Singularities of the Position Space
Green Functions: A Derivation of the
Light Cone ExXpansion

I: Introduction

Analysis of singularities of Green functions in mo-
mentum space has been very useful in the study of asym-
ptotic behavior of the scattering amplitudes. In
perturbation theory, for an approximate calculation of
the leading behavior in a certain asymptotic region, one
needs to determine: a) what regions of the integration
space of an appropriate Feynman itegral are important,

and b) how the corresponding integrand behaves in these

regions. The answer to a) is provided by the Landau

equation(l) while b) is usually determined by some suit-

able power counting procedure. Different interpretations
{2)

of the Laudau equations were given by different workers B
so as to make them easy to apply. ©Of these, the very in-
tuitive interpretation of these equations--a physical
picture interpretation--given by Coleman and Norton,(z).
has been used extensively in the analysis of mags~
divergences . (or mass-singularities as referred to in the

Part I), for example, in the work of reference (3). It

is of some curiosity to see how far a similar analysis
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can be carried out for the Green function in position

. space. Since the mementum space Green functions are the
Fourier transforms of the position space Green functions,
we may expect to see a correspondence between the singu-
larities (in the external variables) of the former and

the singularities (in the external variables) of the
later. In the study presented below, a parallel analy-
sis is carried out for the position space Green functions.
In particular, we obtain an analogue of the Landau egua-
tions and give a physical picture interpretation of these.
As a simple application of this development, we present
a simple, formal derivation of the light-cone expansion.
The sections are organized as follows.

In Section II, an analogue of the Laundau equations
is derived and a physical picture interpretation of these
is given. The singularities of the two point and the
three point Green functions are considered using the phys-
ical picture, and a light-cone expansion is suggested.

In Section III, power counting rules are developed

and used to give a formal derivation of the light-cone

(4)

' "three point

expansion for "two point functions,'
functions" and a product of two "currents." The short
distance limit along the light cone is also considered.

For simplicity the entire analysis is carried out
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for theories with scalar particles only. The extension
to include fermions and vector particles is indicated in

Section 1V.
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IT1: "Landau Equations"” and their "Physical
Interpretation®

the
For simplicity and definiteness, we consider}\¢4

theory. Extension to other theories with fermions, vector
particles, derivative couplings, etc., will be considered
in Section IV.
We recall that the Green functions in position space,

Gy (K==~ %} r are defined as the vacuum expectation values
of the time-ordered products of fields, ¢(x:},im1~~“vﬂ-
In perturbation theory, these are given by an infinite

sum of the Feynman integrals constructed from the corres-—

ponding Feynman diagrams using the appropriate Feynman

rules. We write the generic contribution to Gm (xl...xm)
as
Gy, (Xgem%m) o fdty ooodt oAl (s (2.1)
ot mi o Y =mm2 Y, g F Vi) P NEe
where §yi = Zj - Zk and Z; denotes an internal or an ex-

ternal point. The total number of internal vertices is
n, and the total number of propagators is N. The y in-
tegrals are contour integrals and are assumed to exist

for some real values of Xyeo o X and real values of Yq---
Y, We are interested in studying the singularities en-

countered in the analytic continuation of Gm (Xl"'xm)'

The mathematical technique for studying the
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singularities of integral repfesentations is well known

(5)

and a good discussion is given by Eden el al, The
technique may be summarized as [ollows:
Let T (leszm) be a function defined as
T(zg-- 2, = S Erl dwi glzg-m-Zm; Wy-wWy) ... (2.2.)

where H is a "hypercontour” in the complex, n~dimensional
space of the variables, gi’ Let the singularities of
g (%3’ %1) be given by various equations,

Splzy;, Wiy =0 , vr=11,2--- el (2.3)

Let the boundaries of the hypercontour be given by

ot

'...g
S, lzy,wi) =0, ¥yi=1,2 -~ oe.(2.4)
Let &rrﬁ;, be non-negative real numbers correspond-
ing to Sr and Sr" respectively.

