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HOW CLOSE ARE REP
REALI

LCeci nest nos une fufle.

Moguise

René Magritte, La Trahison des images (“The Treachery of Images”, 1929)

%

"\

-SENTATIONS TO
(!

“...What do you consider the largest map that
would be really useful?”

“ About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very
soon got to six yards to the mile. Then we tried
a hundred yards to the mile. And then came the
grandest idea of all! We actually made a map of

'Il

the country, on the scale of a mile to the mile
“Have you used it much?" I enquired.

“It has never been spread out, yet,” said Mein
Herr: “the farmers objected: they said it would
cover the whole country, and shut out the
sunlight! So we now use the country itself, as its
own map, and I assure you it does nearly as well.”

Lewis Carroll, “Sylvie and Bruno Concluded” (1893)

Representations cannot be a substitute for reality... or can they!?



image: public domain (1908)
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‘Harry Beck's Tube map (I933)‘
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NETWORKS AS AN ABS

In general, this scenario can change over time

RAC

[ON OF REALI

& Objects

—_— Relations

Every object has an associated set of attributes. Objects can also be
classified based on certain common attributes.

Relations are classified based on type, direction, intensity, etc.




image: Laboratory of Neuro Imaging and Martinos Center for Biomedical Imaging, Consortium of the Human Connectome Project
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Can you draw these patterns

* without taking your pen off the paper, and

* without crossing any path twice!?




ULER'S SOLUTION IN 1736
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Each land mass can be viewed as a Only terminal vertices can have an
“vertex” and each bridge as a “link”. odd number of links.




GRAPHS AND NETWORKS

Euler’s work laid the foundation for
the field of graph theory.

Any network of connections
between entities can be analysed by
viewing it as a graph that describes
the manner in which a set of
objects are connected.

Conversely, a network can simply be
thought of as a graph where the
objects and relations can be mapped
to some real world setting.

st e
g
e

image: http://social-dynamics.org/a-gephi-visualization-of-gephi-on-twitter/



FUNDAMENTAL CONCEPTS:
NODES AND LINKS

G NODE DEGREE

1 1

o O .

3 2

i = .

£y s |
Nodes (or “Vertices”) Links (or “Edges”)

k=23

The total number
of links associated
with a node is its

degree (k).



FUNDAMENTAL CONCEPTS:
DIRECTED AND WEIGHTED GRAPHS

Directed graph Weighted graph

EDGE WEIGHT

1 1

2
3
1
2

(o) RN O) BEEF SN CO I\

0.5

NODE INE OUT- TOTAL

DEGREE DEGREE DEGREE |n a directed

1 0 1 1

graph a node’s
in-degree can be
different to its
out-degree

OO B~ WD
N N —
—_ A N
W W N W




SOME OTHER TYPES OF GRAPHS

Graphs that describe relations between two

different classes of objects are known as
Bipartite graphs.

Graphs in which there may be different
types of links between nodes are known as
Multiplex graphs.

Bipartite graphs

Multiplex graph



FUNDAMENTAL CONCEPTS:
ADJACENCY MATRIX

Adjacency matrix

1 2 3 4 5 The adjacency matrix A
1 1 specifies all connections
2 | 1 1 1 in the graph. If nodes 1
3 1 1 and j are connected then
4 11 1 Aj=lelse A; =0.
5 1 1 1

target > In an undirected graph,
the degree k; of a node
I can be obtained via:

1
2

j 1 1 ki:ZAzj:ZAij
5 : J

source




FUNDAMENTAL CONC
D SPARS

DENSITY AN

Dense graph

= lIN}
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—t | b | —h |k
—

—
—t | ek | b | ek |k
—

0N O Ok WON =

The density p is the
fraction of connected
node pairs that exist
in the graph.

A graph is said to be
dense if “most” of the
possible links are
present, and sparse if
“most” are absent.



FUNDAMENTAL CONCEPTS:

WALKS AND PA

Walk

HS

A walk is a route along the edges of a graph.
In an undirected graph, an edge can be
crossed in either direction.

The length of a walk is the number of hops
taken along the route.

A path is a self-avoiding walk, i.e. one in
which no edge is traversed twice.



FUNDAM

-NTAL CONCEPTS:

SHORTES

PA

H LENGTH & DIAM

-R

- 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
di 1 3 2 2 2 1 1 1 1 1

The shortest path length d;; between two

nodes 7 and J is the minimum number of links
one has to cross to travel between them.

