

SEVERAL PAST ATTEMPTS

- Researchers from various disciplines have been attempting to read the Indus script with no clear answer.
- The sign system of Indus culture remains ambiguous, with contested claims of decipherment, but no consensus on any of them.

OUR APPROACH

- We make no assumptions about the nature, content or purpose of the Indus script.
- We use computational tools and techniques that can probe specific aspects of various types of data.
- The objective of our study is to identify the structure and nature of a collection of written material especially when the background knowledge is not enough.
- The present approach can be used to identify the syntactic framework for the Indus script which can be used to evaluate various claims of decipherment.

S. No	Type of Scripts	Type of Signs	No. of Signs	Examples
1.	Logographic	Word-signs	Thousands	Chinese
2.	Logo-syllabic	Word-signs & Phonetic syllables	900-400	Sumerian, Egyptian
3.	Syllabic	(a) Closed & Open syllables(b) Open syllables	200-100 100-40	Elamite, Cuneiform Linear B, Old Persian
4.	Alphabetic	Single-sound signs	Below 40	Semitic, Greek, Latin

COMPUTATIONAL STUDIES OF INDUS	SCRIPT
	Ф"& ТХТ ⊘"& (X:U * 00 T - ⊘"& U X: () X:U & 00 X: X:U X:U X: U X:X U X:X U X:X U X:X U X:X U X:X
	K招∩ K松Ц

Two-sign C	Combination	Solo (%)	Left (%)	Middle (%)	Right (%)
11	\diamond	0.60	1.79	11.90	85.71
	\bigcup	0.00	0.00	89.33	10.67
E	J	0.00	96.61	3.39	0.00
U	X	1.72	72.41	25.86	0.00
11	\$	0.00	0.00	8.93	91.07
U	U	0.00	89.29	10.71	0.00
Ť	V	0.00	89.58	10.42	0.00
y	9	0.00	0.00	0.00	100.00
\$	1	0.00	0.00	79.49	20.51
U	N.	2.63	52.63	28.95	15.79
۵.	щ	0.00	0.00	80.56	19.44

POSITIONAL ANALYSIS OF PAIRS

Yadav et al. 2008a

29

]	EXAMP	PLES 0	F SEGI	VIENTA	TION				
Object No.			Se	Segments of Text						
1232:	P148	P86								
	U A 342 48	11 99 267								
	1279	4441								
4254:	P53	T148	P116	PM9	389					
	成14 2	AⅢU 211 89 336	UH 342 341	<u>۵</u> ۳	() 389					
	2371	2015	1226							
2537:	P41	PM14	67	PM9	389	344	PB1			
	UX 342 149	130 51	¥ 67	۵ 59 17 1	() 389	U 344	J) 123293			
	8001		1093			4385				
2461:	Т94	326	87	P131	178					
		326	87	5 389	A. 178					
	1437	2673	4560	2682						
						Yadav et	al. 2008b			

COMPUTATIONAL MODEL OF INDUS SCRIPT

- Research in machine learning and data mining has led to new techniques for developing statistical models of sequences.
- These models are not sensitive to the semantic content of the sequences but, reveal the syntax, if any, that the sequences follow.
- These models can be used for pattern recognition and pattern completion.
- Use created a statistical model of the Indus script.

N-GRAM & MARKOV MODELS

- Are probabilistic models which provide a very useful method of modelling different types of sequences.
- □ These models are not sensitive to the semantic content of the sequences but, reveal the syntax, if any, that the sequences follow.
- □ The order of the Markov model decides the length of correlation.
- □ The corpus of the Indus script was modelled with n-grams starting with n = 1 to n = 5, where n defines the length of correlation.
- □ The *perplexity* is reduced considerably when bigram correlations are taken into account.
- □ We study the bigram model of the Indus script.

RESTORATION OF DAMAGED INDUS TEXTS

Text No.	Text	Incomplete Text
8302	t U U II ⊗* 1 342 07 99 207	₩ 1 342 67 99 0
5317	J42 347 78 72 65	J42 0 78 72 65
1193	₹ 342 149	0 149
1407	J42 8 171 99 391	Ŭ X ₩ ₩ ↔
2179	↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
3396	169 194 89 336 72 65 389	
8101	↑* U ↓ ↓ ⊕ 211 89 336 59 99 391	∭ U Q ⊗ 0 89 336 59 99 391

A bigram model of the Indus script can be used for restoration of damaged texts with about 75% accuracy.

Yadav et al. 2010 (PLoS One)

43

MOST PROBABLE INDUS TEXTS: GENERATED BY MODEL Text Blank Predicted Text No. Closest matching Length Text Text text from dataset U 267 J 12 48 99 267 </s> 4 1232 J 2 48 99 267 2580 //////// <s> ₩ 342 8 171 99 267 J X TI 00 267 2476 5 </s> J X T C I ⊗ 342 8 171 53 99 267 J ★ T C M + V S </s> 6 1322 Yadav et al. 2010 (PLoS One) **4**4

INDUS SCRIPT BUT DIFFERENT GRAMMAR

Impression of a round stamp seal from West Asia

Sequence JJ

never occurs in Indus corpus of about 4000 texts from Harappan sites.

