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Navigating your way - Place cells ey
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‘It dawned on me that these (place) cells weren't particularly interested in what the animal was doing or why it was doing it but rather
they were interested in where it was in the environment at the time” - John O Keefe
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https://explorebiology.org/collections/neuroscience/grid-and-place-cells-keys-to-the-spatial-map-in-your-brain



Navigating your way - How did we go about it?

D

One hot Place C_ells - Hebbian learning with
trajectory (X) mapping mutual inhibition
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Simulating place cells encoding

Mapping place to 4 corners of the square matrix

4 perceptrons with
lateral inhibition

Learned Synaptic Weights

Network Output for Each One-Hot Input
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Navigating your way - How did we go about it?

R Zi
l PE :
v~ —1—- —_—)
#8371 o
Bl L B} ;
— 1
Continuous physical space Splitting the grid to 3*3 One hot P Is -
" gkemgs trajectory (X) ran(;epg?n 5 Hebbian learning with

mutual inhibition

Wt = W'+ nP(X - )’




Simulating continuous trajectory onto 4 place cells

Mapping place cells in a continuous matrix
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How do grid cells map the physical space
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How do grid cells map the physical space
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Matrix generation (m)

o(x)=1/(1+ e_X/T) T = temperature

Asynchronous state update for place cell activation
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Unique place cell mapping

W = W'+ 9P (G, — )"

Weight update rule




How do grid cells map the physical space

W = W'+ 9P (G, — )"

Weight update S N
rule Learning Decay
rate term
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Future directions/Limitations

* Achieving unique mapping for a true random network

* Introduce biologically inspired neurons - LIF neurons (E-l populations

* Not hard-encoding grid cell activation patterns

* Output is dependent on the initial randomisation (of weights)

* Encoding path direction and location
* Understanding memory and replay functions
* Remapping of place cells to a new navigational source

* Tuning in the hyperparameters
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