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Timing is a critical
element of many
behaviours

Eadweard Muybridge
Animal Locomotion, Plate 626




Birdsong is an example of behaviour that relies on precise timing
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Birdsong is an example of behaviour that relies on precise timing
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How are temporally precise sequences generated neurally?

Tutorial 1: A neural model of birdsong sequence production

What is the syntax underlying these sequences?

Tutorial 2: Hidden Markov Models for sequence modelling

How do models for the two inform each other?

Tutorial 3: Evaluating probabilistic models of birdsong sequence
production



BIRDS AND FROGS

SELECTED PAPERS, 1990-2014

Freeman J. Dyson

The perfect balance of both

https://images.app.goo.gl/PFXWEw8GUR89ce4m7 shutterstock.com - 637330729

https://images.app.goo.gl/5P8SyaCE18SvZKJ6A



Tutorial 1

A neural model of birdsong sequence production



Songbirds have specialized neural circuitry for the learning and production of song
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Nottebohm, Stokes, & Leonard, 1976



Experimental observation - Sparse, precisely timed spiking in HVC during singing
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Experimental observation - Sparse, precisely timed spiking in HVC during singing
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Experimental observation - Sparse, precisely timed spiking in HVC during singing
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Experimental observation - Different neural firing patterns in HVC and RA during singing
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Experimental observation - Different neural firing patterns in HVC and RA during singing
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Experimental observation - Different neural firing patterns in HVC and RA during singing
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What kind of neural architecture can support the observed behaviour and

neural recordings?

Individual syllables and motifs
should exhibit temporal stability—
once activated, they persist over a
specific time window

Previously learned syllables and
sequences should be faithfully
reproduced retaining their acoustic
and temporal structure

A bird should be capable of storing
and reproducing a large repertoire
of distinct syllables and their
combinations

Birds should be able to acquire new
syllables or novel sequences of
syllables through auditory experience
and practice.

Motif no.
1 2 3

1s

Propagate precise activity

Ensure that neurons fire
once and only once during
a motif

Do so reliably, sequentially,
and robustly



Synfire Chains

A synfire chain is a feed-forward network of neurons with many layers (or pools) which are

sequentially ordered to form a chain

4
4
4

@

Neuron

Pool

(Abeles, 1982)

e All neurons in a layer make excitatory connections to all neurons in the next layer.
e Activating the neurons in the first layer sets off a chain reaction where each layer

activates the subsequent layer.

e This leads to a signal of neural activity propagating down the chain



Leaky Integrate-and-Fire (LIF) Neuron
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Leaky Integrate-and-Fire (LIF) Neuron

Resting membrane potential Viest

dV
TE = V) — V(t) —I—Rf(t)

Spiking condition

V(t) > Viresh,  aspike is emitted, and the voltage is resetto Viegt



Leaky Integrate-and-Fire (LIF) Neuron

Resting membrane potential Viest

d
Td—‘; =V - V(t) + RI (constant synaptic input)

Spiking condition

V(t) > Vipresh a spike is emitted, and the voltage is reset to Viest



Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current
7 = 10ms, Viest = —70mV, Vijresh, = —DdmV, Vi = Viegt, I = 2(arbitrary units), R = 1(normalized units)
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Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current
7 = 10ms, Viest = —70mV, Vijresh = —20mV, Vy = Viest, I = 20(arbitrary units), R = 1(normalized units)
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Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current
7 = 10ms, Viest = —=70mV, Vi o, = —55mV, Vy = Viest, I = 20(arbitrary units), R = 1(normalized units)

... and a refractory period of 3 ms
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Coupling 2 LIF Neurons

dV
TE =Vy— V(t) —I-Rf(t)

I(t) — wé(t - 75spil{e)



Coupling 2 LIF Neurons ° - :@
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Synaptic Delays Q - =@
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Input from multiple presynaptic neurons with synaptic delays
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Input from multiple presynaptic neurons with synaptic delays
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Jitter also matters

Jitter refers to small variations in spike timing between neurons that are part of the
same pool.

Exercise: Say we add jitter to the second input. A spikes at t=0, and B spikes at t=0t.
For what &t does the second input arrive too late to push the membrane potential of C
above the threshold?



Input from a single neuron to multiple postsynaptic neurons

w

Synaptic weight needed for spiking
w =16 mV

w

A spikes once. w=16 mV. Do B and C both spike (assuming all other conditions are ideal for
spiking)?



