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Transformers – The building blocks of LLMs 



Teasing apart the transformer architecture



Transformer encoder and decoders



Encoder embeddings



Idea of self attention

The animal didn't cross the street because it was too tired
? ?

❖ When the model is processing the word “it”, 
self-attention allows it to associate “it” with 
“animal”.

❖ As the model processes each word (each position 
in the input sequence)

● self attention allows it to look at other 
positions in the input sequence for clues 

● help lead to a better encoding for this word.



Self-attention calculation 

Create three vectors - query, key and value for each word Attention score - dot product of query & key vectors



Self-attention calculation

Normalize and softmax the attention score

Attention score X softmax, sum up the 
value vectors at each word position



Calculation using matrices



Multi-head attention



Putting it altogether 



Finally self-attention for “it”



Time sequence using positional encoding



Encoder in a nutshell



Decoder in a nutshell



Architecture Types Examples Use cases

Encoder-only 
transformers

BERT (Google)
Sentence classification, named entity 
recognition, extractive question answering

Encoder-decoder 
transformers

T5 (Google) Summarization, translation, question answering

Decoder-only 
transformers

GPT Series 
(OpenAI)

Text generation

Types of transformers



Probing LLMs for hate speech detection: 
strengths and vulnerabilities

A case study



Hate speech in social media

  
Hate speech: Direct and serious attacks on any protected 
category of people based on their race, ethnicity, national origin, 
religion, sex, gender, sexual orientation, disability or disease

Pittsburg shooting Rohingya Genocide Psychological trauma

Effects in real life Effects on psyche



Role of AI in preventing spread of hate speech
● Filtering out hateful or abusive 

contents
● Training language models on 

human annotated data
● Need huge labour and expertise 

for annotation
● Physically and mentally taxing
● Zero shot detection using LLMs 

is a “welcome” alternative 

Contents

LLMs

Non Toxic 
Content

Resource



How effective are LLMs for this task?
● Design prompt injections

○ Craft prompts that manipulate the LLM into revealing sensitive 
information.

○ Bypass filters or restrictions by using specific language patterns or 
tokens.

○ Exploit weaknesses in the LLM’s tokenization or encoding 
mechanisms.

○ Mislead the LLM to perform unintended actions by providing 
misleading context.



Objectives
● Craft prompts to employ LLMs to detect hateful, toxic and abusive 

content in a zero shot setting

● Compare the performance of different proprietary and open-source LLMs 

● Automatically identify data points to which these LLMs are vulnerable 
thus constituting the most natural candidates for prompt injections

EMNLP 2023, Findings



Overall workflow

Prompts

Hate speech input 
sampled from dataset

LLM
Hateful

Non hateful

Misclassified
+

Poorly explained

Typology induction



Datasets
Implicit Hate[1]

[1] ElSherief, Mai, et al. "Latent hatred: A benchmark for understanding implicit hate speech." arXiv preprint arXiv:2109.05322 (2021).

HateXplain[2] ToxicSpans[3]

[2] Mathew, Binny, et al. "Hatexplain: A benchmark dataset for explainable hate speech detection." Proceedings of the AAAI conference on artificial 
intelligence. Vol. 35. No. 17. 2021.

[3] Chhablani, Gunjan, et al. "NLRG at SemEval-2021 task 5: toxic spans detection leveraging BERT-based token classification and span prediction 
techniques." arXiv preprint arXiv:2102.12254 (2021).



Prompting strategies
➔ Vanilla

➔ Definitions

➔ Explanation
◆ At output

◆ At input

➔ Target
◆ At output

◆ At input

➔ Combinations



Prompting strategies
List of labels for each dataset:

Dataset list_of_labels

HateXplain normal, offensive or hate speech

Implicit hate explicit_hate, implicit_hate, or 
not_hate

ToxicSpans toxic or non_toxic



Vanilla Prompts

➔ Classify the given post into one label out of the list of labels
➔ A few example outputs (one class per line)
➔ Prompt template

◆ Classify the post delimited by three backticks as list_of_labels.

Provide the answer as either list_of_labels only.

example_outputs

“‘post“‘



Definitions

➔ We provide the definitions of hate speech (as used in the datasets) as an 
additional context to the LLMs

➔ Prompt template
◆ Consider the following definitions.

list_of_defintions

Based on this classify the post delimited by three backticks as 
list_of_labels

Provide answer in the format : either list_of_labels only.

example_outputs

“‘post“‘



Explanations
➔ Two types:

◆ Explanation as input: Provide explanations to LLMs as inputs to predict the labels
◆ Explanation as output: Ask LLMs to provide an additional text explanation for its 

labelling decision

➔ Prompt template (explanation as output)
◆ Classify the post delimited by 

three backticks as 
list_of_labels and 
explanation_type.
Provide answer in the format : 
either list_of_labels only 
followed by explanation_format
example_outputs
“‘post“‘

➔ Prompt template (explanation as input)
◆ Classify the post delimited by 

three backticks as list_of_labels 
taking into account the 
explanation
for why a post should be 
considered list_of_labels.
Provide answer in the format : 
either list_of_labels only.
example_outputs
“‘post“‘



Targets/Victims
➔ Two types:

◆ Target as input: Provide target/victim information to LLMs as additional inputs 
◆ Target as output: Ask LLMs generate the target information along with the labels

➔ Prompt template (target as input)
◆ Classify the post delimited by 

three backticks as 
list_of_labels with respect to 
the victim community targets .