Now, in general, as {z zm) take different values,

17
the singularity surfaces move around and may approach
the hypercontour, H . In general, one may deform the
hypercontour away from the approaching singularity sur-

faces. However, for certain values (z '"'Zm)’ it becomes

1
impossible to avoid the singularity surfaces. The hyper-
contour is then said to be trapped. When this happens,

the integral representation {eqguation (2.2)] cannot, in

general, be used for analytic continuation of f (Zl'°°zm)
* * a * * . .
to (zl...zm) an (zl...zm) is then said to be a singular

point of f (zi...zm).
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If (zi..,zm) be a singular point of f (zi) and

* *
W w (Wl°"°wn) be a point where the hypercontour is trapped,

then the following equations hold.

* *
1) C’(r Sr (Zi, Wi) = o for each r, = qr = O or
= 0
r
P * * L] r
2) v S (er W.) = o for each r , = X, or
Sr,~ 0 (2.5)
3 2 S(*W)&Z’Ng(* )
Bwk [Z; G{:t:' r zj’ i Y"‘ m(‘r' ! zjr Wi]—o
*
Wz W ot w. = w,
i i
Wz w for each W

-
Notice that equation (2.5) depends on the singularity
surfaces of g (%ia._gk) and not on any other details of
g (%i’ii%k)° Also it does not depend upon the precise
form of the singularities (i.e., upon whether they are
poles or branch points, etc.}. Hence, in order to .apply
this result to a given integral representation, we need
to know only the location of the singular points of the
integrand,

The Feynman propagator,glF (x 2 m2), has a singular-

£

ity only on the light cone, x2 = 0. In fact, near x2 = 0

it behaves as
_S(x®) 44 i

2 L F—. % i i

Ap (X517 5356, G Gt X%
+o(xt) Mk L imE in (m /X)L (2.6)

1¢ 17 3TE 2

Now it is very easy to write down the necessary
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conditions for the singularities of the integqgral repre-

. sentation given in equation (2.1). For the hypercontour

of equation (2.1) there are no boundary surfaces, and the

singularity surfaces of the integrand are given by Syiz =

oji = 41...N. Using these we write the necessary condi-

tions for trapping of the hypercontour as

There exists o 2 o {not all %i = 0), i = 1...N such
that
i) oL 53?‘2:0 i.e. o; =0  or Ey?::o
N
iiy 2. Ay SYyr 1 =0, Vist--n, p=o-=3..(2.7)
oy M ['.%1 oY ] !
- Iy v
ii 3 (6 Y, ...02.8
i) = 2 4 (B Yy, : ( )
{=4 'a\j{i :
Clearly, J
k) . - .
3 SM 1'{:' ‘S}_-Jl- “H}"ZK J#:k
2 (84 - v )
SYF =8 by =7y 4 o (2.9)
0 it by, = Zl*’ZK jFEF K, L -
If we adopt the convention that while differentiating
w. r. t. the vertex 7j, we take y, = Zi - yj, then equation

(2.8) implies
/

g: %i (Zi-“yj)M =0 where 1 runs only over those
vertices which are connected to Yj by a Feynman propagator.
Hence, we write the analogue of "Landau egquations" for the
position space Green functions in perturbation theory as

_ 2 _
1) %i = 0 or (Syi) = o0,i = 1...N
' - - o3 ~ - (2:20)
II) Zj %j (Zj yk)M ©,]J runs over vertices con

nected to k. k=1...n, M=o, 1, 2, 3.
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Landau wrote his equatioﬁs for the momentum space

- Green functions. Similar equations have also been written
down by others for momentum space Green functions. Ref-
erences to these can be found in the reference (5).

We associate a physical picture with these equations
as follows.