Synfire Chain with Leaky Integrate-and-Fire (LIF) Neurons
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Synfire Chain with Leaky Integrate-and-Fire (LIF) Neurons
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Synfire Chain
and Spike Activity
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A spike volley propagates if inputs are strong, synchronous, and well-timed.

Jitter, insufficient weight, delay mismatches etc can lead to propagation failure in a synfire
chain.

Exercise: Simulate a synfire chain with different neuron models and check how crucial
timing, decay, and synchrony are.



Synfire chains in HVC with every volley having one destination could
encode the song syntax for deterministic song

Deterministic song



Song sequences or motor programs where one state can lead to multiple possible
outcomes require branching and probabilistic transitions

Deterministic song Stochastic song

(Jin, 2009)



Song sequences or motor programs where one state can lead to multiple possible
outcomes require branching and probabilistic transitions

Deterministic song Stochastic song

(Jin, 2009)



Brain’s process Q Syntax Model P

We want: P = Q



How do we create probabilistic models of the syntax from behaviour (song)?

(Image: Richard Wilkinson as credited in New Scientist, 2014)



What is the syntax underlying these sequences?

Tutorial 2: Hidden Markov Models for sequence modelling

-
o

a bc d e a f ghij a bc d e a k

Frequency (kHz)
NImeen
T
e

o



Tutonal 2

Hidden Markov Models for Sequence Modelling



How do we create probabilistic models of the syntax from behaviour (song)?

AB
DAB
AC
DAB
DAB
AB
AC
AC
AB
AC
AC
DAB
AB
DAB




How do we create probabilistic models of the syntax from behaviour (song)?

AB
DAB
AC
DAB
DAB
AB
AC
AC
AB
AC
AC
DAB

AB First order Markov model
DAB




How do we create probabilistic models of the syntax from behaviour (song)?

AB
DAB
AC
DAB
DAB
AB
AC
AC
AB
AC
AC
DAB

AB First order Markov model
DAB




How do we create probabilistic models of the syntax from behaviour (song)?

AB
DAB
AC
DAB
DAB
AB
AC
AC
AB
AC
AC
DAB

AB First order Markov model
DAB

AB
DAB
AC
DAC




How do we create probabilistic models of the syntax from behaviour (song)?

AB
DAB
AC
DAB
DAB
AB
AC
AC
AB
AC
AC
DAB

AB First order Markov model A model with hidden states
DAB
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DAB
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DAC

DAB




A non-observable process results in an observable sequence of symbols
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A non-observable process results in an observable sequence of symbols
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A non-observable process results in an observable sequence of symbols
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Hidden Markov Model

baeldung.com/cs/hidden-markov-model



Determiner Preposition
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Parameters of HMM

1. N, the number of states in the model. The set of all possible statesis S ={S;, S,, ..., Sy}, and the state at time t as g,.

2. M, the number of distinct observation symbols per state. The set of all possible output symbols is V = {v,, v, ...,
vV}, and the output symbol at time t as O,. The sequence of observed symbolsis O = O, O, ... O;.

3. The state transition probability distribution A = {a;}, where a; =P[q,,; =S;[ ¢, =S], 1 =~ U . .
1
4. The observation symbol probability distribution in state j, B = {b;(k)}, where . . ay
bj(k) =P[O; =V, [ g, =S, ISj<N, 1 <k <M. A=
N
5. The initial state distributions n = {r;}, where m; =P[q, =S;], 1 <i<N.
1 .. k M
1
Model A= (A, B, m) B= | = bk



Three Problems of HMM

Problem 1: Given the observation sequence O = O, O, ... O; and a model 1 = (A, B, n),
how do we efficiently compute P(O|A), the probability of the observation sequence, given
the model?

Problem 2: Given the observation sequence O = O; O, ... O; and the model 1= (A, B, n)
how do we choose a corresponding state sequence Q = q,0....q; Which is optimal in

some meaningful sense (i.e., best “explains” the observations)?

Problem 3: How do we adjust the model parameters A = (A, B, ©) to maximize P(OJ|1)?



Three Problems of HMM

Problem 1: Given the observation sequence O = O, O, ... O; and a model 1 = (A, B, n),
how do we efficiently compute P(O|A), the probability of the observation sequence, given
the model?

Problem 3: How do we adjust the model parameters A = (A, B, ©) to maximize P(OJ|1)?



