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Timing is a critical 
element of many 
behaviours

Eadweard Muybridge
Animal Locomotion, Plate 626



Birdsong is an example of behaviour that relies on precise timing

Zebra finch

Copy of ZFinchMedia1.wav
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Bengalese finch

Copy of BFinchMedia2.wav

Birdsong is an example of behaviour that relies on precise timing

http://drive.google.com/file/d/1IHIZeKVboqOlh6FP0VF4E6aPECe6UqEc/view


How are temporally precise sequences generated neurally?

What is the syntax underlying these sequences?

How do models for the two inform each other?

Tutorial 1: A neural model of birdsong sequence production

Tutorial 2: Hidden Markov Models for sequence modelling

Tutorial 3: Evaluating probabilistic models of birdsong sequence 
production



https://images.app.goo.gl/PFXWEw8GUR89ce4m7 https://images.app.goo.gl/5P8SyaCE18SvZKJ6A

Big picture Familiarity with details The perfect balance of both



Tutorial 1

A neural model of birdsong sequence production
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Songbirds have specialized neural circuitry for the learning and production of song

Nottebohm, Stokes, & Leonard, 1976



Hahnloser, Kozhevnikov, Fee (2002)

Experimental observation – Sparse, precisely timed spiking in HVC during singing

Zebra finch



Visualizing spike 
timing across 
multiple neurons 
over time

This is a raster plot



Hahnloser, Kozhevnikov, Fee (2002)

Experimental observation – Sparse, precisely timed spiking in HVC during singing

Zebra finch
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Hahnloser, Kozhevnikov, Fee (2002)

Experimental observation – Sparse, precisely timed spiking in HVC during singing

Zebra finch



Hahnloser, Kozhevnikov, Fee (2002), Leonardo & Fee (2005)

Experimental observation – Different neural firing patterns in HVC and RA during singing

Zebra finch
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Hahnloser, Kozhevnikov, Fee (2002), Leonardo & Fee (2005)

Experimental observation – Different neural firing patterns in HVC and RA during singing

Zebra finch

Leonardo & Fee (2005)

R
A

 n
eu

ro
n

s



16

Hahnloser, Kozhevnikov, Fee (2002), Leonardo & Fee (2005)

Experimental observation – Different neural firing patterns in HVC and RA during singing

Zebra finch

Leonardo & Fee (2005)
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Individual syllables and motifs 

should exhibit temporal stability—

once activated, they persist over a 

specific time window

Previously learned syllables and 

sequences should be faithfully 

reproduced retaining their acoustic 

and temporal structure

A bird should be capable of storing 

and reproducing a large repertoire 

of distinct syllables and their 

combinations

Birds should be able to acquire new 

syllables or novel sequences of 

syllables through auditory experience 

and practice. 

What kind of neural architecture can support the observed behaviour and 
neural recordings?

Propagate precise activity

Ensure that neurons fire 

once and only once during 

a motif

Do so reliably, sequentially, 

and robustly



Synfire Chains

A synfire chain is a feed-forward network of neurons with many layers (or pools) which are 

sequentially ordered to form a chain

● All neurons in a layer make excitatory connections to all neurons in the next layer.

● Activating the neurons in the first layer sets off a chain reaction where each layer 

activates the subsequent layer. 

● This leads to a signal of neural activity propagating down the chain 

Neuron 
Pool

Neuron 
Pool

Neuron 
Pool

(Abeles, 1982)



Resting membrane potential

Leaky Integrate-and-Fire (LIF) Neuron



Leaky Integrate-and-Fire (LIF) Neuron

Spiking condition

a spike is emitted, and the voltage is reset to

Resting membrane potential



Leaky Integrate-and-Fire (LIF) Neuron

Spiking condition

a spike is emitted, and the voltage is reset to

Resting membrane potential

(constant synaptic input)



Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current



Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current



Leaky Integrate-and-Fire (LIF) Neuron with Constant Input Current

… and a refractory period of 3 ms

Refractory period is the time after a spike during which a neuron cannot spike again 



Coupling 2 LIF Neurons

A B



Coupling 2 LIF Neurons A B



A BSynaptic Delays



Input from multiple presynaptic neurons with synaptic delays

A

DB

C



Input from multiple presynaptic neurons with synaptic delays



Jitter also matters

Jitter refers to small variations in spike timing between neurons that are part of the 

same pool.  

