
String alignment, evolution, phylogenetics, and how languages evolve

Rahul Siddharthan

The Institute of Mathematical Sciences, Chennai, India

Bits & Strings: iCEL Workshop on Computational Epigraphy, 28 March 2024

DNA evolution
Single nucleotide substitution
Insertion/deletion
Segmental duplication
Recombination
etc…

For phylogenetics
Most models consider only single-nucleotide mutation
Start with a multiple sequence alignment, throw out all indels
More sophisticated models exist, but it gets complicated...

DNA evolution
Single nucleotide substitution
Insertion/deletion
Segmental duplication
Recombination
etc…

For phylogenetics
Most models consider only single-nucleotide mutation
Start with a multiple sequence alignment, throw out all indels
More sophisticated models exist, but it gets complicated...

Tree of life

From Science magazine’s special issue, 13 June 2003

Sequence alignment

Task: given two sequences, match the bases that are likely to be derived from a common
ancestor.
Or, given a “scoring function” for alignments, find the alignment that optimises the scoring
function.
Exact methods exist, as well as approximate but faster methods.

Sequence alignment
Example of alignment:
ACAATGCAGTGACCCAGCGT----ACGTTAAGATCATG
ACAGTG---TGTCCCAGCCTACACACGT-AAGTTCATG
Given a scoring function, the task is to find the alignment that optimises that function.
Vertically aligned bases can be scored, eg, with “log-odds” score

s(b1, b2) = log
p(b1, b2)

p(b1)p(b2)

For protein alignments there are standard substitution matrices used.
We score the gaps with a “gap penalty”: for a gap of length ℓ, this is either a “linear penalty”

g = ℓd

that is, proportional to the gap, or an “affine penalty”

g = d + (ℓ− 1)e

where the penalty for the first gap, d, is larger than the penalty for increasing the gap, e.

Global alignment: Needleman-Wunsch algorithm

An example of dynamic programming, building up large alignments from shorter ones, O(mn)
where m, n are sequence lengths
For two sequences x, y of lengths ℓ1 and ℓ2, construct a matrix Fij, in which each element is
calculated from an earlier element (with smaller i and/or j).
Each element Fij contains two components:

The score of the best alignment of the first i bases in sequence 1 and the first j bases in
sequence 2. This is

Fij = max

Fi−1,j−1 + s(xi, yj)
Fi−1,j − d
Fi,j−1 − d

(for simplicity, we are not considering affine gap penalties, but the algorithm can be
extended to include those.)
A pointer to the previously calculated element of the F matrix from where this element
was calculated.

F00 is defined to be zero, and “overhanging” bases have the same gap penalty d.
Fill out the entire F matrix, then “backtrace” from the bottom-right element to get the answer.

Fij = max(Fi−1,j−1 + s(xi, yj),Fi−1,j − d,Fi,j−1 − d) + pointer

Let us align “ACTCACA” and “ACCAGA” with
s(b1, b2) = 1 if b1 = b2,−1 otherwise; d = 0.5. Here is the F-matrix:

A

−0.5 −1.5 −3−1 −2.5−2 −3.5 0

−0.5 1 0 −1.50.5

0.5

−1−0.5 −2

−1 1.5 0 2 0.5 1 −0.5

−1.5 0 1 1.51.5 22.5 1

−2 −0.5 0.5 2.5 1 3 2 2.5

−2.5 −1 0 20.5 2.51.5 2

−3 −1.5 −0.5 2 0 2.5 1 3

A

A

A

C

C

C

T C A C A

G

Traceback: bold arrows give alignment
ACTCAGA
AC-CAGA
but two other alignments are possible with the same score.
ACTCAG-A ACTCA-GA
AC-CA-CA AC-CAC-A

Local alignment: Smith-Waterman

Often we don’t want to align the entire sequence, but want to find subsequences of both
sequences that align well. This can be done by a simple modification of the above
Needleman-Wunsch algorithm:

Create F-matrix as before
But now do not let an Fij become negative: if it is calculated as negative, set it to zero
without pointers
Also, keep track of largest Fij element calculated thus far
After calculating F-matrix, traceback not from bottom-right from largest element, until
you hit a zero

For gapless alignments, each element Fij is just calculated from Fi−1,j−1 and the traceback
goes diagonally too. But there are more efficient algorithms for this case.

