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PART 1: THE BRAINY PRIMATE

image: Ken Kwapis, “Dunston Checks In” (1996)



The CoCoMac (Collation of Connectivity data on the 
Macaque brain) database was an initiative of Rolf Kötter 
that began in the late 1990s.

This database collates information from hundreds of axonal tract-tracing studies to provide a 
comprehensive record of the wiring of the primate brain.

The advantages of tract-tracing is that it provides incontrovertible evidence of long-range 
connections, as well as the associated directionality.

image: DT Gray & CA Barnes, PNAS 116(52), 26247 (2019).
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image: DS Modha & R Singh, PNAS 107(30), 13485 (2010).



BRAIN REGIONS IN THE MODHA & SINGH NETWORK

image: DS Modha & R Singh, PNAS 107(30), 13485 (2010)



CREATING A “LEAF NODE” NETWORK

• We only keep the nodes in the lowest hierarchical level, and the connections between them.

• The volume of the brain regions range from  (thalamic area PT#2) to  
(visual cortex area V1).

• Although we lose some connectivity information the macroscopic properties are very similar 
to the original network. 

∼ 2 mm3 ∼ 2000 mm3

#nodes :  
#links : 

266
2602

#nodes :  
#links : 

383
6602

Modha & Singh network leaf node networkpotential ambiguities
in the original network 



MACROSCOPIC OVERVIEW

network of Modha & Singh (2010)
with directions removed

reduced network

images: DS Modha & R Singh, PNAS 107(30), 13485 (2010);  A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



PART 2: MODULARITY

image: Jacques Tati “PlayTime” (1967)



We can quantify the extent to which communities in a network are segregated as follows.

If  is the community that node  belongs to, then the actual number of edges between nodes of 

the same community is . For a directed network, this is .

If the total number of links in the network is , one can imagine  “stubs” (or  “in-stubs” 
and  “out-stubs” in a directed network).
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So the expected number of links between nodes belonging to the same community is 

 , or   in a directed network.

Thus, the (normalized) difference between the actual and expected number of edges 
between nodes of the same group in an the two types of networks are given by:

Here, the quantity  is referred to as the modularity. This gives us a measure of the 
excess number of links seen within groups than would be expected by chance.
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DETERMINING THE MODULES

A number of approaches can be used to obtain the modular structure. One of the most 
common approaches involves modularity maximization.

For this, we assume that each node  is in one of two groups, and introduce the column 
vector  ( , depending on which group  belongs to).  Then for an undirected 
network we have: 

In the case of a directed network we use the fact that  is equal to its own transpose, 
and so redefine it to be , this yields:
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* Newman, M. E. J., PNAS 103, 8577 (2006); Leicht, E. A. & Newman, M. E. J., Phys. Rev. E 100, 118703 (2008). 



DETERMINING THE MODULES

Thus the problem can be reduced to the following :

Given the modularity matrix , find  such that  is maximum.

A widely used method* known as the Spectral Newman method is based on the 
insight that the optimal  (were it not constrained to take values ) would be an 
eigenvector of . That is, we note that .

So, finding the partition with the maximum  involves finding the eigenvector of the 
largest eigenvalue of , and identifying the nodes with positive and negative values of .

This process is extended to (attempt to) subdivide each module into two until a given 
module can no longer be subdivided. Furthermore at each step, one applies the 
Kernighan-Lin algorithm, wherein every node in the subdivided modules are swapped if 
doing so would lead to an increase in .
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* Newman, M. E. J., PNAS 103, 8577 (2006); Leicht, E. A. & Newman, M. E. J., Phys. Rev. E 100, 118703 (2008). 



image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



Basal Ganglia Occipital Lobe

Temporal Lobe Insula

image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



Cingulate Thalamus

Parietal Lobe Frontal Lobe

image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



There exists a general organisational 
scheme, with each of the principal 
sensory modalities localized in 
specific modules:

• module #1: olfactory/gustatory (e.g. 
olfactory complex)

• module #2: somatosensory (e.g. 
Area 6, Ventolateral Nucleii of 
Thalamus)

• module #4: auditory (e.g. superior 
temporal gyrus)

• module #5: visual (e.g. Visual anterior 
cortex, nucleus pulvinar thalami)

Module #3 does not include any 
primary or secondary sensory areas 
but does contain the amygdala which 
regulates emotional responses and fear 
conditioning.

image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



WHAT IS THE MOST “OPTIMAL” PARTITION?

• How can we be sure that the modular partitions are not 
sensitively dependent on the method used to find them?

• Using a stochastic simulated annealing technique* we 
perform  realizations using a “cooling schedule” and 
display a landscape of the resulting  values. 

• The procedure involves starting with a random partition 
and at each step we either

• move a random node to a different module

• merge two randomly chosen modules, or

• split a random module into two, to minimize 
connections between them.

• If the new partition leads to a change , it is accepted 
with probability  if  and  
otherwise.

