
Large Language Models
for Digital Humanities

Animesh Mukherjee

Dept. of Computer Science and Engineering
IIT Kharagpur

Transformers – The building blocks of LLMs

Teasing apart the transformer architecture

Transformer encoder and decoders

Encoder embeddings

Idea of self attention

The animal didn't cross the street because it was too tired
? ?

❖ When the model is processing the word “it”,
self-attention allows it to associate “it” with
“animal”.

❖ As the model processes each word (each position
in the input sequence)

● self attention allows it to look at other
positions in the input sequence for clues

● help lead to a better encoding for this word.

Self-attention calculation

Create three vectors - query, key and value for each word Attention score - dot product of query & key vectors

Self-attention calculation

Normalize and softmax the attention score

Attention score X softmax, sum up the
value vectors at each word position

Calculation using matrices

Multi-head attention

Putting it altogether

Finally self-attention for “it”

Time sequence using positional encoding

Encoder in a nutshell

Decoder in a nutshell

Architecture Types Examples Use cases

Encoder-only
transformers

BERT (Google)
Sentence classification, named entity
recognition, extractive question answering

Encoder-decoder
transformers

T5 (Google) Summarization, translation, question answering

Decoder-only
transformers

GPT Series
(OpenAI)

Text generation

Types of transformers

Probing LLMs for hate speech detection:
strengths and vulnerabilities

A case study

Hate speech in social media

Hate speech: Direct and serious attacks on any protected
category of people based on their race, ethnicity, national origin,
religion, sex, gender, sexual orientation, disability or disease

Pittsburg shooting Rohingya Genocide Psychological trauma

Effects in real life Effects on psyche

Role of AI in preventing spread of hate speech
● Filtering out hateful or abusive

contents
● Training language models on

human annotated data
● Need huge labour and expertise

for annotation
● Physically and mentally taxing
● Zero shot detection using LLMs

is a “welcome” alternative

Contents

LLMs

Non Toxic
Content

Resource

How effective are LLMs for this task?
● Design prompt injections

○ Craft prompts that manipulate the LLM into revealing sensitive
information.

○ Bypass filters or restrictions by using specific language patterns or
tokens.

○ Exploit weaknesses in the LLM’s tokenization or encoding
mechanisms.

○ Mislead the LLM to perform unintended actions by providing
misleading context.

Objectives
● Craft prompts to employ LLMs to detect hateful, toxic and abusive

content in a zero shot setting

● Compare the performance of different proprietary and open-source LLMs

● Automatically identify data points to which these LLMs are vulnerable
thus constituting the most natural candidates for prompt injections

EMNLP 2023, Findings

Overall workflow

Prompts

Hate speech input
sampled from dataset

LLM
Hateful

Non hateful

Misclassified
+

Poorly explained

Typology induction

Datasets
Implicit Hate[1]

[1] ElSherief, Mai, et al. "Latent hatred: A benchmark for understanding implicit hate speech." arXiv preprint arXiv:2109.05322 (2021).

HateXplain[2] ToxicSpans[3]

[2] Mathew, Binny, et al. "Hatexplain: A benchmark dataset for explainable hate speech detection." Proceedings of the AAAI conference on artificial
intelligence. Vol. 35. No. 17. 2021.

[3] Chhablani, Gunjan, et al. "NLRG at SemEval-2021 task 5: toxic spans detection leveraging BERT-based token classification and span prediction
techniques." arXiv preprint arXiv:2102.12254 (2021).

Prompting strategies
➔ Vanilla

➔ Definitions

➔ Explanation
◆ At output

◆ At input

➔ Target
◆ At output

◆ At input

➔ Combinations

Prompting strategies
List of labels for each dataset:

Dataset list_of_labels

HateXplain normal, offensive or hate speech

Implicit hate explicit_hate, implicit_hate, or
not_hate

ToxicSpans toxic or non_toxic

Vanilla Prompts

➔ Classify the given post into one label out of the list of labels
➔ A few example outputs (one class per line)
➔ Prompt template

◆ Classify the post delimited by three backticks as list_of_labels.

Provide the answer as either list_of_labels only.

example_outputs

“‘post“‘

Definitions

➔ We provide the definitions of hate speech (as used in the datasets) as an
additional context to the LLMs

➔ Prompt template
◆ Consider the following definitions.

list_of_defintions

Based on this classify the post delimited by three backticks as
list_of_labels

Provide answer in the format : either list_of_labels only.

example_outputs

“‘post“‘

Explanations
➔ Two types:

◆ Explanation as input: Provide explanations to LLMs as inputs to predict the labels
◆ Explanation as output: Ask LLMs to provide an additional text explanation for its

labelling decision

➔ Prompt template (explanation as output)
◆ Classify the post delimited by

three backticks as
list_of_labels and
explanation_type.
Provide answer in the format :
either list_of_labels only
followed by explanation_format
example_outputs
“‘post“‘

➔ Prompt template (explanation as input)
◆ Classify the post delimited by

three backticks as list_of_labels
taking into account the
explanation
for why a post should be
considered list_of_labels.
Provide answer in the format :
either list_of_labels only.
example_outputs
“‘post“‘

Targets/Victims
➔ Two types:

◆ Target as input: Provide target/victim information to LLMs as additional inputs
◆ Target as output: Ask LLMs generate the target information along with the labels

➔ Prompt template (target as input)
◆ Classify the post delimited by

three backticks as
list_of_labels with respect to
the victim community targets .

