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Learning

Coding Transmission



Modeling

Mechanistic “Black box”



Modeling a neuron

Imge: www.dana.org/article/how-does-the-brain-work/




In the spirit of the Spherical Cow...

Image source: visav.phys.uvic.ca/~babul



Excitable systems

Each element

(] can be either in Resting State or Excited State

d  Goes from resting to excited state if stimulation exceeds
a threshold

] After excitation, cannot be re-excited for a resting
(refractory) period



A simple model
du _

du & =f(u)=u(u-0)(1-u) -v
dt
— ) — '® —_— O
0 a ~ u
Resting Threshold Exated
State State  \

v =g (ku-v
g elku-y)



Phase plane dynamics of the simple model
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Below threshold — decays to resting state
Above threshold — excitation (large excursion from stable resting
state).
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Phase plane dynamics of the simple model
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Time-evolution of the simple model
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On application of supra-threshold stimulus the FHN model exhibits an action potential.
Projection of the phase plane trajectory along u and v planes are shown.

Image: Sinha and Sridhar, Patterns in Excitable Media (CRC Press)



What we have developed is actually the

Fitzhugh-Nagumo model

du,
;i' = Fe(ue,v) = Aue(ue —a)(l —u.) — v,
d

d_z = €(u, — ),

Developed independently by R Fitzhugh (1961) [who
called it the Bonhoeffer-Van der Pol model] and |
Nagumo (1962) to isolate the essential concepts of
excitation propagation

Richard Fitzhugh: Simplified the Hodgkin-Huxley
equations describing spike generation in squid giant axon

Jin-ichi Nagumo: built monostable multivibrator electronic
circuit using tunnel (Esaki) diodes

Esaki diodes have cubic |-V curve similar to that used in
Fitzhugh’s eqn




Tutorial

Numerical solution of Fitzhugh-Nagumo differential equations

Using Euler method (simple but not recommended for serious work)

x = f(x)
Using dx/dt = Lt {x(t+At)—x(t)}/At
=  x(t, +Ar) = x, = x, + f(x,)At

Image: Strogatz, Nonlinear Dynamics and Chaos

X, =x, + f(x,)At

Euler

exact

X, =X, + f(x,)At

n+1

Solving FHN:

Supplyu(l),v(1)

[terate

Fori=1:7T,
u(i+1) = u@+del _t*u@)*(I-u@))* (u@)-th)-v()+I
v(+1) = v()+del_t*epsilon™(k*u@) - v(1))

end




From excitable to oscillatory
dy = 0

To show oscillatory behavior the single fixed point in the system is made unstable
How ! displace the x-nullcine by | (external current)
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Inactivation v

Images: Sinha and Sridhar, Patterns in Excitable Media (CRC Press)
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Status of Na’ Closed and Open Closed
channels: inactivated ‘l

Propagation along the axon
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Hermann von Helmholtz
(1821-1894)

Introducing Space:
The Cable Equation

1850: Hermann von Helmholtz showed experimentally that the
signal velocity in nerve fibers is finite
Measured it as 27 m/s in the sciatic nerve of the frog

|855:William Thompson (Lord Kelvin) described the
propagation of electrical signals in long cables

The problem had become of interest because of the rapid
development of long-distance communication by telegraph (first
transatlantic cable in 1858).

Image:physicsworld.com

Image: www.lookingoutloud.com

William Thomson (Lord Kelvin)
(1824-1907)



From ODEs to PDEs

So how to extend this to a spatially extended oscillatory
medium ?

Imagine a continuum of oscillators, neighboring points
interacting diffusively



Propagation of activity in a spatial continuum

Mathematically approximated as a diffusion equation yielding the
partial differential equation

Oly D 02 Iy - [-é.{:r?'s.

oy ..9 \
()_l"_ ().I - C"-rn
with diffusion constant
Q G;: Bulk intracellular conductivity
D — — i S,: Surface to volume ratio of cells
S, O, C.: Membrane capacitance

In general, biological tissue is anisotropic = D is a tensor
E.g., activity travels along the direction of fibers much faster than transverse to it



Activity propagation in 1 dimension

Nearest neighbors connected by gap junctions
V,: transmembrane potential of n-th cell N—14mm N 4amm N+1

| : current from the n-th to the (n—1)-th cell

n

The net current that passes through gap junctions of the n-th cell:

[j-u-nct-ion — In. — [n.—l—l — gga,p(l‘j-n — lfﬂ,—l) — g_ga,p(l‘ n+1 — Lfﬂ)

where g, ' gap-junction conductance

Using continuum approximation,

PV
[j-un.ct-i on — —Ygap W
yielding PDE describing spatial propagation of activity
LoV PV
(mg — _[z'on. — [ junction — gga-pw _ [ian,