Forward-Backward Algorithm

Forward variable a(i)
Probability of seeing the first t observations and ending up in state S,

aH-l [ E O{t azg

bi(Ops1), 1<t<T—11<j<N

Backward variable B.(i)
Probability of seeing the rest of the observations (from time t+1 to the end), given that you

are in state S; at time t

N
i) = Z@ijbj(otﬂ)ﬁtﬂ(j)a 1<it<T-11<j<N



Trellis for computation of the forward variables
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Trellis for computation of the backward variables
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The probability of being in state S; at time t, given the observation sequence O,
and the model 1

(1) B4 (17)

The probability of being in state S; at time t and state S; at time t+1, given
the observation sequence O, and the model 1

(4)aijbj(Opy1) Bev1(J)

.o @
ét(zaj) — P(Qt — S’iaQt—Fl — Sj‘oa )\) — : P(O‘)\)



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

E-Step (E for Expectation)
Estimate how likely it is that the system was in each hidden state at each time, and how
likely each state transition was, given the observed sequence and current model parameters

can be interpreted as the expected number of times S; is
Zt 1 ’)/t( ) visited or the expected number of transitions made from
state S;

can be interpreted as the expected number of transitions

Z ét (7' J ) from state S; to state S;



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

M-Step (M for Maximization)
Update the model parameters to maximize the expected complete-sequence log-likelihood
based on the quantities computed in the E-step

= 71(4)
S S &, )
K ? 11 ’Yt( )

T o
Zt:'l,, O=v}. It (j)

S ()

bj(k) =



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

After the parameter update

A= (A, B,7)
Importantly, each iteration guarantees

PO N >PO]|N (proof by Baum and

collaborators in the 1970s)
Typically we keep track of

log P(O | \)

The E-M process is repeated again and again until the change in parameters is smaller than
some pre-defined threshold
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A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition

LAWRENCE R. RABINER, FELLOW, IEEE

Although initially introduced and studied in the late 1960s and
early 1970s, statistical methods of Markov source or hidden Markov
modeling have become increasingly popular in the last several
years. There are two strong reasons why this has occurred. First the
models are very rich in mathematical structure and hence can form
the theoretical basis for use in a wide range of applications. Sec-
ond the models, when applied properly, work very well in practice
for several important applications. In this paper we attempt to care-
fully and methodically review the theoretical aspects of this type
of statistical modeling and show how they have been applied to
selected problems in machine recognition of speech.

In this case, with a good signal model, we can simulate the
source and learn as much as possible via simulations.
Finally, the most important reason why signal models are
important is that they often work extremely well in practice,
and enable us to realize important practical systems—e.g.,
prediction systems, recognition systems, identification sys-
tems, etc., in a very efficient manner.

These are several possible choices for what type of signal
model is used for characterizing the properties of a given
signal. Broadly one can dichotomize the types of signal

(1989)
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How do models for the two inform each other?

Tutorial 3: Evaluating probabilistic models of sequence production



Tutorial 3

Evaluating Probabilistic Models of Sequence Production



Bridging Levels

Pac @
pAB (B)

Neural models are mechanistic Probabilistic models are phenomenological

Process explanation Pattern description

Together they allow us to bridge implementation and behaviour



Networks that keep time
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Inference of Probabilistic Models: HMM and the Baum-Welch Algorithm

o/
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LT
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N

Goal: Estimate parameters 1 = (A, B, n) of a Hidden Markov Model

from observed data.

Initialize model parameters 1 = (A, B, n)

Expectation Step (E-step)

For each time step t, we calculate

a,(i): forward probability = P(O,,...,0, q; = 1| L)
B,(i): backward probability = P(O,...,01 | 9, =1, 1)
v.(i): state occupancy = P(g,= 1| O, X)

&(i,j): state transition = P(q, = 1,0, =j | O, V)

Maximization Step (M-step)
Update parameters

ASICE)
Sty

(k)

i = 71(2) aijj =

Iterate E-step and M-step until log-likelihood converges

T )
N thl, Oy=vy, ’Yf(l?)