Exercise: Say we add jitter to the second input. A spikes at t=0, and B spikes at t=δt. 

For what δt does the second input arrive too late to push the membrane potential of C 

above the threshold?

A

C

B



A spikes once. w=16 mV. Do B and C both spike (assuming all other conditions are ideal for 

spiking)?

Synaptic weight needed for spiking 

w = 16 mV

Input from a single neuron to multiple postsynaptic neurons

A

C

B



Synfire Chain with Leaky Integrate-and-Fire (LIF) Neurons

. . .



Synfire Chain with Leaky Integrate-and-Fire (LIF) Neurons
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(Jun & Jin, 2007)

Synfire Chain 
and Spike Activity



● A spike volley propagates if inputs are strong, synchronous, and well-timed.

● Jitter, insufficient weight, delay mismatches etc can lead to propagation failure in a synfire 

chain.

● Exercise: Simulate a synfire chain with different neuron models and check how crucial 

timing, decay, and synchrony are.



Zebra finch

Deterministic song

Synfire chains in HVC with every volley having one destination could 
encode the song syntax for deterministic song
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(Jin, 2009)

Zebra finch
Bengalese finch

A             B            A           C      C

Deterministic song Stochastic song

Song sequences or motor programs where one state can lead to multiple possible 
outcomes require branching and probabilistic transitions
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Zebra finch
Bengalese finch

Deterministic song Stochastic song

p1

p2

A             B            A           C      
C

(Jin, 2009)

Song sequences or motor programs where one state can lead to multiple possible 
outcomes require branching and probabilistic transitions



Brain’s process Q

We want:  P ≅ Q

Syntax Model P



How do we create probabilistic models of the syntax from behaviour (song)?

p1

p2

(Image: Richard Wilkinson as credited in New Scientist, 2014)

?



How are temporally precise sequences generated neurally?

What is the syntax underlying these sequences?

How do models for the two inform each other?

Tutorial 1: A neural model of birdsong sequence production

Tutorial 2: Hidden Markov Models for sequence modelling

Tutorial 3: Evaluating probabilistic models of sequence production

Stochastic song

p1

p2



Tutorial 2

Hidden Markov Models for Sequence Modelling



A B
D A B
A C
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D A B
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How do we create probabilistic models of the syntax from behaviour (song)?



A B
D A B
A C
D A B
D A B
A B
A C
A C
A B
A C
A C
D A B
A B
D A B

First order Markov model

How do we create probabilistic models of the syntax from behaviour (song)?
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A B
D A B
A C

First order Markov model

How do we create probabilistic models of the syntax from behaviour (song)?
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First order Markov model

How do we create probabilistic models of the syntax from behaviour (song)?



A B
D A B
A C
D A B
D A B
A B
A C
A C
A B
A C
A C
D A B
A B
D A B

First order Markov model

A B
D A B
A C
D A C

A B
D A B
A C

A model with hidden states

How do we create probabilistic models of the syntax from behaviour (song)?



A non-observable process results in an observable sequence of symbols



A non-observable process results in an observable sequence of symbols
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A non-observable process results in an observable sequence of symbols



Hidden Markov Model

baeldung.com/cs/hidden-markov-model



It was a bright cold day in April and the clocks were striking thirteen

Pronoun

Verb

Determiner

Adjective

Adjective

Noun

Preposition

Noun

Verb

…

…



Parameters of HMM

1. N, the number of states in the model. The set of all possible states is  S = {S1, S2, ..., SN}, and the state at time t as qt.

2. M, the number of distinct observation symbols per state. The set of all possible output symbols is V = {v1, v2, ..., 

vM}, and the output symbol at time t as Ot. The sequence of observed symbols is O = O1 O2 ... OT.

3. The state transition probability distribution A = {aij}, where  aij = P[qt+1 = Sj | qt = Si], 1 ≤ i, j ≤ N.

4. The observation symbol probability distribution in state j, B = {bj(k)}, where 

bj(k) = P[Ot = vk | qt = Sj], 1 ≤ j ≤ N, 1 ≤ k ≤ M.

5. The initial state distributions π = {πi}, where  πi = P[q1 = Si], 1 ≤ i ≤ N.

Model 𝜆 = (A, B, π) B = bj(k)

A =



Three Problems of HMM

Problem 1: Given the observation sequence O = O1 O2 ... OT and a model 𝜆 = (A, B, π), 

how do we efficiently compute P(O|𝜆), the probability of the observation sequence, given 

the model?