47

SCRIPT TO WRITE WEST	ASIAN CONTENT?
₽"₩Ĩ	2.8 × 10 ⁻⁵
$342 \ 51 \ 336 \ 99 \ 267$ $336 \ 51 \ 99 \ 267 \ 342$	~ 0
	1.4 x 10 ⁻⁶
	SCRIPT TO WRITE WEST $ \begin{array}{c} $

COMPARISON WITH OTHER SIGN SYSTEMS

- □ In general, ordering of signs in a written text can be
 - random where the order of signs is not important
 - rigid where the ordering is precise and pre-determined
 - flexible where there exists a degree of freedom in choosing the order to allow expression of a variety of information.
- We compared the conditional entropy of Indus sign system with other linguistic and non-linguistic systems.
- Conditional entropy quantifies the <u>amount of flexibility</u> in choosing a sign given a preceding sign.

49

	IDE	NTIFY	ING CL	USTER	S IN I	NDUS 1	EXTS			
The association of the association of the second	tions I <i>ring</i> , a	betwe in unsi	en the upervi	signs sed ma	in the achine	Indus learni	texts	were o hniquo	explored e.	
Nine cluster of these clu belonging t	rs of Ir sters w o othe	ndus te were r r clust	exts we nore si ters.	ere ex imilar	tracteo amono	l such gst the	that th mselve	e text es thar	s in each n to texts	
Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7	Cluster 8	Cluster 9]	
Ť Ⅲ IJ Â	□ □	A 211 89 330 99	₩ 342 07 99 207	UUU11)	UULU 342 102 240 343	Q 1 1 8	E @ ()	UA !!!		
169 104 219 104	田力III 246 25 08 09	A ↓ II ↔ 211 69 99 267	J III II ♦	UX/1	び単出リ 342 102 249 123	YU 50 2	EUM .	A II & 60 87 00 301		
\$\$\$.21 \$\$ \$	田川山	III U II O	JE WII	UATOC 342 59 171 53	UULA 342 162 249 59	100 50 00 001	EUMA 178 342 190 138	UF II &]	
	11)) 246 97 87 206	A	JFA 11 00 342 60 00 267	UX 140 51 67	び42 162 240 301	Q W & &	J&E)	UQ 00 87 301		
10007 210 Ja4	田(ご))246 25 97 295	↑ 211 09 99 267	Ŭ Â ¹¹ ⊘ 342 65 99 267	UX/X 342 149 130 07	₩ 15 162 162 162	162 320 12 306	しず出命 342 109 249 65	U A II &		~
								Ya	udav et al. 2017	51

IN	DUS	SCI	RIPT	SI	GNS	(1 T	D 11	0 O U	T OF	417)		
1	K.	大 ^{2†}	\$	₹ 4	大	大。	×,	**) <u>米</u>)	穴		
v	Î,	500	8	5 1 0		X1X	×17†	7	19+	20		
1/2	ук \ 1	×22	★** 23	****** 24	大 25	:太二	大)	28†	800 29†	大~	t u	
, ,	0	大U 321	0 大U	加	351	★* 36	大日	大	大 39	太 401		
†	\$- -	大 42	大 43	大1	45	46	27	AST AST	49†	50+	*	
51	ļ l	食 52	0C 53†	K 54+	55+	56†	書 57+	X 58	Q 59†	GOT	1† 328†	
:5	<u>ណ្ត</u> ី: ((3 0) 63	(Q-3) 64	65	12:00	¥	- X:	¥	Q 70†		
'		72+	8 73†	€ 74†	Q 75	76+	勇 77	月 78+	7 9			
(अ 8) (2 82	83	841	周1	86†	 87†	:]]]; 88	 89†	111/e 90+		
	× [II 92	/ 93	94†	 95	 96†	 97	 98†	11 99	100		
 101	10)2† 1)	 03†	 104†	 105	106†	 107†	108	 109†	IIIIIII 110 Maha	adevan (1977)	58

	Compound sign	Freq.	. Components		Sign combination found in M77	Freq.	Comments	
	21	2	★	Ч 162	τ 1 162 Ψτ 162	2	No signs common on either side in both the cases.	
	*** 22	3	↑	176		6	No signs common on either side in both the cases.	
] In si	n <i>most</i> of the cas gns do not share	es, th e ider	e cons ntical	stituent environ	elements in a ment.	any c	ombination and th	ne composite
) T] se	he compound equences create	signs ed for	are brev	not me ity. They	erely compac y seem to hav	cted ve so	version of the p me other function	ossible sign in the Indus

SUMMARY The script has a rich syntax with an underlying logic in its structure. There is a significant asymmetry in the usage of text beginners and text enders. Machine learning techniques enable us to identify syntactically valid writing and restore damaged Indus texts. The script may have been used for writing West Asian content. The flexibility of sign usage in Indus texts falls within the range of linguistic systems. The designs of Indus signs are intricate and sign compounding seem to add value to basic signs rather than save writing space. The texts can be optimally subdivided into nine distinct clusters using unsupervised machine learning techniques. The results provide significant constraints to any model of decipherment and can be used to evaluate the same.