• We see that at best there exist partitions that are very 
close to . Of the  partitions  of them 
have a modularity that is within of . 
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image: A Pathak, SN Menon, and S Sinha, 

Phys. Rev. E 106, 054304 (2022).

* BH Good, Y.A de Montjoye & A Clauset, Phys. Rev. E 81, 046106 (2010); https://aaronclauset.github.io/modularity/

SN method



• Around of brain areas in these  
partitions always occur in the same module as 
in the SN decomposition.

• On the right we display a consensus matrix , 
where each  is the probability that a given 
pair of nodes  are found in the same 
module.

• We see that module  is almost completely 
consistent across all partitions.

• This observed consistency of of nodes can 
be most clearly seen by considering the 
versatility , defined as

 

• We see that  is highest when  for all 
, and is lowest when all  values are either 

 or .
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PART 3: “FUNCTIONAL CARTOGRAPHY”

image: heikala.tumblr.com 



CONNECTIONS WITHIN AND ACROSS MODULES

To identify areas that have significantly more (or less) connections within their own module, we 
compute the within-module degree z-score of each node:

where  are the number of links between area  and all other areas belonging to its module  .

To distinguish between brain areas in terms of their inter-modular connectivity, we calculate the 
participation coefficient:

where  are the number of links between area  and a specified module , and  is the degree 
of area . If an area only has connections within its module then .

zi =
ki

ci
− ⟨kj

ci
⟩j∈ci

⟨(kj
ci
)2⟩j∈ci

− ⟨kj
ci
⟩2

j∈ci

ki
ci

i ci

Πc
i = 1 −

m

∑
c=1 ( ki

c

ki )
2

ki
ci

i c ki

i Πc
i = 0



FUNCTIONAL ROLES OF NODES

Using these two measures, a classification 
was proposed* with seven heuristically 
defined roles:

R1: ultra-peripheral nonhubs

R2: peripheral nonhubs

R3: connector nonhubs

R4: kinless nonhubs

R5: provincial hubs

R6: connector hubs

R7: global/kinless hubs

* R Guimera & LAN Amaral, Nature, 433, 895 (2005).



FUNCTIONAL CLASSIFICATION OF 
MACAQUE BRAIN
Following Pan et al* we set the z-score 
threshold as  and use the same 
participation coefficient thresholds as in 
Guimera & Amaral. 

We see areas in each module have a 
similar distribution across R1–R3 and 
R5–R6 (except module 4 which does 
not appear in R5).

0.7

* RK Pan, N Chatterjee & S Sinha, PLOS ONE 5, e9240 (2010).

images: A Pathak, SN Menon, and S Sinha, 

Phys. Rev. E 106, 054304 (2022).



DISTRIBUTION OF MACAQUE BRAIN 
REGION ACROSS R1-R7 CATEGORIES

If we consider the entire 
brain, as well as the areas 
belonging to regions in the 
second hierarchical level, we 
see a similar “fingerprint” in 
terms of distributions across 
the functional categories.

The only regions that deviate 
are the Striatum and Thalamus 
that are virtually devoid of 
hubs (R5-R7), indicating 
relative homogeneity in the 
intramodular connectivity,

image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



images: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

We can compute the z-score of connections between nodes of each functional 
category with respect to that obtained for networks in a DM (degree & module 
preserved) random ensemble.

Large positive or negative values imply connection types that are more or less 
likely than expected.

Considering the statistically significant connections suggests a mesoscopic 
pattern of information flow along the network.



image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

We measure the first passage time  that a random walker 
placed at a given node  reaches a node .

Comparing the probability  for the empirical network 
( ) with that of the degree-preserved ( ) and degree and 
module preserved ( ) random networks, we see that the 
empirical network yields the lowest  values.

A similar behaviour is observed when considering random 
walkers that remain within a module ( ) or those that 
search for a node in a different module ( ).

We also find that empirical network shows the shortest 
average time taken to reach an ordered state  in the 
case where Ising spins are placed at each node.

Thus, the specific connectivity of the macaque brain allows 
for enhanced communication between brain regions.
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ENHANCED SPREAD OF INFORMATION



image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

ENHANCED SPREAD OF INFORMATION
We compute the z-score of 
the  values of the 
empirical network 
compared with the 
randomised ensembles.

We obtain this for the full 
network as well as the 
cases where the sources 
are in R1-R7.

In all cases, there is a 
statistically significant shift 
towards lower  values.

The shift is more apparent 
for inter-module walkers 
(except for those that start 
in R3).

τ

τ



PART 4: DO THE POSITIONS MATTER?

image: Ingmar Bergman, “Det sjunde inseglet” (1957)



SPATIAL INFORMATION OF MACAQUE BRAIN REGIONS

Data: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



SPACE-INDEPENDENT PARTITIONING

How can we be sure that certain network properties, such as modular organization, are not simply a 
consequence of the underlying spatial embedding?