The diameter d_,, of a network is the
“longest shortest path” between all pairs of

nodes i and j in the graph : max(d,).
(1,))
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1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

djj

1 3 2 2 2 1 1 1 1 1

-j 2-1 3-1 4-1 5-1 3-2 4-2 5-2 4-3 5-3 5-4

dij

1 3 2 2 2 1 1 1 1 1

2, dG. j) =30
i#j

The average path length is the average of the shortest path
lengths between every pair of nodes in the graph.

For a graph comprising NV nodes, the average path length is:

1 .
L=qw—n 246D

i7]




QUESTIONS

What is the

shortest path What is the
length between diameter
every pair of (d2x)!

nodes?

What is the

average path

length of ‘/I N &7
these graphs!?




MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH

#walks of length |

1 2 3 4 5

1 1 The total number of
(1)

2 | 1 1 1 walks Nl.j of length 1

3 11 between a pair of

4 L 1 nodes (i, j) is just A;;

5 1 1 1

#walks of length 2

1 2 3 4 5
1|1 1 1 One can have
2 3 2 1 1 multiple walks N;.z) of
3 2 length 2 between a
(3 (5 nll LI L L pair of nodes (i, j).
51 1 1 2 3




MORE ON PATH LENGTHS:
TOTAL NUMBER OF WALKS OF A GIVEN LENGTH

1 2 3 4 5 1 3 4 5

—+ I N

—_—t A

w

—

—
OOk~ WO N =
—_ -

—_ -

In order to have a walk of length 2 N(z) — ZAZkAkS
between nodes (2,3), we consider

all the nodes of distance 1 from
node #2, and count how many of ie. N =AA... A=A"

=~

them are distance 1 from node #3. T




MOR

BREA

- ON PATH LENGTHS:

D

H-FIRS

distance 1 from node #7/

S

-ARCH

distance 2 from node #7/ distance 3 from node #7/

o

6/7—8

To find the shortest path
between nodes (i, j), we

can follow the breadth-
first search algorithm:

|. Find the neighbours (blue) of node i (green)
from the adjacency matrix A.

2. Remove the green node and make the blue
nodes green.

3. Find the neighbours of the green nodes
(excluding removed ones).

4. Repeat as long as there are neighbours.



FUNDAMENTAL CONCEPTS:
CLUSTERING COEFFCIEN

In real networks, one often finds that nodes that form links with one another
also form links with those that the neighbour link to.

This can be measured by the (global) clustering coefficient: the fraction of paths
of length 2 that are “closed” (the three nodes of the path are all connected).

A triangle of nodes connected to each other contain 3 closed paths.

Thus, the global clustering coefficient is:

#Htriangles X 3

#connected triples

where a connected triple is an ordered set of three
nodes abc, where both a and ¢ have links to b.




FUNDAMENTAL CONCEPTS:
LOCAL CLUSTERING COEFFHCIEN

blue nodes form a clique

The (local) clustering coefficient of a node
measures the extent of connectivity of its
local neighbourhood, i.e. how close they are
to being a “clique” or a complete subgraph.

If a node i in an undirected graph has k,

neighbours, there can be a maximum of
ki(k. — 1)/2 links between them.

The local clustering coefficient C; of node i is
the fraction of these links that exist.




QUESTIONS

What is the
clustering
coefficient of
the blue nodes!?

Calculate the clustering coefficients for a node in the following graphs:

oToodeZuZends
ZeoZeZugeds
oSeofedecdente

oZoofeluded




FUNDAMENTAL CONCEPTS:
COMPONENTS

1 2 3 4 5 6 7 8

1 1

21 1 1

3 1 1

411 1 1

) 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1
In an undirected
network, a pair of A component is a A bridge is a link that,
nodes (i, j) are subset of the network when cut, causes the
connected if there in which all nodes are network to be
exists a path (of any = connected. disconnected.

length) between them.




FUNDAMENTAL CONCEPTS:

COMPONEN

In an directed
network, a strongly

S5

Weakly connected
component

Strongly connected
component

A weakly connected
component is a

connected component connected component

is one where exists a
path between all
constituent nodes.

that exists if one were
to ignore the directed
nature of the edges.

The in-component of a
node in a directed
network is the set that
can reach it, and its
out-component is the
set that can be reached
from it.




DENTIFYING CONNECTED COMPONENTS

nodes —

The image on the right
displays the adjacency matrix
of a large undirected network.

