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A PRIMER

Core concepts



Lewis Carroll, “Sylvie and Bruno Concluded” (1893)

“…What do you consider the largest map that 
would be really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very 
soon got to six yards to the mile. Then we tried 
a hundred yards to the mile. And then came the 
grandest idea of all! We actually made a map of 
the country, on the scale of a mile to the mile!”

“Have you used it much?" I enquired.

“It has never been spread out, yet,” said Mein 
Herr: “the farmers objected: they said it would 

cover the whole country, and shut out the 
sunlight! So we now use the country itself, as its 

own map, and I assure you it does nearly as well.”René Magritte, La Trahison des images (“The Treachery of Images”, 1929)

HOW CLOSE ARE REPRESENTATIONS TO 
REALITY?

Representations cannot be a substitute for reality… or can they?



image: public domain (1908)



image: Rex FeaturesHarry Beck's Tube map (1933)



1 Objects

Relations

NETWORKS AS AN ABSTRACTION OF REALITY
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Every object has an associated set of attributes. Objects can also be 
classified based on certain common attributes.

Relations are classified based on type, direction, intensity, etc.

In general, this scenario can change over time



Wiring diagram of a human brain

image: Laboratory of Neuro Imaging and Martinos Center for Biomedical Imaging, Consortium of the Human Connectome Project



THE SEVEN BRIDGES OF KÖNIGSBERG



Can you draw these patterns 

• without taking your pen off the paper, and

• without crossing any path twice?



EULER’S SOLUTION IN 1736

Each land mass can be viewed as a 
“vertex” and each bridge as a “link”.
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Only terminal vertices can have an 
odd number of links.



GRAPHS AND NETWORKS

Euler’s work laid the foundation for 
the field of graph theory.

Any network of connections 
between entities can be analysed by 
viewing it as a graph that describes 
the manner in which a set of 
objects are connected.

Conversely, a network can simply be 
thought of as a graph where the 
objects and relations can be mapped 
to some real world setting.

image: http://social-dynamics.org/a-gephi-visualization-of-gephi-on-twitter/



FUNDAMENTAL CONCEPTS:
NODES AND LINKS

1 NODE DEGREE
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Nodes (or “Vertices”) Links (or “Edges”)

The total number 
of links associated 
with a node is its  
degree ( ).k

k = 1 k = 2

k = 3



EDGE WEIGHT
1 1
2 2
3 3
4 1
5 2
6 0.5

FUNDAMENTAL CONCEPTS:
DIRECTED AND WEIGHTED GRAPHS
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Directed graph
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Weighted graph

1
2

3
4

5

6

In a directed 
graph a node’s 
in-degree can be 
different to its 
out-degree

kout = 1
kin = 1

ktotal = 2

NODE IN-
DEGREE

OUT-
DEGREE

TOTAL 
DEGREE

1 0 1 1

2 1 2 3

3 1 1 2

4 2 1 3

5 2 1 3



SOME OTHER TYPES OF GRAPHS
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Graphs that describe relations between two 
different classes of objects are known as 
Bipartite graphs.

Graphs in which there may be different 
types of links between nodes are known as 
Multiplex graphs.
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Bipartite graphs Multiplex graph



FUNDAMENTAL CONCEPTS:
ADJACENCY MATRIX
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Adjacency matrix

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1

2

3

4

5

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 1
3 0 0 0 0 1
4 0 0 1 0 0
5 0 0 0 1 0

target

so
ur

ce

The adjacency matrix  
specifies all connections 
in the graph. If nodes  
and  are connected then 

 else .