Phylogenetics

Phylogenetic distance

Given two sequences,
Crude distance measure: the number of mismatches between them
Better: estimate the evolutionary time when they diverged, assuming a constant mutation
rate

Mutation rates and evolutionary time
Given an instantaneous rate matrix Rβα = rate of mutation from nucleotide α to nucleotide β,

Calculate the transition matrix Tβα(t) = probability of seeing β at time T + t given α at
time T
Given two sequences, estimate their joint likelihood given this matrix
Estimate their divergence time t by maximizing this likelihood

UPGMA: from distance matrix to rooted tree

Other methods

Neighbour-joining (produces unrooted tree)
Parsimony
Maximum likelihood
Bayesian methods

Given instantaneous rate matrix Rβα, suppose the number of nucleotides α at a given locus in
a population of size N is Nα with

∑
α Nα = N.

Then
d
dtNβ = −

∑
α ̸=β

RαβNβ +
∑
α ̸=β

RβαNα

Defining the diagonal elements of R as Rββ ≡ −
∑

α ̸=β Rαβ , this can be written as

d
dtNβ =

∑
α

RβαNα

which has the solution
Nβ(t) =

∑
α

(
eRt

)
βα

Nα(0)

Dividing by N and taking the initial population fraction of α to be 1,

Tβα(t) =
(

eRT
)
βα

.
Different choices of R determine different transition matrices T.

Let the “stationary distribution” at a locus (in the long-time limit) be −→π = (πA, πC, πG, πT).
Then
For time-reversible T
Tαβ(t)πβ = Tβα(t)πα
(“detailed balance”)

Multiplicativity∑
β Tβα(t1)Tγβ(t2) = Tγα(t1 + t2)

“Pulley principle” (Felsenstein)
The root of a rooted tree is not uniquely determined, only the sum of branch-lengths to its
children is determined.

Let the “stationary distribution” at a locus (in the long-time limit) be −→π = (πA, πC, πG, πT).
Then
For time-reversible T
Tαβ(t)πβ = Tβα(t)πα
(“detailed balance”)

Multiplicativity∑
β Tβα(t1)Tγβ(t2) = Tγα(t1 + t2)

“Pulley principle” (Felsenstein)
The root of a rooted tree is not uniquely determined, only the sum of branch-lengths to its
children is determined.

Let the “stationary distribution” at a locus (in the long-time limit) be −→π = (πA, πC, πG, πT).
Then
For time-reversible T
Tαβ(t)πβ = Tβα(t)πα
(“detailed balance”)

Multiplicativity∑
β Tβα(t1)Tγβ(t2) = Tγα(t1 + t2)

“Pulley principle” (Felsenstein)
The root of a rooted tree is not uniquely determined, only the sum of branch-lengths to its
children is determined.

Choices of R

Jukes-Cantor (1969): all off-diagonal elements of R are equal, Rβα = µ for β ̸= α,
Rββ = −3µ
Kimura (1980): different transition and transversion rates; Rβα = µ for A↔G, C↔T, = ν
for other β ̸= α, Rββ = −2ν − µ

Both Jukes-Cantor and Kimura result in uniform stationary π⃗ = (0.25, 0.25, 0.25, 0.25)

Models yielding non-uniform π⃗

Felsenstein 1981 (F81) model

R = µ

πA − 1 πA πA πA
πC πC − 1 πC πC
πG πG πG − 1 πG
πT πT πT πT − 1

Tαβ(t) = e−µtδαβ + (1 − e−µt)πα.