For Mi:# o, Bylz = o =3 that the end points of the
propagator i, are time ordered in a Lorentz invariant
manner. We assign an arrow to this propagator pointing
from the earlier to the later time. We associate a four

momentum, to this line, given by

pM‘j

b=« (7 -Zy) Lo (2.1D)

E. = “(,‘(ZJ'”ZK)Q

= - = (7 =) Ve
. o= oo (2 ~2,) = E J AR = B,V el (2.12)
Pl i ¢ ] k- I (Z;=2Zwly I
Also, o >0 = E;2 0 (D (Zj-2), %2 © S (2.13)

Equation (2.12) is just the relation between energy
and momentum of free, massless particles. Hence, we say
that the arrow assignment done according to the time order-
ing, represents a massless particle propagating freely be-

tween the points Zj and 2 in the direction of the arrow.

k'
The momemtun of this particle is given by equation (2.11).
With this association, II) of equation (2,10) is sim-

ply the statement that the net incoming momentum at every

internal vertex is equal to the net outgoing momentum at



the same vertex. I) of equation (2.10) implies that for

‘ Mi + o the corresponding particle is massless. If £, =

o, then the corresponding (PihA = 0; for which an arrow
assignment is irrelevant. Note that even for oy ¢ o

we could have P, = o if Syi = o. However, Syi = 0 cor-
responds to the u. v. divergences in the momentum space
which we keep regulated by simply not allowing Syi = o
for any i = 1...N.

We summarize the physical picture interpretation by
saying that-—associated with every pinch singular point
(a point at which the hypercontour is trapped)} of the n
point Green function, is a physical process in which mass~
less particles propagate freely between the vertices, and
the various momenta they carry,satisfy energy-momentum
conservation law at every internal vertex. -

In the diagrams representing the physical process
and, hence, a pinch singular point, we denote the finite
energy lines by putting an arrow in the direction of
propagation, and the zero momentum lines are denoted by
broken lines. These diagrams will be called physical
pictures.

Now we note a few simple consequences of the above
interpretation.

1) The transitiyity of time ordering implies that
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we cannot have loops of finite energies in a physical

- picture--a loop being understood as a closed path traced

by following the meomentum arraow.

2) Since in a physical picture finite momenta can-
not be trapped in loops, only external momenta can serve
as the "sources" and "sinks" of finite momenta flow.

3) If we reject the trivial case where all di's are
Zero (Syi # o for any i), then it follows that for every
connected physical picture we must have at least two non-
zero external momenta.

Next, we consider special types of physical pictures
which have only two and three non-zero external momenta.
For convenience, we consider the two point and the three
point functions which have only these two types of physi-

cal pictures.

The two point function: Let " be a connected diagram

contributing to the two point function {(see Fig. 1l-a),
Xy and X, are the external point while Yq and y, are the

point to which Xy and X, dare connected. In a correspond-
ing physical picture, we get Py = Py and, therefore, Py
is parallel to Psy- Now, we will prove that Py and p, are
collinear. Though it is almost intuitive, we give a

Proof so as to get a similar result for the

thvree point function.
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Result: Py and p, are collinear.

2
_Proof: Two parallel lines define a plane. Choose X-Y
plane to be this plane(see Fig. 1l-b). Let, if possible,

Py and Py be not collinear. Consider the set of the 2
coordinates of all the internal and external vertices.
Let ZA be the maximum (minimum} value in this set. (2

corresponds to the vertex A.) Consider the vertices con-

A

nected to A. ZA 1s maximum {ninimum) means that these

vertices all lie below ({(above) the 7 = ZA plane. If
there be a non-zeroc Z-component of momemtun coming in at
A, then clearly we have a violation of momentum conserva-
tion. Hence, the net Z-component of momentum coming in
at A must be zero, and the vertices connected to A must
either be coplanner with A or the corresponding « = o.
If the «£'s ©of all the lines connected to A are zero,
then we consider the next maximum (minimum) value)ZB.
Proceeding this way we see that all the vertices through
whichrat least two non-zero momenta flow lie in the X-Y
plane.

Now we can consider the set of y coordinates and
use the conservation of the y-components of the momenta
to conclude that all the vertices through which at least

two non-zero momenta flow must be collinear. This means,

Yy and y, are collinear and, hence, Pq and p, are
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collinear.