Provide answer in the format : 
either list_of_labels only.

example_outputs

“‘post“‘

➔ Prompt template (target as output)
◆ Classify the post delimited 

by three backticks as 
list_of_labels and 
target_type

Provide answer in the format 
: either list_of_labels only 
followed by target_format

example_outputs

“‘post“‘



Combinations

➔ Definition + Explanation as input

➔ Definition + Explanation as output

➔ Definition + Target as input

➔ Definition + Target as output



Models used for experiments
1. Gpt-3.5-turbo - improved version of text-davinci-003, optimized for chat

2. Text-davinci-003 - GPT-3 optimized on code completion tasks and 

instruction fine-tuned

3. flan-T5-large - open source instruction fine-tuned variant of T5 model



Metrics used for evaluation

Metrics

ExplainabilityPerformance

Accuracy Precision BERT / BLEU 
ScoreRecall Macro F1



Results
Best model across all prompt types

Best prompt combination
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Results
Best model across all prompt 
types but targets@input

Best model for 
targets@input

Best prompt combination

M
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Results
Best model across all prompt types

Best prompt combination
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Error analysis

Misclassifications: Implicit Hate:

➔ GPT-3.5 - non-hate → implicit 
hate

➔ Davinci - implicit hate → 
explicit hate

➔ Flan-T5 - implicit hate → 
non-hate/explicit hate

Misclassifications: HateXplain:

➔ GPT-3.5 - normal/hate → 
offensive

➔ Davinci - normal/hate → 
offensive 

➔ Flan-T5 - offensive/hate → 
normal

Misclassifications: ToxicSpan

➔ GPT-3.5 - non-toxic → toxic
➔ Davinci - non-toxic → toxic 
➔ Flan-T5 - non-toxic → toxic



Typology induction algorithm

Typology Induction Methodology : Induced typology

● for each topic, four 
words which have the 
highest probability 
of association with 
the topic

● manually code with 
topic names

Misclassified data

● sort the data points 
in non-decreasing 
order based on the 
BERT/BLEU score

LDA

● 80 data points with 
least BERT/BLEU score 
is passed through LDA 
(# of topics = 3)



Typology



Typology



Typology



Model functionalities
● Functionality → How many functions a machine/model can perform?
● Each functionality → related test cases → share a gold-standard label.

● Models: mBERT, Perspective Api (P), chatGPT
● Test datasets: H-21 (HASOC 2021), C-21 (CONSTRAINT 2021)

Test cases Label Expected Label

मुझे िहदंओु ंसे नफरत है Hate Hate

मुझे एप्पल से नफरत है Non hate Non hate

LREC 2022



12

3

4
    HATECHECK (Röttger et al., 2021)

Hindi specific functions

https://aclanthology.org/2021.acl-long.4.pdf


chatGPT results

Performance across multilingual functionality. Percentage of data 
points that ChatGPT could not label in (parenthesis).

● ChatGPT exhibits diverse performances across the investigated 
languages.

● English attained the highest macro F1 score of 89.2%.
● In contrast, the model exhibits inferior performance for Hindi 

(67.3%) and Arabic (71.6%).
● When chatGPT fails

○ Responses start with ‘I am sorry, but I cannot determine…’
○ Declares → language model trained for English → not able 

to label instances in other languages.
○ Recognizes the script → presents a requirement for a 

translation to English 



Native Language Identification with 
Large Language Models

A case study



The NLI task 

Zhang & Salle 2023 (arXiv)



Dataset and models
● Dataset

○ TOEFL11
○ 1100 English essays written by native speakers 
○ 11 diverse languages – Arabic (ARA), Chinese (CHI), French (FRE), German (GER), Hindi 

(HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), and Turkish 
(TUR)

○ 100 essays from 11 L1 language groups 
○ Individuals with varying levels of English proficiency (low, medium, and high)
○ Average length of essays: 348 words

● Models
○ GPT3.5-Turbo
○ GPT4 



Prompts



Key results



Confusion matrix

Key observations
- Hindi and Telugu are 

confused most
- Some confusion in the 

Chinese, Japanese, 
Korean cluster



Confusion matrix

Key observations
- Hindi and Telugu are 

confused most
- Some confusion in the 

Chinese, Japanese, 
Korean cluster



Open-set experiments

Prompt



Out-of-set L1

GPT3.5
- English is mispredicted as 

L1 for many languages
- Linguistically or 

geographically close 
languages are sometimes 
mispredicted

GPT4
- English is never 

mispredicted as L1
- Linguistically or 

geographically close 
languages are still 
mispredicted



Parting remarks
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