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For phylogenetics
@ Most models consider only single-nucleotide mutation
@ Start with a multiple sequence alignment, throw out all indels

@ More sophisticated models exist, but it gets complicated...




Tree of life

From Science magazine's special issue, 13 June 2003




Sequence alignment

Task: given two sequences, match the bases that are likely to be derived from a common
ancestor.

Or, given a “scoring function” for alignments, find the alignment that optimises the scoring
function.

Exact methods exist, as well as approximate but faster methods.



Sequence alignment

Example of alignment:
ACAATGCAGTGACCCAGCGT--—-ACGTTAAGATCATG
ACAGTG---TGTCCCAGCCTACACACGT-AAGTTCATG
Given a scoring function, the task is to find the alignment that optimises that function.
Vertically aligned bases can be scored, eg, with “log-odds” score

p(b17 b2)

s(b1, by) = log ———"~

p(b1)p(b2)
For protein alignments there are standard substitution matrices used.
We score the gaps with a “gap penalty”: for a gap of length /, this is either a “linear penalty

g=1/{d

that is, proportional to the gap, or an “affine penalty”
g=d+({—1)e

where the penalty for the first gap, d, is larger than the penalty for increasing the gap, e.



Global alignment: Needleman-Wunsch algorithm

An example of dynamic programming, building up large alignments from shorter ones, O(mn)
where m, n are sequence lengths

For two sequences x, y of lengths /1 and />, construct a matrix Fj;, in which each element is
calculated from an earlier element (with smaller i and/or j).

Each element Fj; contains two components:

@ The score of the best alignment of the first / bases in sequence 1 and the first j bases in
sequence 2. This is
Fii1j-1+ s(xi,y))
F,'j = MmaXx F,;lJ —d
(for simplicity, we are not considering affine gap penalties, but the algorithm can be
extended to include those.)

@ A pointer to the previously calculated element of the F matrix from where this element
was calculated.



Foo is defined to be zero, and “overhanging” bases have the same gap penalty d.
Fill out the entire F matrix, then “backtrace” from the bottom-right element to get the answer.

F,'j = max(F,-,lJ,l + S(X,', yj), Fifl,j — d, F,"j;l — d) + pointer



Let us align “ACTCACA" and “ACCAGA” with

s(b1, bp) = 1 if by = by, —1 otherwise; d = 0.5. Here is the F-matrix:
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Traceback: bold arrows give alignment
ACTCAGA



Local alignment: Smith-Waterman

Often we don't want to align the entire sequence, but want to find subsequences of both
sequences that align well. This can be done by a simple modification of the above
Needleman-Wunsch algorithm:

@ Create F-matrix as before

@ But now do not let an Fj; become negative: if it is calculated as negative, set it to zero
without pointers

@ Also, keep track of largest Fj; element calculated thus far

o After calculating F~-matrix, traceback not from bottom-right from largest element, until
you hit a zero

For gapless alignments, each element Fj; is just calculated from F;_;; 1 and the traceback
goes diagonally too. But there are more efficient algorithms for this case.



Phylogenetics

Human: AACATGGCACCTGAC
Chimp: AACACGGCACCTAAC
Mouse: AACGCGGAACCCAAC
Rat: AACGCGGTACCCAAG
Cow: ATCGCGAAACGGAAC

Human Chimp Mouse



Phylogenetic distance

Given two sequences,
@ Crude distance measure: the number of mismatches between them

o Better: estimate the evolutionary time when they diverged, assuming a constant mutation
rate

Given an instantaneous rate matrix Rg, = rate of mutation from nucleotide « to nucleotide /3,

o Calculate the transition matrix Tg,(t) = probability of seeing (5 at time T + t given « at
time T

@ Given two sequences, estimate their joint likelihood given this matrix
o Estimate their divergence time t by maximizing this likelihood




UPGMA: from distance matrix to rooted tree




Other methods

Neighbour-joining (produces unrooted tree)
Parsimony

Maximum likelihood

Bayesian methods



Given instantaneous rate matrix Rg,, suppose the number of nucleotides o at a given locus in
a population of size Nis N, with >~ N, = N.
Then

d
aFf B
Defining the diagonal elements of R as Rgg = — Za?éﬁ Rap. this can be written as

d

—Njg = Rga Ny,

= 2R
which has the solution

Ns() =3 (eRt>Ba N (0)

[0}

Dividing by N and taking the initial population fraction of « to be 1,

T/Ba(t) = (eRT)ﬁa

Different choices of R determine different transition matrices T.