A

i
j

Aij = 1 Aij = 0

In an undirected graph, 
the degree  of a node 
 can be obtained via:

ki
i

ki = ∑
i

Aij = ∑
j

Aij



FUNDAMENTAL CONCEPTS:
DENSITY AND SPARSITY

1 2 3 4 5 6 7 8
1 0 0 1 0 1 0 0 0
2 0 0 0 1 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 1
5 1 0 0 0 0 1 0 1
6 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1
8 0 0 0 1 1 0 1 0
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Dense graph

Sparse graph
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1 2 3 4 5 6 7 8

1 0 1 1 1 1 1 0 0
2 1 0 1 1 1 0 1 1
3 1 1 0 1 0 1 1 0
4 1 1 1 0 1 1 1 1
5 1 1 0 1 0 1 1 1
6 1 0 1 1 1 0 1 0
7 0 1 1 1 1 1 0 1
8 0 1 0 1 1 0 1 0

The density  is the 
fraction of connected 
node pairs that exist 
in the graph.

ρ

A graph is said to be 
dense if “most” of the 
possible links are 
present, and sparse if 
“most” are absent.



A walk is a route along the edges of a graph.  
In an undirected graph, an edge can be 
crossed in either direction.

The length of a walk is the number of hops 
taken along the route.

A path is a self-avoiding walk, i.e. one in 
which no edge is traversed twice.

FUNDAMENTAL CONCEPTS:
WALKS AND PATHS
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The shortest path length  between two 
nodes  and  is the minimum number of links 
one has to cross to travel between them.

dij
i j

FUNDAMENTAL CONCEPTS:
SHORTEST PATH LENGTH & DIAMETER
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i-j 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
dij 1 3 2 2 2 1 1 1 1 1

The diameter  of a network is the 
“longest shortest path” between all pairs of 
nodes  and  in the graph : .

dmax

i j max
(i,j)

(dij)
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FUNDAMENTAL CONCEPTS:
AVERAGE PATH LENGTH

The average path length is the average of the shortest path 
lengths between every pair of nodes in the graph.

For a graph comprising  nodes, the average path length is:N

L =
1

N(N − 1) ∑
i≠j

d(i, j)
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i-j 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
dij 1 3 2 2 2 1 1 1 1 1

∑
i≠j

d(i, j) = 30

i-j 2-1 3-1 4-1 5-1 3-2 4-2 5-2 4-3 5-3 5-4
dij 1 3 2 2 2 1 1 1 1 1



QUESTIONS
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What is the 
shortest path 
length between 
every pair of 
nodes?
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What is the 
diameter 
( )?dmax

What is the 
average path 
length of 
these graphs?



MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH
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#walks of length 1

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1

2
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5

1 2 3 4 5
1 1 0 0 1 1
2 0 3 2 1 1
3 0 2 2 1 1
4 1 1 1 3 2
5 1 1 1 2 3

#walks of length 2

The total number of 
walks  of length  

between a pair of 
nodes  is just  

N(1)
ij 1

(i, j) Aij

One can have 
multiple walks  of 

length  between a 
pair of nodes .

N(2)
ij

2
(i, j)
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In order to have a walk of length  
between nodes , we consider 
all the nodes of distance  from 
node # , and count how many of 
them are distance  from node # .

2
(2,3)

1
2

1 3
i.e.  

N(2)
23 = ∑

k

A2kAk3

N(d) = A A… A
d

= Ad

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH



MORE ON PATH LENGTHS:
BREADTH-FIRST SEARCH

To find the shortest path 
between nodes , we 
can follow the breadth-
first search algorithm:

(i, j)
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1. Find the neighbours (blue) of node  (green) 
from the adjacency matrix .

2. Remove the green node and make the blue 
nodes green.

3. Find the neighbours of the green nodes 
(excluding removed ones).

4. Repeat as long as there are neighbours.

i
A

distance  from node #  1 7 distance  from node #  2 7 distance  from node #  3 7



FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFICIENT

In real networks, one often finds that nodes that form links with one another 
also form links with those that the neighbour link to.

This can be measured by the (global) clustering coefficient: the fraction of paths 
of length  that are “closed” (the three nodes of the path are all connected).

A triangle of nodes connected to each other contain  closed paths.
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Thus, the global clustering coefficient is:

where a connected triple is an ordered set of three 
nodes abc, where both a and c have links to b.

C =
#triangles × 3

#connected triples



FUNDAMENTAL CONCEPTS:
LOCAL CLUSTERING COEFFICIENT

The (local) clustering coefficient of a node 
measures the extent of connectivity of its 
local neighbourhood, i.e. how close they are 
to being a “clique” or a complete subgraph.