White squares represent
connections between nodes,
while black represents the
absence of a link.

< sapou

Can you guess the
of this

network?



FUNDAMENTAL CONCEPTS:

HE GRAPH LAPLACIAN

Adjacency matrix graph Laplacian
1 2 3 4 5 1 2 3 4 5
1 1 11 -1
2 | 1 1 1 2 -1 3 -1 -1
3 1 1 3 2 -1 -1
4 1| 1 1 4 -1 -1 3 -1
5 1011 5 -1 -1 -1 3
For the case of undirected networks with no self-edges, one can define the

I Vij
degree matrix D;; = k; 0;; contains the degree along the diagonal and Os

elsewhere.

graph Laplacian L as follows: L;; = k; 6; — A;; or L = D — A, where the

If the network is weighted, the definition is as follows: L;; = ZAU' 0; — Ajj

J



FUNDAMENTAL CONC

= lIN}

HE GRAPH LAPLACIAN

0N Ok W N =

LA
1 2 3 4 5
111 -1
21-1 3 1 -1
3 2 -1 -1
4 1 -1 3 -1
5 1 -1 -1 3
LB
1 2 3 4 5 6 7 8
2 1-1] 0 |-1
1|3 [-1]-1
1|2 |-1
1-1-13

The number of zero
eigenvalues of the
laplacian indicate the
number of connected
components of the
network.

Ay = eig(Ly) =
{0,0.83,2.69,4,4.48}

Ag = eig(Lg) =
{0,0,2,4,4,4,4,4}
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QWO 4O a4 a4

1 1 1
— —_—k — w

1 | 1
—_ —_ w —_k

I o
a W a4 4

1 1 1
w —_— — —k

—_—t | A | A | A | A

= lIN}

If v is an eigenvector of the Laplacian

and 4 is its associated eigenvalue,
then

Lv=Av

A Laplacian with a single component,
has an eigenvector v = [1.1,...17

with 4 = 0.

A Laplacian with a two components,
has v =[1,1,...,0,0,...]" and

v =[0,0,...,1,1,...]" both with
A=0.



FUNDAMENTAL CONCEPTS:
BE TWEENNESS CENTRALITY

SHORTEST PATHS The betweenness

1-2 {1,2} centrality of a node

1-3 | {1,2,5,3}, {1,2,4.3 measures the extent to

) { } { } which it controls

-4 AL information flow, or

1-5 {1,2,5} acts as a bottleneck.

2-3 {2,4,3}, {2,5,3}
The table shows the 2.4 {2.4} To calculate a node’s
list of all possible 5.5 {2 5) betweenness centrality,
shortest paths ’ we count the fraction
between every pair 3-4 {3,4} of times it appears in
of nodes in the above 3-5 {3,5} the shortest paths
network 4-5 (4,5 between other nodes.




FUNDAMENTAL CONCEPTS:
BE TWEENNESS CENTRALITY
1-2 {1,2}
1-3  {1,2,5,3}, {1,2,4,3} 1 0
1-4 {1,2,4}
1-5 {1,2,5} 2 2/2+1+1
2-3 {2,4,3}, {2,5,3}
2.4 (2.4 3 0
2-5 {2,5}
3.4 (3.4) 41 1/2 +1/2
22 Sgi 5| 1/2 +1/2

0

3

If o, is the no. of
shortest paths from
s to f,and o (V) is
the number of these
containing node v,
then:

6,(v)
Cov) = ) —
SEIFV Ost

is the betweenness
centrality.



MESOSCALE STRUCTURAL FEATURES

CORE-PERIPHERY ORGANIZATION

/73
1 ,
3

* SB Seidman, Soc. Networks 5(3),269 (1983)

The k-core is the
defined™ as the set of
nodes of the network
within which each
node has k links with
each other.

Stephen Seidman

The nodes of the highest k-core are
referred to as core nodes and others
are peripheral nodes.

A core need not be a single connected
component.



MESOSCALE STRUCTURAL FEATURES

MODULARITY

A network is said to have
a modular structure if
there exist groups (or
“communities”) of nodes
that have a higher density
of connections than that
between groups.

There is typically no single modular structure for a given network. Upon
positing a potential “decomposition”, one then measures the extent to
which such an organisation is modular. Obtaining the globally optimal
decomposition requires techniques such as simulated annealing.

image: https://towardsdatascience.com/community-detection-algorithms-9bd895 | e7dae



MESOSCALE STRUCTURAL FEATURES

HIERARCHY

A network is said to have a hierarchical
structure if there exists “layers” of
nodes, such that the density of
connections between consecutive layers
is higher than that within layers, or
between non-consecutive layers.

