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What are generative moaels?

- Aim to generate new data points similar to training set.
- Learns the distribution of data
- Can generate unseen instances by learning from dataset.

- Used in image, text, and audio synthesis.

Generative Discriminative



‘urn a linear model into a generative model

- Assume a distribution (e.g., Gaussian) for features in each

O
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- Estimate parameters (mean, variance) of these distributions O o
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using linear model outputs. 0
O 0O
: O Q
- Data Generation: 0 g0
&

- Sample feature values from estimated distributions.

. Generate new data points by sampling from these feature
distributions
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Autoencoders

What is an autoencoder?

- A neural network trained using unsupervised

learning

. Trained to copy its input to its output

- Learns an embedding h
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What is an embedding?

- An embedding is a low-dimensional vector (e.g., PCA)

- With fewer dimensions than the ambient space of which the manifold is a low-
dimensional subset

- Embedding Algorithm

- Maps any point in ambient space x to its embedding h



What does an autoencoder learn”

- Autoencoders are designed to be unable to

copy perfectly

- Autoencoders learn salient features of the dato

- Forced to prioritize which aspects of input

should be copiead

. When the decoder is linear and loss function is
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Variational Autoencoders

. Training Objective:

- Autoencoder: Minimize reconstruction error. encode - decode >

Inference Generative

- VAE: Minimize reconstruction error + Regularize latent
space (KL divergence).

. Kullback-Leibler divergence quantifies the difference

between two probability distributions input hidden output
a(2lr) AN pe(al2)
- Encodes inputs into a distribution over the latent space, T > - z
characterized by mean and variance parameters
Distribution

- Can generate new, unseen data by sampling from
latent space.
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(Generative Adversarial
Networks




(Generative Adversaria

- GANs work by having two neural
networks compete against each other:
O generator network that creates the
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Goodfellow, |., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio, Y. (2014). Generative adversarial nets.
In Advances in neural information processing systems (pp. 26/2-2680).



(Generative Model

- How to make it generate different samples each time it is run?

+ input to model is noise noise (z) real or fake?

|

. Generative model as a neural network Generative

Model
Discriminative
. computes x = G(z|6) l Model

. 7z typically has very high dimensionality (higher than x) B




GAN traimning

« Discriminator [raining:

- The discriminator is trained first within a training cycle. It receives both real data from the
dataset and fake data generated by the generator.

- Generator Training:

. generator produces fake data, which is then passed to the discriminator. When training the
generator, the goal is to maximize the mistake rate of the discriminator—essentially, the
generator is rewarded if the discriminator classifies fake data as real. The generator's loss is
calculated based on the discriminator's predictions on the fake data, with the aim of making
these predictions incorrect. The gradient of this loss is then used to update the generator's
weights.




GAN traimning

- Mode collapse: GANs can suffer from mode collapse, where the generator learns to produce
imited varieties of data.

- Non-convergence: GANs can oscillate during training, making it difficult to achieve
convergence.

- Hyperparameter tuning: GANs require careful tuning of hyperparameters like learning rates,
oatch sizes, and network architectures.

- Data quality: High-quality and diverse training data is crucial tor GANs to learn realistic dato
distributions.




GAN output

Progressive Growing of GANSs for Improved Quality, Stability, and Variation, Progressive GAN, by
NVIDIA, and Aalto University, 2018 ICLR



GAN (mode collapse)
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Attention

« "Attent
mode

ion" in neural networks is a mechanism that allows the
to focus on certain parts of the input data more than others,

- way for the model to allocate its 'attention’ or focus to specific
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Self supervised learning

. In this formulation, words in a text are randomly masked and the task is to predict them.

. This formulation has been used in the BERT, RoBERTa and ALBERT papers.

A quick [MASK] fox jumps over the [MASK] dog

v v

A quick brown fox jumps over the lazy dog
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D1

fusion models

. Diffusion models are a class of generative models
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Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. arXiv [Cs.LG].




Training diffusion mode.

- Forward diffusion process: Training starts

Dy Ccorru

multiple diffusion steps, gradually destroy

S

oting the data with Gaussian noise over
iNg the data into pure noise.

- Denoising objective: At each diffusion step, the model is trained to predict the noise that was

added, effectively learning to denoise the

- Optimize parameters: The model paramet

between the predicted noise and the actL
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nferencing from Diftusion Models

Reverse diffusion process: During inference, the model starts from pure noise and iteratively
denoises the data by predicting and subtracting the added noise at each step.

Sampling from distribution: At each step, the model samples from the learned distribution to
generate the denoised data for the next step.

Conditional guidance: Diffusion models can be conditioned on additional inputs, like text
orompts or class labels, to guide the generation process towards desired outputs

Data Destructing data by adding noise » Noise
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vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation
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Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image
Generation with CLIP Latents. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2204.06125




CLIP (Contrastive Language-Image Pre-training)

- Multimodal Learning: CLIP is trained to understand and associate images with textual descriptions,
making it capable of understanding a wide range of visual concepts expressed in natural language.

. Contrastive Pre-training: It uses a contrastive learning approach to pre-train on a large dataset of
images and text pairs, learning to predict the correct pairing among a set of incorrect ones.

« The contrastive pre-training approach works by teaching the model to distinguish between
matching and non-matching pairs of data across two different modalities (e.g., images and text).

- The model is presented with pairs of images and text captions. For each image, there is one
matching caption that describes the image, and several non-matching captions. The model's
task is to predict which caption correctly matches the image among the set of possible captions.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S,, ... & Sutskever, |. (2021). Learning
Transferable Visual Models From Natural Language Supervision. arXiv preprint arXiv:2103.00020.
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model 1s frozen during training of the prior and decoder.



Yl N i - . ’ - Y9 N .
SIS E-IE & K '.!.‘5..':_ L _ .

L
-

£ R . h¥ ~S

(a) A high quality photo of a dog playing in a green field next to a lake.

(b) A high quality photo of Times Square.

Figure 17: unCLIP samples show low levels of detail for some complex scenes.



Vision Transformer

Vision Transformer (ViT) Transformer Encoder
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An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Alexey Dosovitskiy, Lucas
Bever, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Svlvain Gelly, Jakob Uszkoreit, Neil Houlsby
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