Problem 2: Given the observation sequence O = O1 O2 ... OT and the model 𝜆 = (A, B, π) 

how do we choose a corresponding state sequence Q = q1q2…qT which is optimal in 

some meaningful sense (i.e., best “explains” the observations)?

Problem 3: How do we adjust the model parameters 𝜆 = (A, B, π) to maximize  P(O|𝜆)?



Three Problems of HMM

Problem 1: Given the observation sequence O = O1 O2 ... OT and a model 𝜆 = (A, B, π), 

how do we efficiently compute P(O|𝜆), the probability of the observation sequence, given 

the model?

Problem 2: Given the observation sequence O = O1 O2 ... OT and the model 𝜆 = (A, B, π) 

how do we choose a corresponding state sequence Q = q1q2…qT which is optimal in 

some meaningful sense (i.e., best “explains” the observations)?

Problem 3: How do we adjust the model parameters 𝜆 = (A, B, π) to maximize  P(O|𝜆)?



Forward-Backward Algorithm

Forward variable 𝛼t(i)

Probability of seeing the first t observations and ending up in state Si

Backward variable 𝛽t(i)

Probability of seeing the rest of the observations (from time t+1 to the end), given that you 

are in state Si at time t



t=1 t=2 t=3 t=4 t=5 t=6 t=7

S1

S2

S3

S4

O1 O2 O3 O4 O5 O6 O7

𝛼3(1)

𝛼3(2)

𝛼3(3)

𝛼3(4)

𝛼4(2)

a12

a22

a32

a42

b2(O4)

Trellis for computation of the forward variables



t=1 t=2 t=3 t=4 t=5 t=6 t=7

S1

S2

S3

S4

O1 O2 O3 O4 O5 O6 O7

𝛽5(1)

𝛽4(2) 𝛽5(2)

𝛽5(3)

𝛽5(4)

a21b1(O5)

a22b2(O5)

a23b3(O5)

a24b4(O5)

Trellis for computation of the backward variables



The probability of being in state Si at time t, given the observation sequence O, 

and the model 𝜆

The probability of being in state Si at time t and state Sj at time t+1, given 

the observation sequence O, and the model 𝜆



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

E-Step (E for Expectation)

Estimate how likely it is that the system was in each hidden state at each time, and how 

likely each state transition was, given the observed sequence and current model parameters

can be interpreted as the expected number of times Si is 

visited or the expected number of transitions made from 

state Si

can be interpreted as the expected number of transitions 

from state Si to state Sj



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

M-Step (M for Maximization)

Update the model parameters to maximize the expected complete-sequence log-likelihood 

based on the quantities computed in the E-step



Baum-Welch Algorithm (An Expectation-Maximization Algorithm)

After the parameter update

The E-M process is repeated again and again until the change in parameters is smaller than 

some pre-defined threshold

Importantly, each iteration guarantees

(proof by Baum and 

collaborators in the 1970s)

Typically we keep track of 



B =

A =

A

A

A

A



(1989)



How are temporally precise sequences generated neurally?

What is the syntax underlying these sequences?

How do models for the two inform each other?

Tutorial 1: A neural model of birdsong sequence production

Tutorial 2: Hidden Markov Models for sequence modelling

Tutorial 3: Evaluating probabilistic models of sequence production

Stochastic song

p1

p2



Tutorial 3

Evaluating Probabilistic Models of Sequence Production



Bridging Levels

Neural models are mechanistic

pAC

pAB

Probabilistic models are phenomenological

Process explanation Pattern description

Together they allow us to bridge implementation and behaviour



Networks that keep time

Zebra finch

(Egger & Tupikov et al, 2020)

Bengalese finch

A             B           A           C    C

Stochastic song

Synfire chain

Alternative



Inference of Probabilistic Models: HMM and the Baum-Welch Algorithm

Goal: Estimate parameters 𝜆 = (A, B, π) of a Hidden Markov Model 

from observed data.