If a node  in an undirected graph has  
neighbours, there can be a maximum of 

 links between them.

The local clustering coefficient  of node  is 
the fraction of these links that exist.

i ki

ki(ki − 1)/2

Ci i ?
?

?

1

2

3

4

5

blue nodes form a clique 



QUESTIONS

Calculate the clustering coefficients for a node in the following graphs:

ki = 4 ki = 8 ki = 6

What is the 
clustering 
coefficient of 
the blue nodes?



FUNDAMENTAL CONCEPTS:
COMPONENTS

In an undirected 
network, a pair of 
nodes  are 
connected if there 
exists a path (of any 
length) between them.

(i, j)
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5
1 2 3 4 5 6 7 8

1 0 1 0 1 0 0 0 0
2 1 0 1 1 0 0 0 0
3 0 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 0 0 0 0 1 1 1
6 0 0 0 0 1 0 1 1
7 0 0 0 0 1 1 0 1
8 0 0 0 0 1 1 1 0

A component is a 
subset of the network 
in which all nodes are 
connected.

A bridge is a link that, 
when cut, causes the 
network to be 
disconnected.
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In an directed 
network, a strongly 
connected component 
is one where exists a 
path between all 
constituent nodes.

FUNDAMENTAL CONCEPTS:
COMPONENTS
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A weakly connected 
component is a 
connected component 
that exists if one were 
to ignore the directed 
nature of the edges.

Weakly connected 
component

Strongly connected 
component

The in-component of a 
node in a directed 
network is the set that 
can reach it, and its 
out-component is the 
set that can be reached 
from it.
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in out



IDENTIFYING CONNECTED COMPONENTS

The image on the right 
displays the adjacency matrix 
of a large undirected network.

White squares represent 
connections between nodes, 
while black represents the 
absence of a link.

Can you guess the number of 
connected components of this 
network? 😳

nodes →

nodes →



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

For the case of undirected networks with no self-edges, one can define the 
graph Laplacian  as follows:  or , where the 
degree matrix  contains the degree along the diagonal and  
elsewhere.

If the network is weighted, the definition is as follows: 

L Lij = ki δij − Aij L = D − A
Dij = ki δij 0s

Lij = ∑
j

Aij δij − Aij
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Adjacency matrix

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 1 1
3 0 0 0 1 1
4 0 1 1 0 1
5 0 1 1 1 0

1 2 3 4 5
1 1 -1 0 0 0
2 -1 3 0 -1 -1
3 0 0 2 -1 -1
4 0 -1 -1 3 -1
5 0 -1 -1 -1 3

graph Laplacian



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

The number of zero 
eigenvalues of the 
laplacian indicate the 
number of connected 
components of the 
network.
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5

1 2 3 4 5
1 1 -1 0 0 0
2 -1 3 0 -1 -1
3 0 0 2 -1 -1
4 0 -1 -1 3 -1
5 0 -1 -1 -1 3

LA
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5
1 2 3 4 5 6 7 8

1 2 -1 0 -1 0 0 0 0
2 -1 3 -1 -1 0 0 0 0
3 0 -1 2 -1 0 0 0 0
4 -1 -1 -1 3 0 0 0 0
5 0 0 0 0 3 -1 -1 -1
6 0 0 0 0 -1 3 -1 -1
7 0 0 0 0 -1 -1 3 -1
8 0 0 0 0 -1 -1 -1 3

A

B
LB

, , , , 

, , , , , , , 

λA = eig(LA) =
{0 0.83 2.69 4 4.48}

λB = eig(LB) =
{0 0 2 4 4 4 4 4}



FUNDAMENTAL CONCEPTS:
THE GRAPH LAPLACIAN

1 -1 0 0 0

-1 3 0 -1 -1

0 0 2 -1 -1

0 -1 -1 3 -1

0 -1 -1 -1 3

2 -1 0 -1 0 0 0 0
-1 3 -1 -1 0 0 0 0
0 -1 2 -1 0 0 0 0
-1 -1 -1 3 0 0 0 0
0 0 0 0 3 -1 -1 -1
0 0 0 0 -1 3 -1 -1
0 0 0 0 -1 -1 3 -1
0 0 0 0 -1 -1 -1 3

