FUNCTIONAL BRAIN COMPENSATION AFTER LESION

UNDERSTANDING COMPENSATORY MECHANISMS

USING VIRTUAL LESIONS AND NETWORK MODELS

Presented by Dr. Priyanka Chakraborty, Rampurhat College, West Bengal Rajdeep Bhowmik, IISER Pune

BACKGROUND

• WHAT IS A STROKE?

WHY SIMULATE A LESION?

IGNORING TEMPORAL AND ADAPTIVE REORGANIZATION
CONVENTIONAL MODELS OFTEN TREAT BRAIN DAMAGE AS A STATIC INSULT, FAILING
TO CAPTURE THE DYNAMIC REORGANIZATION AND PLASTICITY

IMPROPER CONSIDERATION OF CAUSAL PATHWAYS OF RECOVERY

OBJECTIVE

 CAN NEARBY REGIONS HELP COMPENSATE FOR LOST FUNCTION AFTER LESIONS?

HYPOTHESIS: ANATOMICAL SIMILARITY PREDICTS RECOVERY VIA
VIRTUAL LESION MODELS.

ANALYSIS PIPELINE

IDENTIFICATION OF CONNECTOR & PROVINCIAL HUBS

Interesting finding:

Younger brains have higher number of connector hubs in comparison to provincial hubs

N =16 for both groups; Unpaired t-test, Two-tailed, p<0.05

INTRODUCTION OF VIRTUAL LESION

Lesioned Strctural connectivity

Center Name	Coordinate	5% nearest nodes
IPREC	(-5.7, -18.3, 38.4)	ICMF,IPCNT,ISMAR
IPOPE	(-45.7,14.5, 11.8)	IPTRI, IINS, IRMF
rMT	(58.2, -27.9, - 13.5)	rIT,rST,rBSTS

DYNAMIC MEAN FIELD (DMF) MODEL

Pipeline of Analysis

(1)

(2)

(3)

(4)

(5)

(6)

$$\begin{split} I_{i}^{(E)} &= W_{E}I_{0} + w_{+}J_{NMDA} + GJ_{NMDA}\sum_{j}C_{ij}S_{j}^{(E)} - J_{i}S_{i}^{(I)} \\ I_{i}^{(I)} &= W_{I}I_{0} + J_{NMDA}S_{i}^{(E)} - S_{i}^{(I)} \\ r_{i}^{(E)} &= \frac{a_{E}I_{i}^{(E)} - b_{E}}{1 - e^{(-d_{E}(a_{E}I_{i}^{(E)} - b_{E}))}} \\ r_{i}^{(I)} &= \frac{a_{I}I_{i}^{(I)} - b_{I}}{1 - e^{(-d_{I}(a_{I}I_{i}^{(I)} - b_{I}))}} \\ \frac{dS_{i}^{(E)}}{dt}(t) &= -\frac{S_{i}^{(E)}}{\tau_{E}} + (1 - S_{i}^{(E)})\gamma r_{i}^{(E)} + \sigma v_{i}(t) \\ \frac{dS_{i}^{(I)}}{dt}(t) &= -\frac{S_{i}^{(I)}}{\tau_{I}} + r_{i}^{(I)} + \sigma v_{i}(t) \end{split}$$

Excitatory and inhibitory
current of an area i
Firing rate for Excitatory and
inhibitory Population area i

Synaptic gating variables for excitatory and inhibitory population

PARAMETER OPTIMIZATION

Optimal value of G=0.55

Weight redistribution: The road to recovery?

Recovery Quotient (RQ) = $\frac{norm (FCUnlesioned, FCRe_{distributed})}{norm (FCUnlesione_d, FCLe_{sioned})}$

RQ < 1: Redistribution of weight drives the network closer to empirical functional network RQ > 1: Redistribution of weight drives the network away from empirical functional network

LESION SIMULATION EXAMPLE

- LESION AT LEFT CONNECTOR HUB (E.G LSF)
- SF AND NEAREST 5% NODE DELETED
- IDENTIFY THE MOST SIMILAR NODE WITH SF (STRONGEST WEIGHT)
- STRUCTURAL CONNECTIVITY (SC) UPDATED: REDISTRIBUTE THAT WEIGHT AMONG NEAREST 5% NODE OF THE LESION NODE (E.G LSF)
- •SIMULATED FC REVEALS ALTERED PATTERNS OF COMPENSATION

Deleting nearest nodes show higher recovery towards empirical functional connectome

Redistribution of weight to nearest nodes show higher recovery towards empirical functional connectome

Redistribution of weight near 5% neighbour

Redistribution of weight near 10% neighbour

CONCLUSION

 OUR SIMULATION SHOWS THAT POST-LESION REDISTRIBUTION OF WEIGHT WITH THE NEAREST NEIGHBOUR CAN AID IN RECOVERY OF THE FUNCTIONAL CONNECTOME TOWARDS THE UNLESIONED CONDITION