We use units with µ = 1 and define q = e−t, then

Tαβ(q) = qδαβ + (1 − q)πα.

Models yielding non-uniform π⃗

Hasegawa, Kishino, Yano 1985 (HKY85) model

R = µ

∗ πA κπA πA
πC ∗ πC κπC
κπG πG ∗ πG
πT κπT πT ∗

where the diagonal elements are such that columns sum to zero. We choose time units such
that µ = 1 and, as before, define proximities as q = e−t (however, these no longer have the
simple interpretation of probability of conservation as in the F81 model).

Defining πR = πA + πG; πY = πC + πT; e2 = e−t ≡ q; e3 = qκπR+πY ; and e4 = qκπY+πR

Transition probabilities for HKY85
Identity for purines (β = α for α = A,G):
Tβα = πα + πα

πY
πR

e2 +
(

1 − πα
πR

)
e3

Identity for pyrimidines (β = α for α = C,T):
Tβα = πα + πα

πR
πY

e2 +
(

1 − πα
πY

)
e4

Transition, purine (β = A, α = G or vice versa):
Tβα = πβ

(
1 + πY

πR
e2 − 1

πR
e3
)

Transition, pyrimidine (β = C, α = T or vice versa)::
Tβα = πβ

(
1 + πR

πY
e2 − 1

πY
e4
)

Transversion (all other cases):
Tβα = πβ(1 − e2)

Likelihood calculation

A C

T

β

α

𝑞₁ 𝑞₂

𝑞₃𝑞₄

The likelihood, at a particular locus x,
of seeing the nucleotides {Sk} at the
leaves (k denotes the leaf or species
label) is a product over the tree of
all transition matrices along edges,
summed over all unknown ancestors.
In this case Sk = A, C, T for k = 1,
2, 3, and

P({Sk}|{q}) =
∑
α

παTTα(q3)
∑
β

Tβα(q4)TAβ(q1)TCβ(q2)

Likelihood calculation: Felsenstein algorithm

(assuming binary tree, can be generalized)
Define Li(α) = likelihood of leaves below node i given that the nucleotide at node i is α

If i is a leaf node with nucleotide x, set Li(α) = δαx

Otherwise, let the two children of i be j and k with proximities qj and qk. Then
Li(α) =

∑
β Tβα(qj)Lj(β)

∑
γ Tγα(qk)Lk(γ). (For non-binary trees this step can be

generalized to a product over all children, with the appropriate number of sums.)
Termination: let the root node be 2n − 1, then the likelihood of the leaves is∑

α L2n−1(α)πα.
Complexity: O(NLΣ2) where N = number of species, L = number of sites, Σ = size of
alphabet
The intermediate calculations should be cached.

Inferring a phylogenetic tree from sequence data

Two tasks
Infer topology of tree
Infer branch lengths of tree

Approach
Markov Chain Monte Carlo:

▶ Sample space of tree topologies
▶ For each topology, calculate branch lengths as per maximum likelihood
▶ Use likelihood to accept/reject (Metropolis algorithm)

Bayesian phylogenetics

The likelihood of a tree can be related to the posterior probability via Bayes’ theorem:

P(T|D) =
P(D|T)P(T)

P(D)

where the denominator is a constant.
If the prior P(T) is a constant then sampling from a likelihood is equivalent to sampling
from a posterior.
But we can use a prior to favour probable trees, disfavour improbable trees, rule out
impossible trees.

Linguistic phylogenetics

Nucleotides → words
Homologous nucleotides → cognate words
Likelihoods → ?

Literature examples

Literature examples

Literature examples

Beastling sample output

Caveats

Phylogenetic trees in biology are sensitive to choice of sequence, similar concerns may
apply to linguistic trees
“Selection pressures” vary on different parts of the genome, and likely for different words
in different languages
Horizontal transfer is common among languages
Algorithms should never be used as a black box!

Thank you

