavaScript-driven content. Originally for testing, its real-user simulation is
crucial for scraping JavaScript-heavy sites, making it invaluable for accessing dynamically
loaded data, complementing BeautifulSoup, Requests, and Scrapy in the web scraping
toolkit.
Import Selenium:

1 from selenium import webdriver
2 from selenium.webdriver.chrome.options import Options
3 from selenium.webdriver.common.by import By
4

5 chrome_options = Options()
6 driver = webdriver.Chrome(options=chrome_options)

Navigate to a Page:

12

1 driver.get('http://example.com')
Locate Elements:

• By ID:
1 element = driver.find_element(By.ID, 'elementId')

• By Name:
1 element = driver.find_element(By.NAME ,'name')

• By XPath:
1 element = driver.find_element(By.XPATH , '//tag[@attribute

↪→ ="value"]')

• By CSS Selector:
1 element = driver.find_element_by(By.CSS_SELECTOR , 'tag.

↪→ class#id')

• For multiple elements (returns a list):
1 elements = driver.find_elements_by(By.TAG, 'tag')

Interact with Elements:

• Click a button:
1 button.click()

• Enter text in a text field:
1 text_field.send_keys('text␣to␣enter')

Close the Browser:
1 driver.quit()

4 Setting & installation of required packages
To update and install Python 3 and pip on Ubuntu, use the following commands in your
terminal:

1 sudo apt update
2 sudo apt upgrade -y
3 sudo apt install python3 python3 -pip

Create a directory for your scraping project, set up a Python virtual environment, and
activate it:

1 mkdir my_scraping_project
2 cd my_scraping_project
3 python3 -m venv demoVirEnv
4 source demoVirEnv/bin/activate

13

Install BeautifulSoup, Requests for fetching web content, Scrapy for more complex scrap-
ing, and Selenium for dynamic web pages:

1 pip install beautifulsoup4
2 pip install requests
3 pip install lxml
4 pip install scrapy
5 pip install selenium

References
[1] W3School HTML. http://https://www.w3schools.com/

[2] Beautiful Soup Documentation. https://beautiful-soup-4.readthedocs.io/en/
latest/#beautiful-soup-documentation

[3] XPather. http://xpather.com/

[4] Scrapy Tutorial. https://docs.scrapy.org/en/latest/intro/tutorial.html

14

http://https://www.w3schools.com/
https://beautiful-soup-4.readthedocs.io/en/latest/#beautiful-soup-documentation
https://beautiful-soup-4.readthedocs.io/en/latest/#beautiful-soup-documentation
http://xpather.com/
https://docs.scrapy.org/en/latest/intro/tutorial.html

	Introduction to Web Scraping
	Definition and Purpose of Web Scraping
	Importance of Web Scraping in Epigraphy
	Legal and Ethical Considerations

	Understanding Web Basics
	Building Blocks of a Webpage
	Understanding the Structure of a Webpage
	Introduction to the Document Object Model (DOM)

	Tools and Libraries for Web Scraping
	BeautifulSoup
	Requests
	XPath (XML Path Language) Syntax

	Scrapy
	Selenium

	Setting & installation of required packages

