Brain wiring dictates signaling. But also: brain signaling dictates wiring

Rostam Razban

The brain is a network of neurons and synapses

- 86 billion neurons
- ~100 trillion synapses

Breskin et al. (2006)

2

Part 1) How do neurons grow into a fully connected brain?

How do neurons grow into a fully connected brain?

A. Random graph?B. Preferential attachment?C. Small-world network?D. Or something else??

Targeted Attack can generate development trajectory

Example: targeted attack procedure on increasing tract lengths

P = probability in giant cluster; $\langle k \rangle$ = average degree

Targeted Attack can generate development trajectory

Example: targeted attack procedure on increasing tract lengths

P = probability in giant cluster; $\langle k \rangle$ = average degree

Diffusion MRI measures white matter tracts (bundles of axons) between brain regions

Brain image

Connectivity matrix

Westend61.de

Increasing length targeted attack reflects fetal development

RR et al. (2023)

Random graph and preferential attachment

Small-world network

The brain essentially has one cluster

Random graph simulation

Brain network

Giant Cluster Self Preference theory

- Edge addition can occur:
- 1. within pre-existing nodes
- 2. pre-existing node and newly created node

Giant Cluster Self Preference theory

- Edge addition can occur:
- 1. within pre-existing nodes
- 2. pre-existing node and newly created node

Transition probability to grow *n* nodes and *E* edges:

$$p(n \rightarrow n+1|E \rightarrow E+1) = \frac{\frac{1}{\alpha}n(N-n)}{\frac{1}{2}n(n-1)-E+\frac{1}{\alpha}n(N-n)}$$

N := number of nodes at end of development $1/\alpha :=$ probability of forming a new node (*<u>fit to experiment</u>)

Analytical equation for *P* curve

$$P(\langle k \rangle) = 1 + \left(\frac{1}{1 - 2/\alpha}\right) W\left[\left(\frac{2}{\alpha} - 1\right)e^{-(1 - 2/\alpha)}e^{-\langle k \rangle/\alpha}\right]$$

W := Lambert W function

α is the only parameter!

Theory captures experiment with fitted α

Summary of Part 1: Inferred neurodevelopmental rules

- 1. Tracts emanate from regions in the giant cluster
- 2. Earliest tracts become the longest and densest

Existence of a path does not guarantee swift travel

Image from Weather Underground

Integration-segregation framework captures global dynamics

- Segregated network has limited local signaling
- Integrated network has extensive global signaling

Part 2) How does functional dynamics change with age?

A. More integrated?B. More segregated?C.Or something else??

Capturing brain dynamics through neuronal coupling

Ising model predicts two phases: integrated and segregated

$$P(s) \propto \binom{N}{N(1+s)/2} e^{\lambda N^2 s^2}$$

> \wedge is the rescaled coupling strength λ • $\wedge = (\lambda - \lambda_{critical})/\lambda_{critical}$

Weistuch, Mujica-Parodi, RR, ... (2021)

Functional MRI measures brain region activity by bloodoxygen-level-dependent signaling

Brain image

Zephyr/Science

Ising model is inaccurate for arbitrary subject

Ising model with N_{eff} is accurate for arbitrary subject

Ising model with $N_{\rm eff}$ is consistently accurate across subjects

Brains become more segregated with age

 P_{seg} = probability to be in the segregated network

RR et al. (2024)

Why young and old have distinct network organization?

Physics answer:

- Younger individuals near critical point, P_{seg} (critical) = 0.5
 - Experimental data: $P_{seg} \sim 0.7$
- Older individuals essentially random, P_{seg} (random) = 1
 - Experimental data: $P_{seg} \sim 0.85$

Physiological answer?

A. Does connection degradation underly network reorganization?

White matter volume degrades with age

Why does white matter volume decay with age?

How are white matter tracts connecting neuronal regions damaged?

- A. Fewer tracts??
- B. Thinner tracts??
- C. Shorter tracts??

Number of white matter tracts does not degrade with age

White matter tract density nor length degrades with age

Summary of Part 2)

Brain dynamics reorganize to become more segregated with age

Is there a physiological reason?

- White matter deteriorates with age
 - Unable to identify a specific connection property
 - A. Fewer tracts
 - B. Thinner tracts
 - C. Shorter tracts
 - D. Maybe related to myelin reduction?

