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Consolidation of memories during sleep, STM -> LTM
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Unlike biological brains, neural networks suffer from
catastrophic forgetting—where learning new tasks can rapidly
overwrite previously acquired knowledge.
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forgetting
of Task 1

Trainon Task 1 Train on Task 2 epochs

AIM:

To stimulate a “sleep” phase in between the learning to
preserve the energy minimas of the past memories, while
also learning new ones.

Sleep prevents catastrophic forgetting in spiking neural
networks by forming a joint synaptic weight representation
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Catastrophic Forgetting and the Pseudorehearsal
Solution in Hopfield-type Networks
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Traditional Hopfield Network : Storing of associative memories

Memorles are Stored When the trained network is
H fed with a distorted or
in a landscape @ incomplete pattern, it can
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John Hopfield's associative memory stores
information in a manner similar to shaping a
landscape. When the network is trained, it
creates a valley in a virtual energy landscape
for every saved pattern.
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Recovery Capacity of k-Hopfield Networks
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Max Overlap with Stored Patterns

k = 0 (classic Hopfield):

Overlap Evolution Over Time
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e Overlap remains low or oscillates without locking onto a
memory



Recovery Fraction vs Threshold k

Recovery Fraction vs Threshold k
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Recovery Fraction vs Threshold k
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Recall frequency vs different k values
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Incremental Learning
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for p in patterns:
p = p.reshape(-1, 1)
outer = (p @ p.T) / self.size
self.W = (1 - n) * self.W + n * outer



Sleep - Wake cycle for memory consolidation

i Wake Phase: Sleep Phase: !
. Learning. Update 2 2 i Preservation of energy minima. ;
! weights using Hebbian ! __/ . Energy landscape truncation, K
! learning. ) : based. Stabilize minima '




Simulated Sleep (Future Work)

Comparison: n_sleep = 0.07
Pre-sleep average convergence steps: 4.65
Post-sleep average convergence steps: 2.97
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Simulated Sleep

Comparison: n_sleep = 0.001
Pre-sleep average convergence steps: 4.89
Post-sleep average convergence steps: 8.10
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Future direction

e  Optimize the sleep state in our network by modulating the parameters.
e Explore different network architectures and models.

e Incorporate the REM and NREM aspect maybe by changing the K value.
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