1

1

1

1

1

=

1

1

1

1

1

λ

1
1
1
1
0
0
0
0

1
1
1
1
0
0
0
0

= λ

If  is an eigenvector of the Laplacian 
and  is its associated eigenvalue, 
then

A Laplacian with a single component, 
has an eigenvector  
with .

A Laplacian with a two components, 
has  and 

 both with 
.

v
λ

Lv = λv

v = [1,1,…]T

λ = 0

v = [1,1,…,0,0,…]T

v = [0,0,…,1,1,…]T

λ = 0
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The table shows the 
list of all possible 
shortest paths 
between every pair 
of nodes in the above 
network.

FUNDAMENTAL CONCEPTS:
BETWEENNESS CENTRALITY

SHORTEST PATHS

1-2 {1,2}
1-3 {1,2,5,3}, {1,2,4,3}
1-4 {1,2,4}
1-5 {1,2,5}
2-3 {2,4,3}, {2,5,3}
2-4 {2,4}
2-5 {2,5}
3-4 {3,4}
3-5 {3,5}
4-5 {4,5}

The betweenness 
centrality of a node 
measures the extent to 
which it controls 
information flow, or 
acts as a bottleneck.

To calculate a node’s 
betweenness centrality, 
we count the fraction 
of times it appears in 
the shortest paths 
between other nodes.



SHORTEST PATHS

1-2 {1,2}
1-3 {1,2,5,3}, {1,2,4,3}
1-4 {1,2,4}
1-5 {1,2,5}
2-3 {2,4,3}, {2,5,3}
2-4 {2,4}
2-5 {2,5}
3-4 {3,4}
3-5 {3,5}
4-5 {4,5}

FUNDAMENTAL CONCEPTS:
BETWEENNESS CENTRALITY

OCCURRENCES CB

1 0 0

2 2/2 + 1 + 1 3

3 0 0

4 1/2 + 1/2 1

5 1/2 + 1/2 1

If  is the no. of 
shortest paths from 
 to , and  is 

the number of these 
containing node , 
then:

is the betweenness 
centrality.

σst

s t σst(v)

v

CB(v) = ∑
s≠t≠v

σst(v)
σst



MESOSCALE STRUCTURAL FEATURES

CORE-PERIPHERY ORGANIZATION

The nodes of the highest -core are 
referred to as core nodes and others 
are peripheral nodes. 

A core need not be a single connected 
component.

k3

3

2

3

3

1

2

1

1
3

Stephen Seidman

The -core is the 
defined* as the set of 
nodes of the network 
within which each 
node has  links with 
each other.

k

k

* SB Seidman, Soc. Networks 5(3), 269 (1983)



MESOSCALE STRUCTURAL FEATURES

MODULARITY

There is typically no single modular structure for a given network. Upon 
positing a potential “decomposition”, one then measures the extent to 
which such an organisation is modular. Obtaining the globally optimal 
decomposition requires techniques such as simulated annealing.

image: https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae

A network is said to have 
a modular structure if 
there exist groups (or 
“communities”) of nodes 
that have a higher density 
of connections than that 
between groups.



MESOSCALE STRUCTURAL FEATURES

HIERARCHY

A network is said to have a hierarchical 
structure if there exists “layers” of 
nodes, such that the density of 
connections between consecutive layers 
is higher than that within layers, or 
between non-consecutive layers.

Similar to the process of modularity 
detection one can use heuristic 
algorithms* to determine the 
hierarchical levels of a given network.

* Pathak, A., Menon, S. N. and Sinha, S., PNAS 121, e2314291121 (2024).



WHY STUDY RANDOM GRAPHS?

Random graphs provide 
null models against which 
we can test certain 
hypotheses.