Similar to the process of modularity
detection one can use heuristic
algorithms™ to determine the
hierarchical levels of a given network.

%

°
®

* Pathak,A., Menon, S. N. and Sinha, S., PNAS 121,e2314291121 (2024).




WHY STUDY RANDOM GRAPHS?

Random graphs provide
null models against which
we can test certain
hypotheses.

TN
“-m\Ylg < =,\

Once the key attributes of
the network responsible
for certain properties have

)
.
=

D) 2K

v

A

. . . c ‘ MY e, oo/ N
been identified it is then vl bl e

il

possible to generate
numerous surrogate
networks that can be used
in place of the empirical
network for further study.




GENERATIVE NULL MODELS

CREATING A RANDOM GRAPH

In 1959 a model was
proposed for generating a
random graph comprising
n nodes.

Assign a random number
between [0,] to every
potential link.

Keep only those links
‘ whose values are less than
a specified threshold

p € [0,1].

0.28




GENERATIVE NULL MODELS

"RDOS-RENY!I RANDOM GRAPHS

This is known as the G(n, p)
model, and the resulting graphs
are commonly referred to as
ErdGs-Rényi (ER) random
graphs

For certain choices of (7, p), the )4
resulting graph may have Alfréd Rényi Edgar Gilbert
multiple connected
components.

The degree distribution (the . .
probability p(k) that a randomly L :
selected node in the network I Lo

has degree k) is a binomial | \ |
distribution. o )

image: By Vonfrisch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3469734



GENERATIVE NULL MODELS

"RDOS-RENY!I RANDOM GRAPHS

In a network of n nodes, a node has independent
probabilities of connecting to each of the other n — 1
nodes.

n—1\  (@m—-1)!
Ckl(n—=1—=k)!

choosing k out of n — 1 nodes.

There are ways of

The probability of connecting to k nodes and not to
the other n — 1 — k nodes is hence: p* (1 — p)*~1=K.

Thus, given that, the probability that a node connects
to k nodes follows a binomial distribution:

n—1
p(k) = . p (1 —p)y=I=k

In the limit 7 — oo and for np = constant, we see that this expression reduces to a Poisson distribution:
(np)e™  Akek
kKo k!

,Where 4 = np

p(k) =



GENERATIVE NULL MODELS

WAIT TS-STROGATZ NETWORKS

Regular Small-world

1% \

p=0 : » p=1 Duncan J. Watts Steve Strogatz
Increasing randomness

Watts and Strogatz (1998) suggested a procedure for obtaining graphs with properties of both
regular and random graphs:

Start with a regular graph where each node has K neighbours.
Cycle through each node, and consider the K/2 rightward links.

Randomly rewire each of these links with probability p, avoiding self-loops and duplicate links.

image: D Watts & S Strogatz, Nature 393, 440-442 (1998).




GENERATIVE NULL MODELS

WAIT TS-STROGATZ NETWORKS

For an intermediate p the
resulting graphs have

low average path length L
high clustering coefficient C

These are referred to as
“small=-world’ networks.

For the C. elegans connectome,
when comparing the empirical
data to a random surrogate
network of same n( = 282) and
(k)( = 14), they found that

Lemp > Lrand and Cemp > Crand :

Lemp  LranD  Cemp  CrAND

265 225  0.28 0.05

Regular Small-world Random
T T al -
L = = O
_.
~ ®
08| C(p)/ C(0) " -
L ®
: O
0.6 - -
B ®
04 - 7
' L(p) / L(O *
ool (p) / L(0) . _
! ° -
- [ Y PY ° ]
0 I 1 ll 1 ll ll L1l l;
0.0001 0.001 0.01 0.1 1
p

image: D Watts & S Strogatz, Nature 393, 440-442 (1998).




“The worker knows the manager in the shop, who

knows Ford; Ford is on friendly terms with the ) ) )
“Everybody on this planet is separated by only six

general director of Hearst Publications, who last year . .
other people. Six degrees of separation. Between us

became good friends with Arpad Pésztor, someone I _ .
and everybody else on this planet. The president of

not only know, but is to the best of my knowledge a . o . o
the United States. A gondolier in Venice. Fill in the

good friend of mine - so I could easily ask him to B
names.

send a telegram via the general director telling Ford

that he should talk to the manager and have the John Guare,“Six Degrees of Separation” (1990).
worker in the shop quickly hammer together a car for

me, as | happen to need one.”