Let the “stationary distribution” at a locus (in the long-time limit) be T = (Ta, TC, TGy TT)-
Then

Tap()ms = Tga(t)Ta
(“detailed balance")
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Let the “stationary distribution” at a locus (in the long-time limit) be T = (Ta, TC, TGy TT)-
Then

Tap()ms = Tga(t)Ta
(“detailed balance")

25 T8a(t1) Typ(2) = Tha(ts + B2)

“Pulley principle” (Felsenstein)

The root of a rooted tree is not uniquely determined, only the sum of branch-lengths to its
children is determined.




o Jukes-Cantor (1969): all off-diagonal elements of R are equal, Rg, = i for 3 # «,
Res = —3u

e Kimura (1980): different transition and transversion rates; Rg, = i for A<G, CoT, =v
for other B # o, Rgg = —2v —

@ Both Jukes-Cantor and Kimura result in uniform stationary 7@ = (0.25,0.25,0.25,0.25)



Models yielding non-uniform

Tap(t) = € #4305 + (1 — e *)mq.

We use units with iz = 1 and define g = e %, then

Top(q) = qdap + (1 — g)7a.




Models yielding non-uniform

TC * TCc KRTC
RTTG TG * TG
T™r RKRTOT TT *

R=pu

where the diagonal elements are such that columns sum to zero. We choose time units such
that 1 = 1 and, as before, define proximities as g = e~ ' (however, these no longer have the
simple interpretation of probability of conservation as in the F81 model).




Defining TR = a + g, Ty =Tic+ 71, &2 = e ' = q; e3 = ¢""RT™Y; and g4 = g™V TR

Transition probabilities for HKY85
Identity for purines (5 = « for o = A, G):

Tﬁa:ﬂ'a"‘ﬂ'a%eﬁ"‘( _%) €3

Identity for pyrimidines (5 = « for a = C, T):
Tga = o + TaBex + (1 - L) €4

(3
Ty Ty
Transition, purine (5 = A,« = G or vice versa):
Y 1

Too=ms (1+ e — Leg

Transition, pyrimidine (8 = C,a = T or vice versa)::
— TRe, — L

Tﬁa = T3 (1 T Ty €2 7TY€'4.>

Transversion (all other cases):

Tpa = (1 — &)




Likelihood calculation

The likelihood, at a particular locus x,
of seeing the nucleotides {S¥} at the
leaves (k denotes the leaf or species
label) is a product over the tree of
all transition matrices along edges,
B summed over all unknown ancestors.
T In this case SK = A, C, T for k =1,

x 2 2, 3, and

A o P{S}{a}) = Z?TaTTa(%)zB: T5a(qa) Tas(q1) Tes(a2)



Likelihood calculation: Felsenstein algorithm

(assuming binary tree, can be generalized)
o Define Lj(a)) = likelihood of leaves below node i given that the nucleotide at node i is «

e If iis a leaf node with nucleotide x, set Lj(a) = dax
@ Otherwise, let the two children of i be j and k with proximities g; and g,. Then
Li(a) = >_5 Tpalq)Li(B) >_, Talqk)Li(7). (For non-binary trees this step can be
generalized to a product over all children, with the appropriate number of sums.)
@ Termination: let the root node be 2n — 1, then the likelihood of the leaves is
Yo Lon—1(a)m,.
Complexity: O(NLXZ?) where N = number of species, L = number of sites, ¥ = size of

alphabet
The intermediate calculations should be cached.



Inferring a phylogenetic tree from sequence data

@ Infer topology of tree

@ Infer branch lengths of tree

Approach

@ Markov Chain Monte Carlo:
» Sample space of tree topologies
» For each topology, calculate branch lengths as per maximum likelihood
» Use likelihood to accept/reject (Metropolis algorithm)




Bayesian phylogenetics

@ The likelihood of a tree can be related to the posterior probability via Bayes' theorem:
P(D|T)P(T)
P(T|D) =
(T1D) A(D)
where the denominator is a constant.

o If the prior P(T) is a constant then sampling from a likelihood is equivalent to sampling
from a posterior.

@ But we can use a prior to favour probable trees, disfavour improbable trees, rule out
impossible trees.