Once the key attributes of 
the network responsible 
for certain properties have 
been identified it is then 
possible to generate 
numerous surrogate 
networks that can be used 
in place of the empirical 
network for further study.



In 1959 a model was 
proposed for generating a 
random graph comprising 
 nodes.

Assign a random number 
between [0,1] to every 
potential link.

Keep only those links 
whose values are less than 
a specified threshold 

.

n

p ∈ [0,1]

0.81

0.92

0.72

0.85

0.62
0.72

p = 0.6

0.39

0.53

0.45

0.32
0.49

0.36

p = 0.3

0.210.17

0.25

0.05

0.28

0.22

GENERATIVE NULL MODELS

CREATING A RANDOM GRAPH



GENERATIVE NULL MODELS

ERDŐS-RÉNYI RANDOM GRAPHS
This is known as the  
model, and the resulting graphs 
are commonly referred to as 
Erdős-Rényi (ER) random 
graphs

For certain choices of , the 
resulting graph may have 
multiple connected 
components.

The degree distribution (the 
probability  that a randomly 
selected node in the network 
has degree ) is a binomial 
distribution.

G(n, p)

(n, p)

p(k)

k

Pál Erdős Alfréd Rényi Edgar Gilbert

image: By Vonfrisch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3469734



In a network of  nodes, a node has independent 
probabilities of connecting to each of the other  
nodes.

There are  ways of 

choosing  out of  nodes.

The probability of connecting to  nodes and not to 
the other  nodes is hence: .

Thus, given that, the probability that a node connects 
to  nodes follows a binomial distribution:

n
n − 1

(n − 1
k ) =

(n − 1)!
k!(n − 1 − k)!

k n − 1

k
n − 1 − k pk (1 − p)n−1−k

k

p(k) = (n − 1
k )pk (1 − p)n−1−k

GENERATIVE NULL MODELS

ERDŐS-RÉNYI RANDOM GRAPHS

In the limit  and for , we see that this expression reduces to a Poisson distribution:

, where 

n → ∞ np = constant

p(k) =
(np)ke−np

k!
=

λke−k

k!
λ = np



GENERATIVE NULL MODELS

WATTS-STROGATZ NETWORKS

image:  D Watts & S Strogatz, Nature 393, 440-442 (1998).

Watts and Strogatz (1998) suggested a procedure for obtaining graphs with properties of both 
regular and random graphs:

• Start with a regular graph where each node has  neighbours.

• Cycle through each node, and consider the  rightward links.

• Randomly rewire each of these links with probability , avoiding self-loops and duplicate links.

K

K /2
p

Duncan J. Watts Steve Strogatz



GENERATIVE NULL MODELS

WATTS-STROGATZ NETWORKS
For an intermediate  the 
resulting graphs have

• low average path length 

• high clustering coefficient 
These are referred to as 
“small-world” networks.

For the C. elegans connectome, 
when comparing the empirical 
data to a random surrogate 
network of same  and 

, they found that 
 and  .

p

L
C

n( = 282)
⟨k⟩( = 14)
Lemp > Lrand Cemp > Crand

image:  D Watts & S Strogatz, Nature 393, 440-442 (1998).

LEMP LRAND CEMP CRAND

2.65 2.25 0.28 0.05



“Everybody on this planet is separated by only six 
other people. Six degrees of separation. Between us 
and everybody else on this planet. The president of 
the United States.  A gondolier in Venice. Fill in the 
names.”

“The worker knows the manager in the shop, who 
knows Ford; Ford is on friendly terms with the 
general director of Hearst Publications, who last year 
became good friends with Árpád Pásztor, someone I 
not only know, but is to the best of my knowledge a 
good friend of mine - so I could easily ask him to 
send a telegram via the general director telling Ford 
that he should talk to the manager and have the 
worker in the shop quickly hammer together a car for 
me, as I happen to need one.”

Frigyes Karinthy, “Láncszemek (Chains)” (1929).

John Guare, “Six Degrees of Separation” (1990).



image: https://oracleofbacon.org

Six degrees of Kevin Bacon

Collaborative 
“distance” between an 
author and Pál Erdős.

