
Connecting neurons

Imge: www.dana.org/article/how-does-the-brain-work/



Modeling the synapse

Cm dV/ dt = – Iion + Isyn 

Isyn =  gsyn (V – Esyn)

where, 

Im
age: neuronaldynam

ics.epfl.ch/online/C
h3.S1.htm

l

synaptic transmission involves 

transmitter-activated ion channels

We have already encountered voltage-gated ion 
channels, e.g., in the Hodgkin-Huxley model

Esyn

> Vthreshold for excitatory synapse 

< Vthreshold for inhibitory synapse 

with the synaptic reversal potential

The membrane potential difference now evolves as

Receptor binding gated conductance  time-varying

Usually set to – 75 mV

Usually set to 0 mV

equivalent electrical circuit

Cm

INa Iion(Leak) Isyn 

gsyn

gNa
gLeak 

EsynENa ELeak



Isyn = ͞i  ͞gsyn,i si (V – Ei
syn)

ds/dt = αs(Vpre) (1 − s) − βs(Vpre) s
where Vpre: membrane potential of pre-synaptic neuron

αs(Vpre) = αs,0 N (Vpre),  
where N (Vpre) is a sigmoid function

For Fitzhugh-Nagumo model, a possible choice is
N (z) = ½ ( 1 + tanh ([z – z0] /  )

Typically

αs,0 = 3
z0 = 0.3 
 = 0.001

with

Fitzhugh-Nagumo model with synapse

Cm dV/ dt = – Iion (V,w) + Isyn

dw/ dt = {wasymp (V) − w}/ w

1/kV

For each synapse, an additional dynamic variable s described by

and s(Vpre) = s,0 (= αs,0 ), a constant

Esyn
> Vthreshold (= ) for excitatory 

synapse 
< Vthreshold (= 0) for inhibitory 

synapse 



MATLAB simulations 

function dydt = fhnsynapsepair(t,y0)
E_syn=[5;-5]; %5: excitatory, -5: inhibitory 
v_th = 0.3; v_sl = 0.001; %synaptic parameters
B = 3;A = 3;%synaptic parameters
g_m = 0.02; %synaptic conductance g_m can be varied in the range 0.01-1
%I=zeros(N,1); I(1)=0.2;%external current
I=[0.1;0];
W_syn=[0 1;1 0];
W_syn=sparse(W_syn);
v=y0(1:2);
w=y0(3:4);
s=y0(5:6);
dydt=[3*v.*(v-0.1).*(1-v)-w+I-g_m*((v.*(W_syn*s))-(W_syn*(E_syn.*s)));0.05*(v-w);(A*0.5*(1+tanh((v-v_th)/v_sl))).*(1-s)-B*s];

> y0=zeros(6,1); %initial values 
> [t,y]=ode15s(@fhnsynapsepair,[0 1000],y0); 
> figure, plot(t,y(:,1),'b'), hold on, plot(t,y(:,2),'r')



Communication between neurons is mediated via the direct spread 
of electric current from one neuron to another

Electrical synapses  gap junctions

Image: Nicholls et al, From Neuron to Brain, 5th edition (2012)Image: Mariana Ruiz, Wikipedia 

a connexon or a connexin hemichannel is an assembly of six connexin proteins that form 
the pore for a gap junction between the cytoplasm of two adjacent cells

typically dendrite-to-dendrite 
or axon-to-axon

No synaptic delay



Gap junctions between cells of the same type usually are 
bidirectional, but junctions between cells of different types may 
show strong rectification, with depolarizations being transferred 
preferentially in one direction and hyperpolarizations in the other 
due to the two different cells contributing different protein subunits 
at either side of the junction

Can gap junctions rectify ?

Can gap junctions adapt ?

How different are gap junctions from chemical synapses ?