S ()

Guarantees non-decreasing likelihood
Converges to a local optimum

Requires scaling for numerical stability
Form of the HMM is assumed to be known



Hidden Markov Model (HMM) vs Partially Observable Markov Model (POMM)
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HMM: Each state can emit all symbols POMM: Each state can emit only one symbol
Multiple states may correspond to the same symbol



Hidden Markov Model (HMM) vs Partially Observable Markov Model (POMM)
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Grid-search to find the optimal POMM

f11 t12 13 114
o1 2 13 124
31 32 133 134
| T4 4D 143 tag |

total # of states

Discrete lattice of dimension # of syllables

optimize using
Baum-Welch algorithm

log-likelihood

optimal T

space of transition matrices

Markov model
(1,1,1)

log-likelihood

space of transition matrices

72



Grid-search to find the optimal POMM
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Testing models by comparing sequence statistics: Repeat distributions
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0 5 10 0 5 0 5 10 0 5 0 5 0 2 4
o}
A, d=0.068 B, d=0.014 C, d=0.045 D, d=0.026 E, d=0.0067 G, d=0.00065
1 1 1 1 1 1
a POMM with
o -
205 05 0.5 /\ 0.5 0.5 05 Adaptatlon
0 0 0 0 0 0
0 5 10 0 5 0 5 10 0 5 0 5 0 2 4
Rep No. Rep No. Rep No. Rep No. Rep No.

Rep No.



Testing models by comparing sequence statistics: N-gram distributions

a , d=0.012 o d=0.26 o d=04 o d=0.58 o d=0.79 o d=093
10 10
Em_z 10°
Markov Model
10 107
0 20 0 50
b
o d=0.043 o d=0.28
10 10
g .52 e Markov Model
< with Adaptation
-4 -4
10 10
0 20 0 50
C
o d=0.016 o d=0.019
10 10
o , POMM with
[e] -
g ' 10 Adaptation
-4 -4
10 10
0 20 0 50 0 100 0

2-gram index

3-gram index

200 0

200 0
5-gram index

4-gram index 6—-gram index

7—gram index



Testing models by comparing sequence statistics: Step distributions

a A, d=0.34 B, d=0.39 C, d=0.28 D, d=0.3 E, d=0.005 F, d=0.61 G, d=0.38 e, d=0.11
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
o
o .
o 04 0.4 0.4 ;'\ 0.4 04 04 0.4 04 Markov Model
AN TV T «
o«/ o»l oL \ 0 oL VASS o= | U
0O 10 200 10 200 10 20 0 10 200 10 20 0 10 200 10 20 0 10 20
b A, d=0.21 B, d=0.2 C,d=0.064  D,d=0.094 E,d=0.0046  F,d=0.15 G,d=026 e, d=0.084
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Markov Model
e}
g ) )
T 04 0.4 0.4 0.4 0.4 0.4 0.4 0.4 with Adaptation
0 0 0 o\x 0 oA'\ 0 0
0 10 200 10 200 10 200 10 200 10 20 0 10 200 10 20 0 10 20
A, d=0053 B, d=0.037 C,d=0053 D, d=0.042 E, d=0.0045 F,d=0.069 G, d=019 e, d=0.015
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 POMM with
8 Adaptation
£ 04 0.4 0.4 0.4 0.4 0.4 0.4 0.4
OA 0 0 o\'\ 0 OA’\ 0 0
0 10 200 10 200 10 200 10 20 0 10 20 0 10 20 0 10 20
Step Step Step

Step Step Step Step Step



Incompatibility of Markov Models

Markov
Example 1 Model
Observed seq P generated seqs
Sequences
ACD | 05
BCE | 0.5 seq P
ACD | 0.25
ACE | 0.25
BCD | 0.25

BCE | 0.25

Issue of over-generalization: The model
predicts unobserved sequences

Sequence completeness P, — the total probability of the model generating all unique sequences in the observed set

P.= Z P where M is the number of unique sequences



Incompatibility of Markov Models

Example 2

generated seqs
Observed
Sequences

Issue of probability mismatch: The model
predicts wrong probabilities

Total variation distance d — a measure of the difference in probabilities (Gibbs and Su, 2002)

observed set and P; , is the normalized probability of the it"

M
1 where P, is the probability of the it"sequence in gthe
d:§§ |Pi,0_PimL| ¥
1=1 sequence computed with the model



Incompatibility of Markov Models

Sequence completeness P.— the total probability of the model generating all unique sequences in the observed set