B = bj(k)

A =

Initialize model parameters 𝜆 = (A, B, π)

Expectation Step (E-step)

For each time step t, we calculate

αt(i): forward probability = P(O1,...,Ot, qt = i | λ)

βt(i): backward probability = P(Ot+1,...,OT | qt = i, λ)

γt(i): state occupancy = P(qt = i | O, λ)

ξt(i,j): state transition = P(qt = i, qt+1 = j | O, λ)

Maximization Step (M-step)

Update parameters

Iterate E-step and M-step until log-likelihood converges

Guarantees non-decreasing likelihood 

Converges to a local optimum 

Requires scaling for numerical stability

Form of the HMM is assumed to be known



Hidden Markov Model (HMM) vs Partially Observable Markov Model (POMM)

HMM: Each state can emit all symbols POMM: Each state can emit only one symbol

Multiple states may correspond to the same symbol



Hidden Markov Model (HMM) vs Partially Observable Markov Model (POMM)
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Markov model
(1,1,1)

Grid-search to find the optimal POMM
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Grid-search to find the optimal POMM



Testing models by comparing sequence statistics: Repeat distributions 

Markov Model

Markov Model 

with Adaptation

POMM with 

Adaptation



Testing models by comparing sequence statistics: N-gram distributions 

Markov Model

Markov Model 

with Adaptation

POMM with 

Adaptation



Testing models by comparing sequence statistics: Step distributions 

Markov Model

Markov Model 

with Adaptation

POMM with 

Adaptation



Incompatibility of Markov Models

Issue of over-generalization: The model 

predicts unobserved sequences

Sequence completeness Pc – the total probability of the model generating all unique sequences in the observed set

where M is the number of unique sequences



Incompatibility of Markov Models

Issue of probability mismatch: The model 

predicts wrong probabilities

Total variation distance d – a measure of the difference in probabilities (Gibbs and Su, 2002)

where Pi,o is the probability of the ith sequence in gthe

observed set and Pi,m is the normalized probability of the ith

sequence computed with the model



Incompatibility of Markov Models

Total variation distance d – a measure of the difference in probabilities (Gibbs and Su, 2002)

where Pi,o is the probability of the ith sequence in the observed 

set and Pi,m is the normalized probability of the ith sequence 

computed with the model

Sequence completeness Pc – the total probability of the model generating all unique sequences in the observed set

where M is the number of unique sequences

where β is a value between 0 and 1

Combined



Incompatibility of Markov Models



Inferring POMMs

(Lu et al, 2025)

Observed Sequence αACDω

To search for a POMM compatible with the observed set, begin by constructing higher-order (order m) Markov models. 

Collect unique subsequences of length m, as well as subsequences up to length m that start from α

α, αA, AC, CD, Dω

Each unique subsequence is assigned to a state. The subsequence α is assigned to the start state, 

subsequences ending with ω are assigned to the end state. The remaining unique subsequences are assigned 

to distinct states, with the final syllable of each subsequence serving as the symbol for that state.

Transition probabilities between these states are calculated by counting the number of transitions.



Inferring POMMs

(Jin & Kozhevnikov, 2011)

The inferred POMM is equivalent to the mth order Markov model. 

The POMM is simplified by merging and deleting states associated with the same syllable. If two states are associated 

with the same syllable, and the probability distributions of subsequent sequences of length 15 or smaller are similar 

(cosine-similarity > 0.9), the two states are merged.

This is done until no further mergers are possible. Finally, state transitions with probabilities smaller than 0.01 are 

eliminated, and all states that are reached less than 0.005 times in all observed sequences are also eliminated.

The POMM is optimized using Baum-Welch and tested.



Statistically Testing Inferred Models

(Lu et al, 2025)

Ground Truth Model Inferred Model

p is the probability that the observed Pβ

exceeds the Pβ values of the generated

sets

If p < 0.05, we infer that the observed Pβ is 

unlikely to have been drawn from this 

distribution, then leading to the rejection of 

the inferred model for the observed set.

Conversely, if p ≥ 0.05, the inferred model is 

not statistically rejected and is therefore

accepted as a model for the observed set.



Statistically Testing Inferred Models

(Lu et al, 2025)

Inferred POMMS



Using models to infer mechanisms 

(Lu et al, 2025)



Using models to infer mechanisms 

(Lu et al, 2025)



Using models to infer mechanisms 

(Lu et al, 2025)



Using models to infer mechanisms 

(Lu et al, 2025)



Language of bird (1920)
Nicholas Roerich

Thank you!

sumithra.surendralal@ssla.edu.in



Language of bird (1920)
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