Provide answer in the format :
either list_of_labels only.

example_outputs

“‘post“‘

➔ Prompt template (target as output)
◆ Classify the post delimited

by three backticks as
list_of_labels and
target_type

Provide answer in the format
: either list_of_labels only
followed by target_format

example_outputs

“‘post“‘

Combinations

➔ Definition + Explanation as input

➔ Definition + Explanation as output

➔ Definition + Target as input

➔ Definition + Target as output

Models used for experiments
1. Gpt-3.5-turbo - improved version of text-davinci-003, optimized for chat

2. Text-davinci-003 - GPT-3 optimized on code completion tasks and

instruction fine-tuned

3. flan-T5-large - open source instruction fine-tuned variant of T5 model

Metrics used for evaluation

Metrics

ExplainabilityPerformance

Accuracy Precision BERT / BLEU
ScoreRecall Macro F1

Results
Best model across all prompt types

Best prompt combination

M
ac

ro
 F

1

Results
Best model across all prompt
types but targets@input

Best model for
targets@input

Best prompt combination

M
ac

ro
 F

1

Results
Best model across all prompt types

Best prompt combination

M
ac

ro
 F

1

Error analysis

Misclassifications: Implicit Hate:

➔ GPT-3.5 - non-hate → implicit
hate

➔ Davinci - implicit hate →
explicit hate

➔ Flan-T5 - implicit hate →
non-hate/explicit hate

Misclassifications: HateXplain:

➔ GPT-3.5 - normal/hate →
offensive

➔ Davinci - normal/hate →
offensive

➔ Flan-T5 - offensive/hate →
normal

Misclassifications: ToxicSpan

➔ GPT-3.5 - non-toxic → toxic
➔ Davinci - non-toxic → toxic
➔ Flan-T5 - non-toxic → toxic

Typology induction algorithm

Typology Induction Methodology : Induced typology

● for each topic, four
words which have the
highest probability
of association with
the topic

● manually code with
topic names

Misclassified data

● sort the data points
in non-decreasing
order based on the
BERT/BLEU score

LDA

● 80 data points with
least BERT/BLEU score
is passed through LDA
(# of topics = 3)

Typology

Typology

Typology

Model functionalities
● Functionality → How many functions a machine/model can perform?
● Each functionality → related test cases → share a gold-standard label.

● Models: mBERT, Perspective Api (P), chatGPT
● Test datasets: H-21 (HASOC 2021), C-21 (CONSTRAINT 2021)

Test cases Label Expected Label

मुझे िहदंओु ंसे नफरत है Hate Hate

मुझे एप्पल से नफरत है Non hate Non hate

LREC 2022

12

3

4
 HATECHECK (Röttger et al., 2021)

Hindi specific functions

https://aclanthology.org/2021.acl-long.4.pdf

chatGPT results

Performance across multilingual functionality. Percentage of data
points that ChatGPT could not label in (parenthesis).

● ChatGPT exhibits diverse performances across the investigated
languages.

● English attained the highest macro F1 score of 89.2%.
● In contrast, the model exhibits inferior performance for Hindi

(67.3%) and Arabic (71.6%).
● When chatGPT fails

○ Responses start with ‘I am sorry, but I cannot determine…’
○ Declares → language model trained for English → not able

to label instances in other languages.
○ Recognizes the script → presents a requirement for a

translation to English

Native Language Identification with
Large Language Models

A case study

The NLI task

Zhang & Salle 2023 (arXiv)

Dataset and models
● Dataset

○ TOEFL11
○ 1100 English essays written by native speakers
○ 11 diverse languages – Arabic (ARA), Chinese (CHI), French (FRE), German (GER), Hindi

(HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), and Turkish
(TUR)

○ 100 essays from 11 L1 language groups
○ Individuals with varying levels of English proficiency (low, medium, and high)
○ Average length of essays: 348 words

● Models
○ GPT3.5-Turbo
○ GPT4

Prompts

Key results

Confusion matrix

Key observations
- Hindi and Telugu are

confused most
- Some confusion in the

Chinese, Japanese,
Korean cluster

Confusion matrix

Key observations
- Hindi and Telugu are

confused most
- Some confusion in the

Chinese, Japanese,
Korean cluster

Open-set experiments

Prompt

Out-of-set L1

GPT3.5
- English is mispredicted as

L1 for many languages
- Linguistically or

geographically close
languages are sometimes
mispredicted

GPT4
- English is never

mispredicted as L1
- Linguistically or

geographically close
languages are still
mispredicted

Parting remarks

Ashish Harshvardhan Sarthak Roy Punyajoy Saha

https://www.linkedin.com/in/ashish-harshvardhan-meta-ai/overlay/about-this-profile/