Frigyes Karinthy,“Lancszemek (Chains)” (1929).



Six degrees of Kevin Bacon
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GENERATIVE NULL MODELS

BARABASI-ALBRERT NETWORKS

The Barabasi-Albert (BA) model employs a
mechanism of network growth and preferential
attachment, and leads to scale-free random
graphs with power law degree distributions.

Starting with m nodes, at each step add

a new node and connect it to m( < m)
existing nodes. o Y s N |
g (7 " ',f,o‘:; i’-%%??\ ‘ (r w

* X N A e
j i; s 2% LT N s it

.
oy
~~~~~

Th.e |.DI"ObabI|It).’.Of connecting to an e A2 Réka Albert Derek J. de
existing node i is p(k;) = kl-/ijj Barabasi Solla Price
| highest k highest k A
my = 2/9 / A A 7\ 5
4 / i “*//' X /')Z ) e —7
\ | \ | "\ | N - P(k) ~ k
¥ . . . =
2
R —
K\__ 1'1 \><///
~7I\ =0 \ \‘L/—#\‘i. >
A P P log, (k)
NE A (2 NN ™S
\ / \‘ . \,*,
power law distribution

image: AL Barabasi, “Network Science” (http://networksciencebook.com/)




GENERATIVE NULL MODELS

BARABASI-ALBRERT NETWORKS

After t( > 1) time steps, the total number of links in the
network is ~ 2mt.

The rate at which the degree of node i changes is:
mk;,  k

l

Sk 2

dkl- )
—=m L) =
dt P

Solving this equation, we get
1
In(k,) = 5 In(r) + C = k(1) = Ar'?

When node i first joins the network at 7, is has degree
k(t) =m,and so A = m/tl.l/z. Hence,

k(1) = m(t/t,)"?

For a node to reach a degree k at time 7, it would need to be added at time ¢; = t(m/k)?.

The number of nodes with k(f) > k is hence N, = t, = t(m/k)? as one node is added each unit time.

Hence, the cumulative distribution function is P(k; > k) = N, /t,and by definition the probability distribution
d d
is just: p(k) = i (P(k- < k)) = T (1 — P(k; > k)) = 2m?k =3, i.e.a power law with degree exponent 3.



NULL MODELS FROM REWIRING

MASLOV-SNEPPEN ALGORITHM

One of the most widely used network null models,
especially in the context of brain network analysis, is
the degree-preserved randomized network, which is
typically obtained using the Maslov—Sneppen rewiring
algorithm’:

At each step we select at random two edges AB and
CD.

If A, B, C and D are all distinct nodes, and neither of
the links AD or BC exist, we create them and delete
the links AB and CD. Otherwise we select two new
random edges.

We perform this procedure a large number of times
(many more than the total no. of links).

Every node in the resulting network has the same

@ @ @ @ degree sequence as before the rewiring procedure.

*S Maslov & K Sneppen, Science 296 296 (2002).




NULL MODELS FROM REWIRING

MODULE-PRESERVED NETWORKS

While the Maslov-Sneppen algorithm yields random
degree-preserved (RD) networks, the procedure can be
modified to ensure that the number of links within each
module are also preserved. To obtain these random
degree-preserved module-preserved (RDM) networks:

At each step we select at random two edges AB and
CD.

If A, B, C and D are all distinct nodes, where A & C
are in the same module, B & D are in the same
module, and neither of the links AD or BC exist, we
create them and delete the links AB and CD.
Otherwise we select two new random edges.

Note that does not necessarily guarantee that the

module membership will remain intact, simply that the
module densities are unchanged.



NULL MODELS FROM REWIRING

RANDOMIZED ENSEMBLES

Using this procedure one can create of
randomised networks, all of which have exactly
the same preserved properties as the original
empirical network (degree, module density, etc).

This allows us to perform our analyses on a large
number of networks that are surrogates for the
original one.

If we have some measure ¢, on the empirical

emp

network and ¢! , on the i”" random network,
then one can measure its

d)emp o <¢1£nd >
62(¢7{nd )

Z:

empirical
This tells us the extent to which the measured network
value is more or less than what would be

expected from random (with certain properties

preserved).
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