Gap junction conductance can be modulated by various G protein-coupled 
receptors, leading to long lasting changes in coupling strength as the result of 
neuronal activity, similar to long-lasting changes in chemical synapses

Non-neuronal example: In the gravid uterus, muscle cells communicate via gap 
junctions whose conductance can be altered over a scale of days by hormones 
that promote expression of connexin proteins



Modeling gap junctions
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equivalent electrical circuit

The current flowing into each neuron through the gap junction is proportional 
to the voltage difference between the two neurons (at the junction)

A simple model assumes a fixed, symmetric permeability of the gap junction channels

g gap

For Cell 1: I gap = g gap (V2  – V1 )
For Cell 2: I gap = g gap (V1  – V2 )   Cm dV/ dt = – Iion + Igap 

So, the equation for transmembrane potential difference for each cell



From neurons to networks to brain

Imge: www.dana.org/article/how-does-the-brain-work/



Image: neuronaldynamics.epfl.ch



Neural mass models & Neural field models

Models of brain activity can be divided into two classes: 

Neural mass models : characterize activity over time only; by 
assuming that all neurons in a population are located at 
(approximately) the same point. 

Neural field models: prescribe how a quantity characterizing 
neural activity (such as average depolarization of a neural 
population) evolves over both space and time.



Sub-population of 
excitatory neurons

Sub-population of 
inhibitory 
neurons

E.g., AMPA 
or NMDA

E.g., GABA

Modeling the Dynamics of a Local Brain Region

u

v

u du/dt =  – u + (1 – u) S (wuu u – wuv v + Iuext) 

u: fraction of active excitatory 
neurons
v: fraction of active inhibitory 
neurons
S: input-output function, usually of 
sigmoidal nature

v dv/dt =  – v + (1 – v) S (wvu u – wvv v + Ivext) 



Sub-population of 
excitatory neurons

Sub-population of 
inhibitory 
neurons

E.g., AMPA 
or NMDA

E.g., GABA

Modeling the Dynamics of a Local Brain Region

Wilson-Cowan Model (1972)

u

v

Phenomenological description of 
activity in a system of coupled 

subpopulations of excitatory & 
inhibitory neurons
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Oscillations in the Wilson-Cowan model

Iu Iv

Iu = 1.8

Image: V Sreenivasan, S N Menon & SS, Sci. Rep. 7 (2017)



Collective Dynamics of WC Networks

Activity in each node of a Macaque 
monkey cortico-cortical network 

is simulated using WC model

Resulting time-series of node activity are 
qualitatively similar to experimentally 

recorded activity in Macaque brain regions

Increasing connection strength 
Parameters of WC model chosen so 

that each isolated node has limit 
cycle dynamics: Relaxation 

oscillations

Images: R Singh, S N Menon & SS. Sci. Rep. 6 (2016).



Reaction-diffusion equation 

Reaction (Nonlinear dynamics)Diffusion

For neural oscillators,

1 1 r i W/t =  ( 1 + i 1 ) W – (g r + i gi ) |W|2 W + D2W/x2

where D = dr + i di is a complex diffusion coefficient

Reaction (Nonlinear dynamics) Diffusion

This is the Complex Ginzburg-Landau Equation

Neural field models: 

we can define a complex amplitude

W = R exp ( i )
For SHO,  Amplitude R :  dR/dt = 0

Phase  :  d/dt = 0

W(x,t) at each point represents the dynamical state of the system



Complex Ginzburg-Landau Equation
Describes spatiotemporal pattern formation 

Amplitude
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When simulating a large number of interacting neurons, it maybe easier to 
approximate the population dynamics of interconnected neurons by mean-
field models.

By ignoring details of individual neurons, it is possible to describe the 
macroscopic behavior of large networks, e.g., the mean firing rate of the 
population

To arrive at a deeper understanding of neural activity as measured by fMRI 
or electrophysiology.

