

Modeling for Neuroscience: A Primer

Sitabhra Sinha

The Institute of Mathematical Sciences, Chennai

Modeling a neuron

Imge: www.dana.org/article/how-does-the-brain-work/

In the spirit of the Spherical Cow...

Image source: visav.phys.uvic.ca/~babul

Excitable systems

Each element

- □ can be either in **Resting** State or **Excited** State
- Goes from resting to excited state if stimulation exceeds a threshold
- After excitation, cannot be re-excited for a resting (refractory) period

A simple model

Phase plane dynamics of the simple model

Above threshold \rightarrow excitation (large excursion from stable resting state).

Phase plane dynamics of the simple model

Below threshold \rightarrow decays to resting state

Above threshold \rightarrow excitation (large excursion from stable resting state).

Time-evolution of the simple model

On application of supra-threshold stimulus the FHN model exhibits an action potential. Projection of the phase plane trajectory along u and v planes are shown.

Image: Sinha and Sridhar, Patterns in Excitable Media (CRC Press)

What we have developed is actually the

Fitzhugh-Nagumo model

$$\frac{du_e}{dt} = F_e(u_e, v) = Au_e(u_e - \alpha)(1 - u_e) - v,$$
$$\frac{dv}{dt} = \epsilon(u_e - v),$$

Developed independently by R Fitzhugh (1961) [who called it the Bonhoeffer-Van der Pol model] and J Nagumo (1962) to isolate the essential concepts of excitation propagation

Richard Fitzhugh: Simplified the Hodgkin-Huxley equations describing spike generation in squid giant axon

Jin-ichi Nagumo: built monostable multivibrator electronic circuit using tunnel (Esaki) diodes Esaki diodes have cubic I-V curve similar to that used in Fitzhugh's eqn

Tutorial

Numerical solution of Fitzhugh-Nagumo differential equations

Using Euler method (simple but not recommended for serious work)

$$\dot{x} = f(x)$$
Using $dx/dt \equiv Lt_{\Delta t \to 0} \{x (t + \Delta t) - x (t)\} / \Delta t$

$$\Rightarrow x(t_0 + \Delta t) \approx x_1 = x_0 + f(x_0) \Delta t$$
Image: Strogatz, Nonlinear Dynamics and Chaos
$$x_2 = x_1 + f(x_1) \Delta t$$

$$x_1 = x_n + f(x_n) \Delta t$$
Solving FHN:
$$x_0 = \frac{1}{t_0 - t_1 - t_2}$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) \Delta t$$
Solving FHN:
$$x_1 = x_1 + f(x_1) + f(x_$$

To show oscillatory behavior the single fixed point in the system is made unstable How ? displace the x-nullcine by I (external current)

Propagation along the axon

Introducing Space: The Cable Equation

1850: Hermann von Helmholtz showed experimentally that the signal velocity in nerve fibers is finite Measured it as 27 m/s in the sciatic nerve of the frog

1855: William Thompson (Lord Kelvin) described the propagation of electrical signals in long cables The problem had become of interest because of the rapid development of long-distance communication by telegraph (first transatlantic cable in 1858).

$$rac{1}{r_l}rac{\partial^2 V}{\partial x^2} = c_m rac{\partial V}{\partial t} + rac{V}{r_m}$$

Hermann von Helmholtz (1821-1894)

William Thomson (Lord Kelvin) (1824-1907)

From ODEs to PDEs

So how to extend this to a spatially extended oscillatory medium ?

Imagine a continuum of oscillators, neighboring points interacting diffusively

Propagation of activity in a spatial continuum

Mathematically approximated as a **diffusion equation** yielding the partial differential equation

$$\frac{\partial V}{\partial t} = D \,\,\frac{\partial^2 V}{\partial x^2} - \frac{I_{ion}}{C_m}$$

with diffusion constant

$$D = \frac{G_i}{S_v C_m}$$

 G_i : Bulk intracellular conductivity S_v : Surface to volume ratio of cells C_m : Membrane capacitance

In general, biological tissue is anisotropic \Rightarrow D is a tensor E.g., activity travels along the direction of fibers much faster than transverse to it

Activity propagation in 1 dimension

Nearest neighbors connected by gap junctions

- V_n : transmembrane potential of n-th cell
- I_n : current from the n-th to the (n-1)-th cell

The net current that passes through gap junctions of the n-th cell: $I_{junction} = I_n - I_{n+1} = g_{gap}(V_n - V_{n-1}) - g_{gap}(V_{n+1} - V_n)$ where g_{gap} : gap-junction conductance

Using continuum approximation,

$$I_{junction} = -g_{gap} \frac{\partial^2 V}{\partial x^2}$$

yielding PDE describing spatial propagation of activity

$$C_m \frac{\partial V}{\partial t} = -I_{ion} - I_{junction} = g_{gap} \frac{\partial^2 V}{\partial x^2} - I_{ion}$$