- Corollary: Since the vertices x, and x, are connected

1 2

by light-1like segments, all of which are collinear with

Xl and Xz, it follows that (X, - Xi)z = o. Hence, only
2

for (X, - ¥%4)7 = o, we may have a singular point of Gg
(%, , X,), i.e., all the singularities of G (X4 ,X;)
can possibly lie only on the light cone ( vaxlﬁ‘m o}

The three point function: Consider a connected diagram

I contributing to the three point function {(see Fig. 2).
Due to overall nmomentum conservation, we must have two
external momenta outgoing (ingoing) and one incoming
(outgoing) in a corresponding physical picture. Without

loss of generality, we write,

by=h +b , Pl=o , i=1,2,3. ce.(2.14)
P-z":-O = %_‘P3“:" EZES"”(]-“CGSBH) = 0
= Gy =0 ev.(2.15)

Hence, all three momenta are parallel.

Result: As in the case of the two point function, we ggt,
Py Pyr Py are collinear.

Corollary: All vertices through which at least twe non-

zero momenta flow {(hence, onward called "hard vertices")

are collinear with X, , X, ond Xy-

Note: 1In ¢4 theory, the three point function is zero.

However, by three point function, we mean a class of




dephysical pictureswith only three non-zero external mo-
~menta. As for the two point function, we conclude that
all the singularities of the "three point function” must
lie on the light cone with the three points collinear
with one another.

Because of these results, we find that the physical
picture of a pinch singular point, which may lead to a
singularity in tﬁe two cases mentioned above, looks ge-
nerically as shown in Fig. (3). We note that near pinch
singular points,the integrand seems to factorize into
two factors; the propagators connecting two "hard verti-
ces"” only, and those which do not connect two hard ver-

tices or external vertices.

Since all the hard vertices are collinear with

(xl - x2), the first factor is, roughly speaking, a
singular function of (x2 - xl)z, whereas the second fac-
tor is a smooth function of (x2 - xl)zn Rouéhly speak-

ing, the physical picture suggests that near the light

cone, (x2 - xl)2 = o0, the two point function seems to be
expressible as a sum of product of two factors, one of
which is a singular function of (x, - x )2

2 1

In the next section, we will consider the two fac-
tors in more detail and give a formal derivation of the

light-cone expansion.
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IIT: Derivation of the Light-Cone Expansion

In the previous section, we noticed that at a pinch
singular point (of two and three point functions), a sub-

set of vertices become collinear with Xi and xz, which

are on the light cone w. r. t. each other. A pinch sin-
gular point (PSP} may, therefore, be equivalently class-

ified by giving K vertices, YooYy which satisfy yi2 =

o, y1§ =0, i, jJ =1...k; and by giving propagators

which are on their common light cone. Note that this
describes a class of PSP's rather than a single PSP.

Consider for definiteness, the two point function

in nth order in qﬁ'theory. We take Xl = o and Xzﬂ ®

For a connected diagram [, we have, -
rep) N 4 a6 ,
G (o, %) Jaity, --- d 5KN11-=.-]1 5y
4 ) .
fdiy,, ---d'y, ;I{ui al syt ...(2,1§)
In equation (2.16) , [(p) refers to a particular class

(e

it 4 .

P of PSP's of | and G

tribution f&yh t Notice that we have replaced the L Feyn-

denotes the approximated con-

man propagators by their leading form near the light cone.

Put N
! »
G (Y=Y ) = S"wﬁmi --- dfy, ',II“L O (892)

“?O—Emm {o]| T i pelyriomial ( G Ly,) =" ¢(3k)§19}. (2.1
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\ » _ _ . 7!
Define Aif: % yio 4 1...k, and expand G (yl“““yk)'
. formally, in a Taylor series , about Yy = x {or o, = o) .
r’ !
G (Yy--- YY) = GT (R, By-m- By)
ot a a N !

- Z &11 v = AKK a i "@rr (x) C\"“‘"’Ak)}
a;=o T Gy Qe MDD
jm - K ’Y}‘]‘ a&i T aAK :

where, ... {2.18)
- 3 a aft = an
Y =2, 4P T AEWW“““(&J%MM
ai 2 = (0B gy 2

AR = TpAy LMhay

oaa Py Mg 3A Iy == (A1,

The sum over Lorentz indices is understood and suppressed.