Erdős number



The Barabási-Albert (BA) model employs a 
mechanism of network growth and preferential 
attachment, and leads to scale-free random 
graphs with power law degree distributions.

Starting with  nodes, at each step add 
a new node and connect it to  
existing nodes.

The probability of connecting to an 
existing node  is 

m0
m( ≤ m0)

i p(ki) = ki /Σj kj

GENERATIVE NULL MODELS

BARABÁSI-ALBERT NETWORKS

Derek J. de

Solla Price

image: AL Barabási, “Network Science” (http://networksciencebook.com/)

m0 = 2
m = 2

highest  k highest  k

power law distribution

log10(k)

lo
g 1

0(
P(

k)
)

P(k) ∼ k−γ

Albert-László

Barabási

Réka Albert



After  time steps, the total number of links in the 
network is .

The rate at which the degree of node  changes is:

Solving this equation, we get

When node  first joins the network at  is has degree 
, and so . Hence,

t( ≫ 1)
≈ 2mt

i
dki

dt
= mp(ki) =

mki

Σj kj
≈

ki

2t

ln(ki) =
1
2

ln(t) + C ⟹ ki(t) = At1/2

i ti
ki(ti) = m A = m /t1/2

i
ki(t) = m(t/ti)1/2

GENERATIVE NULL MODELS

BARABÁSI-ALBERT NETWORKS

For a node to reach a degree  at time , it would need to be added at time .

The number of nodes with  is hence  as one node is added each unit time.

Hence, the cumulative distribution function is , and by definition the probability distribution 

is just: , i.e. a power law with degree exponent .

k t ti = t(m /k)2

ki(t) ≥ k Nk = ti = t(m /k)2

P(ki ≥ k) = Nk /t
p(k) =

d
dk (P(ki ≤ k)) =

d
dk (1 − P(ki ≥ k)) = 2m2k−3 3



NULL MODELS FROM REWIRING

MASLOV–SNEPPEN ALGORITHM
One of the most widely used network null models, 
especially in the context of brain network analysis, is 
the degree-preserved randomized network, which is 
typically obtained using the Maslov–Sneppen rewiring 
algorithm*:

• At each step we select at random two edges AB and 
CD.

• If A, B, C and D are all distinct nodes, and neither of 
the links AD or BC exist, we create them and delete 
the links AB and CD. Otherwise we select two new 
random edges.

• We perform this procedure a large number of times 
(many more than the total no. of links). 

Every node in the resulting network has the same 
degree sequence as before the rewiring procedure.

* S Maslov & K Sneppen, Science 296 296 (2002).
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NULL MODELS FROM REWIRING

MODULE-PRESERVED NETWORKS
While the Maslov-Sneppen algorithm yields random 
degree-preserved (RD) networks, the procedure can be 
modified to ensure that the number of links within each 
module are also preserved. To obtain these random 
degree-preserved module-preserved (RDM) networks:

• At each step we select at random two edges AB and 
CD.

• If A, B, C and D are all distinct nodes, where A & C 
are in the same module, B & D are in the same 
module, and neither of the links AD or BC exist, we 
create them and delete the links AB and CD. 
Otherwise we select two new random edges.

Note that does not necessarily guarantee that the 
module membership will remain intact, simply that the 
module densities are unchanged.

A

A

B

C

C

D

D

B

modules



NULL MODELS FROM REWIRING

RANDOMIZED ENSEMBLES 
Using this procedure one can create ensembles of 
randomised networks, all of which have exactly 
the same preserved properties as the original 
empirical network (degree, module density, etc).

This allows us to perform our analyses on a large 
number of networks that are surrogates for the 
original one.

If we have some measure  on the empirical 
network and  on the  random network, 
then one can measure its z-score:

This tells us the extent to which the measured 
value is more or less than what would be 
expected from random (with certain properties 
preserved).

ϕemp
ϕi

rnd ith

z =
ϕemp − ⟨ϕi

rnd⟩
σ2(ϕi

rnd)

.

.

.
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network
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