How does brain structure constrain its function?

MRI non-invasively measures structure and function

diffusion MRI (dMRI)

Westend61.de

functional MRI (fMRI)

Zephyr/Science

Structure and functional connectivity for an individual

How can we relate the two matrices?

How can we relate the two matrices?

Structural and functional connectivity are poorly correlated

Honey et al. 2009

Alternative approach: correlate an intermediate metric with functional connectivity

Possible structure-based metrics

Communication models

• Ex) Communicability

Machine learning

• Ex) Deep neural network

40

Commute time is derived from Markovian dynamics

commute time =
$$([\Gamma^{-1}]_{ii} + [\Gamma^{-1}]_{jj} - 2[\Gamma^{-1}]_{ij})\sum_{k}^{N} W_{kk}$$

• Definition of the Laplacian matrix Γ_{ij} in terms of weighted structural connectivity matrix W_{ij}

$$\Gamma_{ij} = \begin{cases} \sum_{k} W_{ik} & if \ i = j \\ -W_{ij} \end{cases}$$

Chennubhotla and Bahar 2007

PART 3 RESULTS

• RESEARCH QUESTION How does brain structure dictate function?

• APPROACH

- Calculate commute time from structure to determine whether it correlates with functional connectivity (FC)
- 1. Simulated brain function
- 2. Real fMRI brain data

Simulation protocol

- Accept/reject random spin flips based on Metropolis-Hastings algorithm (equilibrium regime)
- Only two possible states (Ising model)
- One coupling constant parameter λ

Proof of principle: commute time captures FC

Commute time kind of captures function in a human brain

Stronger structure-function correlation for FC's top mode

Commute time outperforms other communication metrics

Commute time leading performer in another dataset

Age does not underlie large variation in commute time-FC correlation

Mental health does not underlie large variation in commute time-FC correlation

Part 3 summary: Commute time links structure to function

- Physically grounded in Markov chains
 - Random walker traversing a network structure
 - Differentiates between nodes with no physical edge between them
- Can calculate via mathematical expression with no parameters!
 - No need for numerics or parameter fitting
- Commute time FC correlation still weak, $<\rho> = -0.26$
 - Increases to $\langle p \rangle = -0.36$ when only considering the top mode
 - Machine learning predicted FC empirical FC correlation, $<\rho> = 0.55$

We investigated the two-way relationship between brain structure and function

1) Tracts develop from regions in the giant cluster

2) Regional coupling decreases as age increases

> 3) Signals traverse the network like a random walk

Part 1: signaling dictates wiring

Tracts develop from regions in the giant cluster

RR et al. (2023)

Part 2: wiring dictates signaling

signaling **Regional coupling** decreases as age increases Tracts develop Weistuch et al. (2021) from regions in **RR** et al. (2024) the giant cluster wiring

Part 3: wiring dictates signaling

Tracts develop from regions in the giant cluster

Regional coupling decreases as age increases

> Signals traverse the network like a random walk

RR et al. (under review)

Acknowledgements

Questions??

Supplementary slides

Theory captures experimental *P* curves with fitted α

Decreasing tract length targeted attack essentially random; incomplete for tract density

α values across individuals across datasets

α values across individuals across datasets

α values across individuals with bipolar or depression

α values across individuals with diabetes

Deriving an analytical equation encoding mechanism

• The probability *p* that *n* nodes have *E* + 1 edges during growth:

$$p(n|E+1) = p(n|E)p(n \to n|E \to E+1) + p(n-1|E)p(n-1 \to n|E \to E+1)$$

= $p(n|E)[1 - p(n-1 \to n|E \to E+1)] + p(n-1|E)p(n-1 \to n|E \to E+1)$

• By counting the number of possible edge additions, we can explicitly calculate the transition probability $p(n \rightarrow n + 1 | E \rightarrow E + 1)$.

$$p(n \to n+1|E \to E+1) = \frac{\frac{1}{\alpha}n(N-n)}{\frac{1}{2}n(n-1) - E + \frac{1}{\alpha}n(N-n)}$$

N := total number of nodes at end of development $1/\alpha :=$ probability of forming a new node (*<u>fit to</u> <u>experimental *P* curve</u>)