Mean-field models of the brain



A simple model of activity in a homogeneous population of excitatory neurons

Q-E-R-Q model

Q

E

R



 = 1 / E

Excitation:  Q + E  2E Inactivation:  E  R 

Recovery:  R  Q 

 = 1 / R

Excited

Quiescent Refractory



Dynamics of the QERQ model

Change in quiescent population, dQ/dt = Gain from neurons recovering from 
refractory state – Loss through new excitations 
= (1 / R) x Current refractory population –  x mean number of connections of a neuron
x fraction of excited neighbours per neuron x current quiescent population

Change in excited population, dE/dt = 
Growth through new excitations – Loss via passage to refractory state 

Change in refractory population, dR/dt = Growth by passage of excitatory 
neurons to refractory state – loss from neurons recovering to quiescent state

dQ/dt = (1 / R) R –  k (E/N) Q = (1 / R) R –  k (E/N) [N – E – R] 

dE/dt =  k (E/N) [N – E – R] – (1 / E) E

Dividing by N,  fractional change dq/dt = (1 / R) r –  k e [1 – e – r] 

Dividing by N, de/dt =  k e [1 – e – r] – (1 / E) e

dR/dt = (1 / E) E –  (1 / R) R  

Dividing by N, dr/dt = (1 / E) e – (1 / R) r 



Dynamics of the QERQ model

The mean-field dynamics reduces to 2 coupled ODEs

de/dt = e {  k [1 – e – r] – (1 / E) }

dr/dt = (1 / E) e – (1 / R) r 

The nullclines for e are e=0 and e= 1 – r – [1/(E  k)]
The nullcline for r is e = (E / R )r
 Two equilibria are
• e1*=r1*=0, and 
• e2*= (E  k – 1)/( k{E + R })], r2*= (E – {1/  k})/(1 + {E / R}) 

 How about stability ?
The e1*=r1*=0 is stable if E  k < 1
In other words, if E  k > 1, the network will show persistent excitation 
(i.e., a finite fraction will always be excited)

Analogous to the basic reproduction number R0 in epidemiology



And hence to binary state neurons…
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Inputs Output

Active, i.e., firing action potentials  1Quiescent, i.e., resting state  0



The McCulloch-Pitts neuron
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Spin models as a paradigm 
for Complex Systems
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The Lenz-Ising model (1920-5)

Ernst IsingWilhelm Lenz
A highly simplified model for explaining 
spontaneous magnetization

In absence of 
interactions

T=0, with 
interactions

T>0, with 
interactions

No order

Order

Disorder
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Magnetic moments of atoms reduced to a single (z) component, allowed to be only in 1 of 2 states and interact only with nearest neighbors 



H =  – ij Jiji j – i h i 
interaction environment

external field
spin-orientation 
coupling

Free energy F  =  U – T . S

Once we introduce thermal fluctuations (at finite temperature T>0) 
system behavior is governed by 

The Ising model is described by
Spin orientation i 

or

+ 1 – 1

For spontaneous ordering in a ferromagnet, Jij= J > 0 and h =0



So no order in 1D for finite temperature

Disorder at any finite temperature in a 1-dimensional 
array of Ising spins

Let there be a perfectly ordered arrangement of N+1 Ising spins (all spins parallel)

Can disorder by introducing a single boundary in the array where neighboring 
spins are not in parallel orientation – has an energy cost of 2 J

The boundary can be placed in any of N positions in the array  
 Entropy gain of k log N

Change in Free Energy is 2 J – k log N 
 For large N, free energy is always lower for disordered state when T > 0



The Peierls argument (1936)

Im
ag

e:
 A

m
er

ic
an

 In
st

itu
te

 o
f P

hy
si

cs

Rudolf Peierls 

Can there be order in 2D for T>0 ?