M
P, = Z P, where M is the number of unique sequences
=1

Total variation distance d— a measure of the difference in probabilities (Gibbs and Su, 2002)

set and P; , is the normalized probability of the i™" sequence

1 M where P; ; is the probability of the i"sequence in the observed
d=§Z | Pi,o_P?';m|
i=1 computed with the model

Combined

Pﬁ =(1—0B)P-+ (1 —d)  wherepisavalue between 0 and 1



Incompatibility of Markov Models

Markov POMM
Model
Example 1 generated seqs generated seqs
Observed seq P
Sequences
ACD seq P
BCE ACD | 0.25
ACE | 0.25
BCD | 0.25
BCE | 0.25
Pc=0.5, d=0, Pg=0.6 Pc=1,d=0, Pg=1
Example 2 generated seqs
generated seqs
Observed seq P P
Sequences D | o s€q
pos o.T ACD | 04
BCD 0'1 ACE | 0.1
BCE 0'4 BCD | 0.1
' BCE | 04

Pc=1, d=0, Pg=1

Pc=1, d=0.3, P=0.94



Inferring POMMs

To search for a POMM compatible with the observed set, begin by constructing higher-order (order m) Markov models.

Observed Sequence aACD®

l

Collect unique subsequences of length m, as well as subsequences up to length m that start from a

|

o, aA, AC, CD, Do

l

Each unique subsequence is assigned to a state. The subsequence a is assigned to the start state,
subsequences ending with @ are assigned to the end state. The remaining unigque subsequences are assigned
to distinct states, with the final syllable of each subsequence serving as the symbol for that state.

l

Transition probabilities between these states are calculated by counting the number of transitions. (Lu et al, 2025)
uetal,



Inferring POMMs

The inferred POMM is equivalent to the mt" order Markov model.

The POMM is simplified by merging and deleting states associated with the same syllable. If two states are associated
with the same syllable, and the probability distributions of subsequent sequences of length 15 or smaller are similar
(cosine-similarity > 0.9), the two states are merged.

This is done until no further mergers are possible. Finally, state transitions with probabilities smaller than 0.01 are
eliminated, and all states that are reached less than 0.005 times in all observed sequences are also eliminated.

The POMM is optimized using Baum-Welch and tested.

(Jin & Kozhevnikov, 2011)



Statistically Testing Inferred Models

Ground Truth Model Inferred Model

= p is the probability that the observed Py
05 exceeds the P, values of the generated
sets
N=10 N=30 N=20 If p < 0.05, we infer that the observed Py is
p=03 p=0.01 p=0.0 unlikely to have been drawn from this
distribution, then leading to the rejection of
the inferred model for the observed set.

Conversely, if p>0.05, the inferred model is
not statistically rejected and is therefore
accepted as a model for the observed set.

Spg

(Lu et al, 2025)



Statistically Testing Inferred Models

Inferred POMMS

N=10 N=30
(C)—D
A —» E
4 5 6 7 8 4 5 6 7 8
Number of States Number of States

N=90
A

0:. :

A—(C—1D

4

5 6 7
Number of States

8

(Lu et al, 2025)



Using models to infer mechanisms

Normal Deafened
/ #O,) g
bfa7 / P, AT 5 CF
& @D
(b

P, PP 7 d -
p=01, N=112,

Pp=0.79

p=04,
A
bfa14 '

N =285 Pp=0.79
P
/;ﬁ)f'; »(f;'
N ® I\\‘
\ \
\\1 . ‘\\
w

) . d
- ,e’*_jf
\\g !
/
e /
.l,//

@ . £

& W

p=0.1, N=149, Pp=0.90
bfal6 /’\5 -
/

p=0.5,
a :
=T
Nl
@ P

N=179, Pp=0.53
N
~
f ve——=a -
&

B

. g _,,_h . \
#/' SO — A d .
./' ’
p=0.06, N=58, Pp=0.69

p=0.7, N=394, Pp=0.96

(Lu et al, 2025)



Using models to infer mechanisms

number of extra states

*
[ ]
046bk78
bfa7
bfal9
\\ bfa14
normal deafened

—
o

o
o

o
~

mean normalized transition entropy o
o o
N (o)}

o
o

normal

deafened

(Lu et al, 2025)



Using models to infer mechanisms

number of extra states

*
[ ]
046bk78
bfa7
bfal9
\\ bfa14
normal deafened

—
o

o
o

o
~

mean normalized transition entropy o
o o
N (o)}

o
o

normal

deafened

(Lu et al, 2025)



Using models to infer mechanisms

Auditory network

guditory

Auditory network

(Lu et al, 2025)
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