Linguistic phylogenetics

@ Nucleotides — words
@ Homologous nucleotides — cognate words
o Likelihoods — 7
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Language-tree divergence times
support the Anatolian theory

of Indo-European origin

Russell D. Gray & Quentin D. Atkinson

Department of Psychology, University of Auckland, Private Bag 92019,
Auckland 1020, New Zealand

Languages, like genes, provide vital clues about human history"?.
The origin of the Indo-European language family is “the most
intensively studied, yet still most recalcitrant, problem of his-
torical linguistics™. Numerous genetic studies of Indo-European
origins have also prodnced inconclusive results"*°. Here we
analyse linguistic data using ional methods derived
from evoluuonary biology. We test two theories of Indo-

Source: Language, Vol. 91, No. 1 (MARCH 2015),
ANCESTRY-CONSTRAINED PHYLOGENETIC ANALYSIS SUPPORTS THE

INDO-EUROPEAN STEPPE HYPOTHESIS

CHUNDRA CATHCART
University of California, Berkeley

WiLL CHANG
University of California, Berkeley

DAviD HALL ANDREW GARRETT
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Discussion of Indo-European origins and dispersal focuses on two hypotheses. Qualitative evi-
dence from reconstructed bulary and correlations with archaeol 1 data suggest that Indo-

1

European origin: the ‘Kurgan expansion’ and the ‘A li
farming’ hypotheses. The Kurgan theory centres on possible
archaeological evidence for an expansion into Europe and the
Near East by Kurgan horsemen beginning in the sixth millen-
nium BP”®, In contrast, the Anatolian theory claims that Indo-
European languages expanded with the spread of agriculture
from Anatolia around 8,000-9,500 years BP’. In striking agree-
ment with the Anatolian hypothesis, our analysis of a matrix of
87 languages with 2,449 lexical items produced an estimated age
range for the initial Indo-European divergence of between 7,800
and 9,800 years BP. These results were robust to changes in coding
procedures, calibration points, rooting of the trees and priors in
the bayesian analysis.

Europ ongmated in the Pontic-Caspian steppe and spread together with cultural
innovations iated with lism, beginning c. 6500-5500 BP. An alternative hypothesis,
according to which Indo-European languages spread with the diffusion of farming from Anatolia,
beginning c. 9500-8000 BP, is supported by statistical phyl and phylog phic analyses
of lexical traits. The time and place of the Indo-European ancestor lang; herefore remain dis-
puted. Here we present a phylogenetic analysis in which ancestry constraints permit more accurate
inference of rates of change, based on observed changes between ancient or medieval languages
and their modern descendants, and we show that the result strongly supports the steppe hypothe-
sis. Positing ancestry constraints also reveals that homoplasy is common in lexical traits, contrary
to the assumptions of previous work. We show that lexical traits undergo recurrent evolution due
to recurring patterns of semantic and morphological change.*

pp- 194-244
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evolution
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has been a rapid increase in the use of phyloge-
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we argue that
‘we can use language trees to test hypotheses about not
only cultural history and diversification, but also
cultural adaptation. i ive methods

experimentation are limited, but also because humans
ow such a remarkable range of cross-cultural variation.

Cultures as species

We define culture broadly, as behavioural traditions that

are transmitted by social learning. At the population level,

humans structure themselves into cultures or ethno-

linguistic groups, which we define here as a group of
h

take account of the non-independence of cultures
(Galton’s problem), which c: i it
associations i i

50 that one does not have to treat phylogenetic trees as
if they were known without error.

peopl P guage. Ma
been drawn between cultural and biological evolution,
both at the level of parallels between genes and cultural
traits (or variants), and at the level of species and cultures
[5]. Culture evolves in the sense that occasional errors
arise in cultural transmission (equivalent to mutations in
biological evolution), leading to change through time [6,7].

For the purposes of phylogenetic analysis, languages
and cultures are treated as being analogous to species
(Table 1), although there has been a vigorous debate about
how far we can treat cultures as discrete, bounded units,
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Abstract

We present a new open source software tool called BEASTIing, designed to simplify the
preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 plat-
form. BEASTIing transforms comparatively short and human-readable configuration files
into the XML files used by BEAST to specify analyses. By taking advantage of Creative
Commons-licensed data from the Glottolog language catalog, BEASTIing allows the user to
conveniently filter datasets using names for recognised language families, to impose mono-
phyly constraints so that inferred language trees are backward compatible with Glottolog



Beastling sample output

Romanian
Russian
Polish
Norwegian
French 4
Czech
Icelandic
Italian
Hindi

Portuguese
Spanish
Romanian

Armenian
Romanian
Russian
Polish

midiRE

Armenian
Greek
Bulgarian
Czech
Polish
Russian
Danish
Norwegian
Ieelandic
Swedish
Dutch
German
Englsh
French
Halian
Portuguese
Spanish
Romanian

Hindi



@ Phylogenetic trees in biology are sensitive to choice of sequence, similar concerns may
apply to linguistic trees

@ “Selection pressures” vary on different parts of the genome, and likely for different words
in different languages

@ Horizontal transfer is common among languages

@ Algorithms should never be used as a black box!
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