A similar chain of argument will show that disorder does not have a lower free 
energy at a low but finite temperature 
 The array will show spontaneous ordering below a critical 
temperature Tc

Energy cost as well as 
entropy varies with N



The 2-dimensional Ising model (1944)

Lars Onsager

A model for self-organized coordination
The system spontaneously orders at T < Tc Im
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The 2-dimensional Ising model (1944)

Lars Onsager

A model for self-organized coordination
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The 2-dimensional Ising model (1944)

Lars Onsager

A model for self-organized coordination
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The 2-dimensional Ising model (1944)

Lars Onsager

A model for self-organized coordination
The system spontaneously orders at T < Tc Im
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Selinger, Introduction to the Theory of Soft Matter, Springer

Order

Disorder



Order-disorder transition

“Field” induced transition from

Jake Wyman/Corbis

“Order” 

Public announcement

Creative Commons 

“Disorder” 

Degree of order 

Field

Discontinuous or First-order phase transition



Cooperative phenomenon

Kikoin & Kikoin, Molecular Physics, Mir

Spontaneous

Disorder Order 

Self-organized transition from
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Noise

Continuous phase transition



 Symmetric connection weights wij = wji

 wii=0 (No self connections)

John J Hopfield

Si
Sj

Im
age: bulletin.sw

arthm
ore.edu

Hopfield Model
Attractor Network Model for Associative Memory

A brilliant step backwards (Amit)

Globally connected system of  “neurons” (spins)

State Si = 
–1 Resting

+1 Firing

Time-evolution  Si = sgn(j wij Sj )
 sgn (q) = 1, if q < 0; 
 sgn (q) = +1 otherwise

T=0 or deterministic dynamics 



Memory Recall in Hopfield Network
 Start from arbitrary initial configuration of {x}
What final state does the network converge ?
 Evaluate an ‘energy’ value associated with the network 

state: 

 System converges to an attractor 
a local/global minimum of E






j

N

ji
i

jiij xxwE
1

,  
2

1

Image: Tank & Hopfield, Scientific American (1987)

Local Minimum
Global Minimum

Local Minimum



T>0 or Stochastic dynamics

In neurons, fluctuations in the release of neurotransmitters in discrete vesicles 
 neurons may fire even when weighted input < threshold or not fire when 
input > threshold

Noise  Stochasticity in neuronal firing

Amount of noise quantified by “pseudo temperature” T
T=0  deterministic dynamics

For T>0

Prob (Si = +1) = fT( j wij Sj ) 
                      
                      = 1/[1– exp(2 j wij Sj /T)]



T>0 or Stochastic dynamics
The Monte Carlo Method
Using repeated random sampling to solve problems

Stan Ulam got the idea while recovering 
from surgery, playing solitaire to estimate the 
odds of a successful game. 
Realized that, instead of doing combinatorics, 
a more practical method to estimate is to lay 
out the game hundreds of times and count 
the number of successful plays. 

Image: Wikipedia

Stanislaw Ulam

Named Monte Carlo Method 
because of its association with 

chance and gambling  by 

Nicholas MetropolisEstimating /4 



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

Let’s consider a particular spin 
configuration in a 2-dimensional 
Ising model with each spin 
interacting with strength J with 
its 4 nearest neighbours



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

Let’s randomly select a 
particular spin whose new state 
will be decided 

How much will the energy of 
the system change if we flip the 
spin to its opposite orientation ?

E =  
– {j J(–1)(–1)} – {– j J(+1)(–1)} 
= – 8 J



To be or not to be 
flip flip

Image: adapted from queenelizabethsfantasy.blogspot.com

The essence of Monte Carlo 
update method for the Ising model



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

As the energy decreases as a 
result of the flip,  this change is 
accepted and the new state will 
be 



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

Next, randomly choose another 
spin 

… and ask what will be the 
energy change if we flip it ?

E =  
– {j J(–1)(+1)} – {– j J(+1)(+1)} 
=  8 J



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

As the energy increases, we 
don’t immediately accept the 
change but ask:
can this additional energy cost 
be obtained from thermal 
fluctuations ( ~ kB T at 
temperature T) ?

Probability of accepting the move:
P ( +  – ) ~ exp (–E / kB T)



T>0 or Stochastic dynamics
The Monte Carlo Method

Image: www.bdhammel.com

Continue to repeat this process by randomly selecting a spin at successive 
rounds and deciding what its state will be (i.e., to flip or not to flip)

At higher temperatures, 
Ising system more likely 
to get disordered as the 
updates are continued