Define
n '
T
QY' (x) = C . G (x,84--~8y)
Gy -=-0y A - DaARK aj=
. (2.19)
Thus, eguation (2.17) may be written as
r(p) = S oA v
G (O'K) o Sd‘f}y s OI4:’ Tr i z Al. 4 O‘{“_‘( C-K)
i K 121 63.2 &= 0 'Y’]m[ -~ ' 1
R EE 4 . ... (2.20)
=] n L
o
~ Z Oe{l"'"‘"{‘( (x) . Sd4yi“"dé‘y 'T'r 4 IAitu__A:fK .
a(izm Y\] K =1 55}1‘2

= qe-n-K
Now we give a set of power counting rules to estimate the

integral in equation (2.20). These will enable us to
limit the classes of PSP's which actually lead to a di-
vergent contribution in the limit x* — o

i

We choose a set of "normal” and "intrinsic variables"

w. ¥r. t. the PSP class P. Normal variables are those
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whose vanishing with x* makes the k vertices collinear

-with %X. Intrinsic variables, on the other hand, span the

class P itself. For a vector Yy we define the usual

. B . S m A - )
light-cone coordinates as y4 = = Q%)i y3),‘g = (yl, yz)
We choose a frame s. t. X, is given as (X*’fga' g ). As

X 5 o (8¢ fixed) we see that the minus component of X,
vanishes. We choose Yior Y1 i =1...%k, as the normal
variables and Yig i = 1l...k, as the intrinsic variables.
As the normal variables vanish, the k vertices become
collinear with o and x and as the intrinsic variables are
changed, these vertices move along their common line.

In terms of these variables yi2 = 25yi+9§§yim -
$y2. 1f we scale Syi_ by A and Syi by /% , then Syi2

Vifh

W

scales as A, and the volume element, d4yi = éyﬁrdyi—d{if

scales as A2. Thus, we use two power counting rules:
1} every vertex Yqeeo¥y contributes Az and 2} every
propagator collinear with x ( A/ ~ %gﬁ- ,i=d---1)

)

contributes fl. For scalar theories these rules are
sufficient to estimate the integral in equation (2.20).
Consider a class of PSP's which has k collinear

vertices (which are collinear with x. Note that col-

linear vertices could have,gn¥
The external vertices are not counted as collinear

vertices} and \ collinear propagators. Let n, be the



number of collinear vertices which have a total of i
“lines connected to the other collinear vertices ("tad-
poles” are excluded). If p be the total power of A
contributed by the integrand and the volume element, and

E be the number of external vertices (E - 2,3), then
P oz 2K - L
4 1 §" (i-m;) E
— . - M Rt = -
= 2.(1;2-1 ny) - [-{;,;1 i + €] L. (2.21)
- .

= 1. - =
2y vy vy v 00 TS

For divergent behavior as x2—¢ 0, we must have p 4 @

Now it 1s a simple matter to write down the divergent
classes of PSP's. We summarize the results for "two point
functions," "three point functions" and also for the prod-
uct of two currents J (®) = . ¢3CK):~~(formal definition)
in the table below. For the product of J (o) and J (x),
effectively,E = 4 (see Fig. 4).

From equation (2.20), we see that if the short dis-
tance limit (%M“’o ) is taken along the light cone, then
the A's wvanish and the only terms that survive are those
with, ®a.,n = 35 «; < |P] . The "operators", o°'s, do
not have any derivatives of the fields. Hence, the en-
tries in the last column of the beloﬁ:gable correspond
to the operators that survive in the short distance

limit. WNotice that for the second entry for the product
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of two currents, we could have' n = 1, i.e., a single
. derivative term of the form éﬁcﬁ(Q(¢) . We have indi-
cated only the non-derivative terms.

For the form of the operators contributing to the
X% o limit, we have to rearrange equation (2.20) in
terms of "symmetric, traceless operators" and then in
the manner explained in the reference (6) w8 classify
the operators according to their twist = dimension-spin.