For this purpose, we need to redefine the modularity matrix  such that the expectation that a pair 
of nodes  and  are connected incorporates the distance  between them.

For this, we follow the approach of Expert et al* and set

,

where  is referred to as the the deterrence function, which defined as

,

which is the weighted avg. probability that there is a link between nodes separated by a distance .

In practice, this is computed by binning the distances and for each binned distance  identifying all 
 pairs such that  and obtaining .
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SPACE-INDEPENDENT PARTITIONING

images: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

Simply considering the probability distribution of the distances 
between all linked pairs in the network we see that the values 
of  are much smaller that would be expected when looking 
at all pairs of nodes.

Similarly, considering the connection probability 
between a pair of nodes separated by , we see that it has a 
relationship , demonstrating an explicit role of 
the spatial layout.

However, when determining the modules using the deterrence 
function, we see that the newly obtained modules strongly 
overlap with those obtained earlier.

Hence, physical proximity cannot provide a causal explanation 
for the modular structure.

d

P(C |d)
d

P(C |d) ∼ d−1



image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

If we compare the matrices ,  
and  we see that, despite 
discounting the effect of distance in 
identifying the modules, there is no 
significant difference between the 
distances between nodes within 
modules and across modules.

Here, the demarcation between 
the “space-independent” modules 
obtained by the modified approach 
are shown as white lines.

Aij Bij
dij

SPACE-INDEPENDENT PARTITIONING



To quantify the similarity between modular decompositions  and  that 
yield  and  modules respectively in two distinct partitionings  and  of the same 
network, we use the normalized mutual information:

where  is the probability that a randomly chosen node lies in module  and 
 is the joint probability that a randomly chosen node lies in both modules. The 

ratios of the relevant set sizes to the network size yields these probabilities.

When comparing the partitioning obtained with the original method vs the space-
independent approach we expect that if the partitionings are identical then , 
while  implies maximum dissimilarity.
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image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

To further establish that the obtained modular organisation is not primarily 
driven by the physical distance between areas, we generate three types of 
surrogate networks, specified by the dependence of the connection probability  
between areas on the distance  between them:

1. distance-independent ( )

2. power-law dependence ( )

3. exponential dependence ( )

We determine the resulting modules using the original and spatial dependent 
approaches, and calculate . 

We find that for  the values of  are low since the identified modules 
arise through fluctuations alone. For  the value of  obtained for the 
empirical network (arrow) is significantly larger than for the ensemble. 

So, if the modules arisen purely from a distance-dependent constraint on 
connections, the partitionings obtained with the two approaches would be highly 
dissimilar.
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images: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).

The dissimilarity between 
partitionings obtained for the two 
approaches is shown for a 
particular realisation.

For the ensembles with , 
there is no difference in the 
distribution of  values that can be 
obtained.

For those with , we see 
that the  values for the empirical 
network are significantly higher.

For those with , the 
deterrence function significantly 
nullifies the modularity.
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CONCLUSIONS

A structural analysis of the macaque connectome reveals numerous interesting details:

• The specific modular organization of this connectome allows signals to spread very 
fast in contrast to equivalent networks with homogeneous distribution of 
connections.

• We find that this could possibly be understood because of observed properties such 
as R5 homophily, and the preference of connector hubs to link to peripheral nodes.

• The fact that almost all brain regions have similar distributions of functional categories 
suggests a uniformity of design that may embody a general computational logic.

•  The overrepresentation of R5-R5 links is reminiscent of what has been observed for 
the C. elegans*, suggesting it might be a feature of networks that not only need to 
convey signals rapidly but also process them.

* RK Pan, N Chatterjee & S Sinha, PLOS ONE 5, e9240 (2010).



CONCLUSIONS

• When considering the areas of the Intraparietal Sulcus, the 
AIP and MIP are (which coordinate motor tasks such as 
pointing) belong to module #2, while the LIP and VIP 
areas (which are involved in visual processing tasks such 
as saccadic eye movements) belong to module #5. Thus, 
functionalities of these areas tie in to the modules that 
they belong to. So, the module with which a particular 
brain area is associated may also alert us to possible 
functions of this area that have not yet been identified. 

• The prefrontal and temporal parts of module #4 are 
known to have a role in social cognition in primates and 
correspond to the Broca’s and Wernicke’s areas in the 
human brain, respectively. It is hence an intriguing 
question as to whether some areas in module #4 
developed from a common evolutionary precursor of the 
apparatus responsible for facilitating language in humans.

image: A Pathak, SN Menon, and S Sinha, Phys. Rev. E 106, 054304 (2022).



FURTHER
STUDY

G Paxinos, XF Huang, and AW Toga,
The Rhesus Monkey Brain in

Stereotaxic Coordinates
(Academic Press, 2000)

https://scalablebrainatlas.incf.org/macaque/PHT00

Scalable Brain Atlas website



THANK YOU!
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