Deriving an analytical equation encoding mechanism

• Plugging in the transition probability into the difference equation, taking the $N \rightarrow \infty$ limit, and defining P = n/N and $\langle k \rangle = 2E/N$, we get a partial differential equation,

$$\frac{\partial p(P|\langle k \rangle)}{\partial \langle k \rangle} = -\frac{\partial}{\partial P} \left\{ \frac{1-P}{2-(2-\alpha)P} p(P|\langle k \rangle) \right\}$$

 Solving the differential equation using the method of characteristics gives an equation for P(<k>),

$$P(\langle k \rangle) = 1 + \left(\frac{1}{1 - 2/\alpha}\right) W\left[\left(\frac{2}{\alpha} - 1\right)e^{-(1 - 2/\alpha)}e^{-\langle k \rangle/\alpha}\right]$$

General preferential attachment models do not capture experiment

Simulations verify Early Path Dominance model

Basic network properties of datasets

Ising model consistently inaccurate for subjects with $\Lambda > 0$

Ising model consistently inaccurate for subjects with $\Lambda > 0$

Ising model is accurate for subjects with $\Lambda < 0$

Minimizing $\langle s^4 \rangle$ root mean square error to identify N_{eff}

N_{eff} for different datasets and parcellations

N _{eff}	Seitzman atlas (300 regions)	No atlas (125879 voxels)
Cambridge Centre for Ageing	40	65
Human Connectome Project	40	125

Ising model to Landau theory

Fitting N_{eff} per individual is redundant to λ

81

 $-N_{\rm eff}$

Numerical solution of P_{seg} is sigmoidal across Λ

Synchrony threshold s* for defining segregated state

• Set s* such that $P_{seg} = 1/2$ at $\Lambda = 0$

Ising simulations cannot differentiate among specific degeneration mechanisms

fMRI acquisition parameters

	Field strength	Repetition time (TR)	Echo time (TE)	Flip angle	Voxel size	Number of time points
CamCAN	ЗT	1970 ms	30 ms	78°	3 x 3 x 4.44 mm ³	241
HCP	ЗT	800 ms	37 ms	52°	2 x 2 x 2 mm ³	1912
UKB	ЗT	735 ms	39 ms	52°	2.4 x 2.4 x 2.4 mm ³	490

	Age range	<age> ± sd</age>	sex	Health status
CamCAN	18 - 87	54.2 ± 18.6	323 F / 313 M	Healthy only
HCP	36 - 90	59.6 ± 14.9	380 F / 311 M	Healthy only
UKB	45-79	54.8 ± 7.4	8769 F/ 7892 M	All present

Elastic Network Models relates to Markovian random walks

MSF = mean-squared fluctuations

**Both mathematical expressions proportional to $[\Gamma^{-1}]_{aa} + [\Gamma^{-1}]_{dd} - 2[\Gamma^{-1}]_{ad}$

Elastic Network Models relates to Markovian random walks

 \cap

MSF = mean-squared fluctuations **Both mathematical expressions proportional to $[\Gamma^{-1}]_{aa} + [\Gamma^{-1}]_{dd} - 2[\Gamma^{-1}]_{ad}$

Theoretical expression for commute time matches numerics

Leading communication metrics in network neuroscience

Search information

Local deviations disperse diffusion away from the shortest path

• Requires tract lengths

Communicability

Can derive an analytical theory based on 1D Ising model to capture quantitative relationship

Commute time – FC correlation strengthens with larger coupling constant λ

Comparing commute time for Ising simulations

Commute time captures function in Wilson-Cowan simulation

Hitting time does not capture function as well

Simulated FC matrix still does not resemble a brain's FC

Top modes of commute time are better at explaining fMRI

Top modes of commute time are better at explaining fMRI

Top modes of commute time and FC perform stronger

Comparing commute time to leading metrics, left hemisphere only

Comparing commute time to leading metrics, exclude edges with no connection in structural connectivity matrix

Comparing commute time to leading metrics, only include edges with no connection in structural connectivity matrix

Commute time leading performer in another dataset

Artificially adding edges between the same region across hemispheres improves results

Coupling strength does not strongly underly structurefunction

Machine learning does much better

Sarwar et al. 2021