Summing over the divergent classes of PS5P's leads
to the light~cone expansion after equation (2.20) is
rearranged. This derivation 1s necessarily formal,
since we paid no attention to the u. v. divergences
(8y -» 0 cases). Without these considerations, the
definition of the operators 0" (equation 2.19) is empty.
To make it rigorous, one has to define the oYs by doing
"additional subtractions" along the lines of Zimmermann.
Nonetheless, the formal derivation is very simple and
direct, and does not assume a short distance expansion

(4)

unlike the derivation given by Brandt and Prepagata_
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TABLE CATALOGUE OF CASES

— -

Only collinear vertices are shown in

the diagrams. M, is arbitrary.

rie)
Y4, Yy iz Diagram Form of G P(O,X)

E =2 (Physical pictures with only +wo hon-zero
external moementa)

1) o o R ——— (1"‘:1)< I 2 iy
X

2) o 1 0 S (1n x*) < ¢%(w )

3) o 8 & . b -, Ungx®) AR AEHY

E=3 (Physical picture with only three non-zero
external wvmomenta)

1) 1 o o Mo _m ane <)
LT 2
2) © 1 & e (Tn x®) < Peyy) Py
3) o 0 3 d——leL—Lf'—- (Tn x*) L DY) Py )Py
Yy Vg YS ‘
E =4 (Product of +wo currents)
5
1) o o o =y (1ln x* ) LT >
CxAn *

continue ---— ¢
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Diogram Form of G'P (o, x)
\ / X
\ (1n x*) 2
= x = & Py
LY W/
/ /

(1n x*) { ¢y, ) ¢y

]
o= (1n x2) < d%y,) G YL)

.
P! L 2 2
==, (In xB) <My Py
P*(Yg) P2, >
LN 4

}
T o x (In x%)< ¢3cy,) doud

|
i Z
" ”';f L ISR ISRY:

denotes powers of logarithms.



IV: Concluding Remarks

In the preceeding sections we saw how the
singularities of the position space Green functions can
be analysed in a manner analogous to their momentum
space counterparts. In particular, we developed a
physical picture interpretation of the "Landau equations"
and used it to give a formal derivation of the light
core expansion.

We observe that the physical picture interpretation
depends only on the eqns (2.10) which in turn depends
only on the singularity surfaces of the integrand in
egn. (2.1). If we consider theories with fermions,
vector particles, derivative couplings, etc., the inte-
grand of egn (2.1) becomes considerably complicated.
However, if the singularity surfaces of this integrand
correspond to those of the "scaler theory”, then all
our derivationgup to the physical picture interpreta-
tion and its consequences, go through. However, the
behaviour of the Feynman propagators near their light
cone is quite different for different particles and
hence the power counting arguments of the previous

section have to be reconsidered. The extension of
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this method has been done to Yukawa theory but not to
gauge theories. Also the extension to physical pictures
with more than four external non-zero momenta seems
difficult.

As noted in the introduction, the singularities of
the position space Green functions and those of the
momentum space Green functions are related via Fourier
transform. Therefore, the physical picture of the
singularities in the position space may be useful to
gain some intuitive understanding of the singularities

in the momentum space.
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A
(a)
7,
fN
-
P
e
7
R > Y
X BT Ya
E b e
X i 3(2 Pz, XZ
(b))
Fig.d @1 1-a) depicts o geneval connecked diaqram,T,

contributing to the two point funetion.

The wmomenta b, , P fn 1-0k) con
o\wmys be +aken +to be coplanner.
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Figl @ A geneval connected diaqram contributing
to the three point function.

Fig3: Geneval foym of +he physical pictuyve of a psp
of o dwe point Ffuwction. The “cloud” contains
only zevo momentum lines. ¥,--Y, ave “havd
vertices” wheveas Y. is o Scollinear vevtex
which V¢ viot o havd vevrtex”

Fig 4 A geneval covrmected oh'cujr-am covtyibuting
to col Tl) TCx o> where Tu) = el .



